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Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission

mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital

and oropharyngeal cancer among others. HPV vaccination has become a public-health

concern, worldwide, to prevent the cases of HPV infections including precancerous

lesions, cervical cancers, and genital warts especially in adolescent female and male

population by launching national programswith international alliances. Currently, available

prophylactic and therapeutic vaccines are expensive to be used in developing countries

for vaccination programs. The recent progress in immunotherapy, biotechnology,

recombinant DNA technology and molecular biology along with alternative and

complementary medicinal systems have paved novel ways and valuable opportunities to

design and develop effective prophylactic and therapeutic vaccines, drugs and treatment

approach to counter HPV effectively. Exploration andmore researches on such advances

could result in the gradual reduction in the incidences of HPV cases across the world.

The present review presents a current global scenario and futuristic prospects of the

advanced prophylactic and therapeutic approaches against HPV along with recent

patents coverage of the progress and advances in drugs, vaccines and therapeutic

regimens to effectively combat HPV infections and its cancerous conditions.
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INTRODUCTION

Human papilloma virus (HPV) infection is usually a commonly
encountered infection (transient) which has attracted the
attention of media in recent years due to the advancement in the
field of vaccine development and changes in recommendations
for screening of cancer (1, 2). HPV is found to be the causative
agent for dermatologic diseases and sexually transmitted diseases
(3). Across the globe, HPV vaccination has become a public
health priority, with many national programs with international
alliances launched in several countries of the world. This
vaccine can help prevent cases of HPV infection that may
result in precancerous lesions, cervical cancers, and genital
warts, especially in adolescent females and males. Universal
HPV vaccination worldwide will result in a gradual reduction
in the incidence of HPV cases (4). The Papillomaviridae
family comprises more than 130 HPV genotypes that have
been isolated from various human neoplasias such as warts,
cancers, and cases of recurrent respiratory papillomatosis (RRP)
(5). The prevalence and distribution of HPV types differ by
geographic region. Moreover, HPV types in 30,848 invasive
cervical cancers worldwide revealed differences by geographical
region and histological type (6). This virus is a significant cause
of mortality and morbidity in the developing countries (7).
Globally, cervical cancer ranks as the second most common
cancer in women and is responsible for a significant number of
deaths (453 million). High-risk HPV, consisting of more than
100 types of HPV, is an important cause of cervical cancer
(8, 9). Through the process of immunization along with other
therapies, it is possible to control the HPV-associated cancers and
such opportunity is created through the process of identifying
HPV as a causative agent for malignancies. Against infectious
diseases as a tradition use of vaccines have been done as a
preventive measure. Success has been achieved in developing
prophylactic vaccines against HPV types that cause disease by
making the viral L1 (major capsid protein) as target (10, 11). It
is, however, to be kept in mind that there is not enough evidence
for demonstrating the efficacy of the prophylactic vaccines for
treatment of HPV infections and lesions associated with HPV
(12, 13).

To control HPV infection, HPV vaccines have been
introduced into national immunization programs (14). Since
2013, HPV vaccines (bivalent and quadrivalent) have been
included in the national immunization programs of at least 66
nations, including NorthAmerica andWestern Europe, primarily
(15). Recombinant HPV virus-like particles (VLPs) are being
produced at commercial level via heterologous expression of
the major capsid protein L1 in yeast or insect cells (16). From
the morphology viewpoint, VLPs are similar to natural HPV
virions with considerable potentialities to induce animal and
human type-specific antibody responses (17). A patent has
been granted to (18) for developing a technique of disassembly
and reassembly of VLPs to enhance the stability of VLPs.
The present HPV vaccines are capable of preventing persistent
HPV infections, as well as protecting against premalignant
cervical lesions (19). Once HPV infection was established as
the main cause of cervical and other types of cancer, our

focus turned to typing of HPV by field testing with new
diagnostics and applying effective HPV immunization strategies
for cancer control (20). Licensed VLP-HPV vaccines should
provide long-term safety and effective protection against targeted
HPV types. Also, to determine the optimal ages for effective
vaccination, their design should address the effects of vaccine
modulators, mode of delivery, expandable coverage of HPV
types, and effects on males and targeted pre-adolescents or
adults (21). HPV vaccines are recommended for both adolescent
males and females, and after these vaccines were introduced, a
marked reduction in the prevalence of HPV-associated cancers
has been observed (22). It is to be noted that no serious
adverse events in relation to vaccine has been reported (23,
24).

Among effective prophylactic HPV vaccines, Cervarix (a
bivalent vaccine) is protective against adenocarcinoma-causing
types including HPV-16, 18, 31, 33 and 45 for a documented
period of 6.4 years. Whereas, Gardasil (a quadrivalent vaccine)
has been confirmed to protect against genital warts, respiratory
papillomatosis, and certain types that cause squamous cell cancer,
including HPV-6, 11, 16, 18, and 31, for 5 years (10). Despite
these successes, vaccination against HPV has triggered much
debate. Also, use of these vaccines in developing countries is
essentially non-existent, mainly because of its high cost and the
difficulty of introducing them into vaccination programs, as they
both require three injections over a 6-month period for girls
(25). Gardasil and Cervarix are effective vaccines against HPV,
generally, but their coverage of HPV types is limited, and their
use in pregnant women is not advised; hence, vaccines with a
broader preventative and therapeutic spectrum and better safety
profile are desired.

Chimeric vaccines, multivalent vaccines to address HPV
types (broader spectrum) or to combine HPV with other
pathogens, edible vaccines, biodegradable and mucoadhesive
polymer-based vaccines, and various viral vectors harboring
recombinant HPV DNA vaccines are being developed for greater
immunogenicity than that of current vaccines. Similarly, for
a more recipient-friendly vaccine, needleless immunization
technologies, including the use of a jet gun, gene gun, and
microneedles are being evaluated for HPV cancer prevention
(26). Lyophilized HPV pseudovirions have been delivered to
murine models using microneedles (27). Studies exploring
PubMed, EMBASE, Cochrane Library, and clinicaltrials.gov
databases for published reports on immunogenicity and
safety of bivalent and quadrivalent vaccines, specifically in
Asian populations, have suggested strategies for developing
vaccines that elicit enhanced HPV-16- and HPV-18- specific
antibody levels (28). In light of the serious consequences
of HPV-associated cancers and warts, HPV vaccination
should be included in the standard childhood vaccination
regimen (29).

The present review presents a current global scenario and
futuristic prospects of the advanced prophylactic and therapeutic
approaches against HPV along with recent patents coverage of
the progress and advances in drugs, vaccines and therapeutic
regimens to effectively combat HPV infections and its induced-
pathological sequels.
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HPV DISEASE

HPVs belong to a large family of non-enveloped, small,
approximately 7.9–8 kbp circular dsDNA viruses that are
surrounded by an icosahedral protein capsid composed primarily
of a highly immunogenic L1 protein, with a minor contribution
from the L2 protein (30, 31). The virus is the cause of squamous
epithelial cell proliferation, or common warts, on areas of the
body such as the hands, feet, anus, cervix, scrotum, groin, thigh,
or penis (32). The life cycle of the virus is divided into five phases.
Infection and subsequent uncoating is the first phase wherein
there is an affection of the basal cells. Genomic maintenance is
the second phase during which there is an expression of the early
proteins of the virus, viz., E1 and E2. This is followed by the
proliferative phase wherein there is an expression of some other
early proteins like E6 and E7. The cell cycle progresses after being
stimulated by such proteins. Subsequently, there is a synthesis
of the virus which is the fourth phase during which there is an
expression of the late viral proteins, viz., L1 and L2. The virus
is packaged in the epithelial layer under the influence of these
late/structural proteins. During shedding of the dead cells at the
stratified epithelial layer, there is the release of the virus (fifth
phase) which can then cause infection of other cells (33, 34).

HPVs with different oncogenic potential have been assigned to
three main groups: high-risk types, intermediate-risk types, and
low-risk types. High-risk types include HPV-16, 18, 31, 33, 35,
39, 45, 51, 52, 56, 58, 59, 68, 73, and 82; intermediate-risk types
include HPV-26, 53, and 66; and low risk-types include HPV-6,
11, 40, 42, 43, 44, 54, 61, 70, 72, and 81. Among these types, 70%
of cervical cancers result from type 16 and 18 infections, and if
multiple HPV types infect women, persistent HPV infections can
be established, and cervical cancer exacerbated (26, 35). There is
also the involvement of HPV- 33 and 45 in causing squamous
cell carcinoma and adenocarcinoma, respectively (36). It is to be
mentioned in this regard that the low-risk HPV viruses and the
oncogenic types are responsible for causing warts (anogenital)
and cervical dysplasia, respectively (34).

HPV is held responsible for the trends in the increase in
the rate of oropharyngeal carcinoma as is revealed by molecular
detection methods. The viral nucleic acid is detectable in a
clinical specimen by polymerase chain reaction at a much greater
frequency after the year 2000 as compared to before 1990 in the
United States alone. The involvement of HPV in oropharyngeal
carcinoma has greatly increased during a span of 20 years in the
Netherlands from 1990 to 2010. Similar is the situation in another
European country like Spain (37, 38).

Despite this, most HPV infections induce no or only mild
cytological abnormalities; and fewHPV infections lead to cervical
cancer. HPV can also cause cervical and other cancers such
as cancer of the vulva, vagina, penis, or anus. It can also
cause cancer in the back of the throat, including the base
of the tongue and tonsils (39). Usually HPV infections clear
within 1–2 years’ time, but if multiple HPV types infect a
person, the viruses may persist, leading to lethal cancers in
various parts of the body. In one study by the U.S. Centers
for Disease Control (CDC) conducted from 2004 to 2008,
an average of 33,369 HPV-associated cancers was diagnosed

annually. Therefore, CDC projected that every year roughly
26,000 new cancer cases occurred as a result of HPV infection,
including 18,000 cases in females and 8,000 in males. In the
U.S., cervical cancer prevention is based on two approaches:
one primary and one secondary. The primary strategy is regular
HPV immunizations, and the second strategy is screening
of populations at risk or immunized to reduce HPV-related
cancers (40).

Among oncogenic HPVs, genotypes 6 and 11 cause laryngeal
papillomas and most of the genital warts, whereas types 16
and 18 are responsible for 70% of cervical cancers. To prevent
infection with highly transmissible HPV, a quadrivalent (types
6, 11, 16, and 18) HPV vaccine has been evaluated and shown
good results in clinical trials. Similarly, a bivalent vaccine (types
16 and 18) has shown greater than 90% protection against
persistent HPV infections, even 5 years post-vaccination. In both,
the vaccines were non-infectious, DNA-free VLPs, developed
using recombinant technology, administered in conjunction
with appropriate adjuvants, and three doses at 6-month
intervals have been shown to elicit high-titer serum antibodies
(41).

A study performed in young women 15–25 years of
age to assess the immunogenicity and efficacy of a human
papillomavirus 16 and 18 (HPV-16/18) AS04-adjuvanted
vaccine against cervical intraepithelial neoplasia (CIN)
grade 1 or greater (CIN1+, CIN2+, or CIN3+) showed
that vaccination of adolescent girls before their first sexual
encounter resulted in better protection and prevention of
HPV-associated cervical cancers and persistent infections
(42). The HPV-16/18AS04-adjuvanted vaccine reduced
the incidence of high-risk human papilloma viruses in
a randomized cluster trial in adolescent girls and boys,
irrespective of their lifestyles and sexual behavioral patterns
(43).

The clinical efficacy of bivalent (HPV-16 and 18), quadrivalent
(HPV- 6, 11, 16, and 18), and nonavalent (9vHPV; HPV-
6, 11, 16, 18, 31, 33, 45, 52, and 58) vaccines against
cervical cancer was tested. The bivalent and quadrivalent
vaccines reduction in the rate of HPV-16 and 18 prevalences
significantly compared to that of the 9vHPV vaccine and all
three vaccines decreased the morbidity and mortality from
cervical cancers resulting from oncogenic HPVs (44). The
HPV-16/18-AS04-adjuvanted vaccine, when administered in a
one-dose schedule to adolescent girls 9–14 years of age and
evaluated for immunogenicity and safety, showed clinically
acceptable results compared to a three-dose vaccine schedule for
women aged 15–25 years (45). Another clinical trial (controlled
phase II/III) that evaluated an HPV-16/18-AS04-adjuvanted
vaccine in women showed that the vaccine efficiently reduced
HPV-16/18 infection, provided cross-protection against some
non-vaccine-type oncogenic HPVs that cause genital warts,
and protected against oral, vulvar, and anal HPV infection
regardless of the age, geographical location, or sexual practice
of study participants (46). One 7-year follow-up study on
phase III, double-blind, randomized controlled trial from 2006
to 2014 evaluated the efficacy, safety, and immunogenicity of
the HPV-16/18-AS04-adjuvanted vaccine in women older than
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25 years (in groups ranging 26–35 years, 36–45 years, and
≥46 years). Control women received aluminum hydroxide,
whereas vaccinated women were immunized with the HPV-
16/18 vaccine. Results showed that the HPV-16/18 vaccine was
effective in all age groups and protected against HPV-associated
lesions (CIN1+), and corresponding cytological abnormalities,
irrespective of the infecting HPV type. Hence, this vaccine
was shown to be reliably effective against HPV infections
(47). Studies have shown that immunizations with the HPV-
16/18-AS04-adjuvanted vaccine do not promote autoimmune
disease (48).

Chronic local inflammation, alone or as a result of oral HPV
infection, may play an important role in the etiology of head
and neck squamous cell carcinomas (49). A study conducted in
over 624 nursing students in Izmir, Turkey, revealed that the
students had a very high level of knowledge as far as the risk
factors and the transmission modes of the disease are concerned
but such knowledge has not been used practically to make the
vaccination against HPV successful (50). A mathematical model-
based analysis has been utilized for systematic screening in
women in the U.S. to protect the health benefits and harms;
costs involved in vaccination with the bivalent, quadrivalent or
nonavalent vaccine (51). Increased awareness of the health risks
of HPV infection, such as cervical cancer and warts that results
from education and self-testing is an important component in
screening and diagnosing initial infections and advanced cases of
HPV-associated cancers (52).

Advances in Developing Prophylactic And
Therapeutic Vaccines Against HPV
Because the cultivation and propagation of HPV in cell/tissue
culture are difficult, developing inactivated or live attenuated
HPV vaccines is not a common practice. Therapeutic vaccines
against HPV can be categorized into nanoparticle-, bacterial-,
live vector- (bacterial and viral), nucleic acid- (DNA and
RNA), protein-, peptide-, cell- (cytokine-transduced autologous
tumor cells and dendritic cells [DCs]) based vaccines [reviewed
in (53) and (54)]. Cytotoxic T lymphocyte (CTL) responses
elicited by therapeutic vaccines against HPV early viral gene
products E1, E2, E5, E6, and E7 (53). Therapeutic vaccines
targeting E6 and E7 (early proteins encoded by HPV) are
most common because these proteins are produced in all HPV-
infected cells and are vital for cancer cells (53, 55). Therefore,
researchers have focused on developing unconventional new-
generation prophylactic and therapeutic HPV vaccines targeting
capsid proteins or the genome by genetic engineering and
recombinant DNA technology. The prophylactic vaccines are
relatively safer (56–58). It is interesting to note that there is
enhancement of cell mediated immunity by T cell based vaccines
in contrast to prophylactic vaccines (that help in generating
neutralizing antibodies) (59). At present, the questions that
arise regarding vaccination against HPV is the protection
period (specially, in relation to cross protection). Moreover the
shortcomings of the VLP vaccines, viz., less thermal stability,
lack of efficacy therapeutically, cost, etc., are also required to be
overcome (60).

Various new approaches are presented as below:

Protein-Based Subunit Vaccines

These include subunit or subvirion products that induce
protective immunity. Fusion protein PD-E7 vaccines comprise
a mutated HPV-16 E7 protein linked to the first 108 amino
acids of Haemophilus influenzae protein D (PD), adjuvanted
with AS02B. Vaccinated patients with oncogenic HPV-positive
CINs mount significant E7- and PD-specific IgG responses (61).
The therapeutic SGN-00101 vaccine (also known as HspE7,
developed by StressGen), based on the fusion of the E7 protein
of HPV16 and recombinant heat shock protein 65 (Hsp65) of
Mycobacterium bovis, was evaluated for protection against anal
neoplasia (62). Vaccination with SGN-00101 at a dose of 500 µg
administered at 3-week intervals induced immune responses and
lesion regression in women with high-grade CINs (63).

SGN-00101

as a potential treatment for cervical tumors (64) and RRP
(65) was evaluated. SGN-00101 induces the activity of CTLs in
women having cervical intraepithelial lesions (CIN) (66). An
HPV-6 L2/E7 fusion protein is another protein-based vaccine
that induces antibodies against HPV-16 oncoproteins. ProCervix
(GTL001) is adjuvanted with Aldara developed by Genticel; it
consists of HPV-16 E7/HPV-18 E7 bivalent adenylate cyclase
(CyaA)-based vaccine that targets HPV-16 and 18 infections (67).
ProCervix has been proposed to clear HPV-16 infection while
protecting against later infection with HPV-18. A phase 1 clinical
trial for safety and immunogenicity of the ProCervix vaccine
revealed that HPV clearance was several-fold higher in the group
treated with ProCervix than in the placebo group (68).

Peptide-Based Vaccines

As far as such type of vaccine is concerned, characterization of
various specific epitopes has been done for the humanMHC class
I (HLA-A2) peptides. In mammalian models, the cell-mediated
immune response is generated by immunizing with a peptide
that carries E6 or E7 origin epitopes (69). Various peptide-based
vaccines include extended epitope-specific peptides, synthetic
long peptides (SLPs), or lipopeptides. SLPs consisting of peptides
from HPV-16 (nine E6 and four E7) (HPV-16-SLP adjuvanted
with Montanide ISA-51) were tested in phase II clinical trial
(70) and interestingly in case of humans multiple clinical trials
have been conducted for studying the HPV-16-SLP (long peptide
vaccine) (70–72). Examples of this kind of vaccine include
those constructed with HPV-16 E7 12–20, E7 86–93, E7 86–
93, E7 11–20, and E7 86–93 lipopeptides (54, 73, 74), HPV-16
E7 86–93 (CIGB-228 vaccine) adjuvanted with very small-sized
proteoliposomes (VSSPs) (73), as well as HPV-16 E7 49–57 with
a poly-IC (a Toll-like receptor [TLR]3 agonist) and anti-CD40
monoclonal antibody as the TriVax vaccine (75).

Epitope-Based Vaccines

Vaccines designed using a traditional approach involve
attenuation of a pathogen by sub-culturing, which is a long
and tedious process that can take up to 15 years, and the safety of
these vaccines is a matter of concern (76, 77). Bioinformatics is
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an important multidisciplinary tool that may allow optimization
of the health benefits of vaccines.

In silico tools, paired with improvements in recombinant
DNA (rDNA) technology and knowledge of the host immune
response and genetic background of the pathogen, will contribute
to the future development of new vaccines (78). The first step
toward applying bioinformatics to vaccine development consists
of identifying epitopes that are potentially immunoprotective
from those that are not (76). Prediction of T and B cell epitopes
has been the main focus of immunoinformatics, and over the
years many different tools have been developed (79). With
the advent of bioinformatics and high-throughput technologies,
vaccine research has entered a new era, and vaccine design has
benefitted from the development of vaccine databases and in
silico vaccine design tools (80).

A prediction for the 16 major epitope variants (V1–V16)
in the full-length L1 protein of HPV-16 and evaluation of the
immunogenicity of these variants and reference DNA vaccine
constructs was recently reported by Kumar et al. (81). The results
of this study showed that the L500F (V16) and T379P (V8)
variants induced a ∼2.7-fold (p < 0.002) increase and ∼0.4-
fold (p < 0.328) decrease in antibody titer, respectively, after the
final injection. This study offered a roadmap for the use of both
in silico tools and experimental methods to develop DNA-based
vaccines. The authors also suggested that multi-epitope DNA
vaccines might induce more effective immune response against
HPVs with different epitope variants than those constructed
without a consideration of this variation (81).

In another study, in silico tools (B-cell and T-cell epitope
prediction methods) were used to design a subunit vaccine
against HPV (82). Using a conserved sequence in the L1 binding
protein gene from 20 different sequences, the authors proposed a
possible HPV vaccine target. Based on their analysis, the authors
reported that the L141 protein of HPV was a promising candidate
for vaccine design.

Yao et al. (83) identified E6 and E7 proteins as ideal
candidates for therapeutic vaccines against HPV-16 infection.
A total of 81 CTL epitopes in HPV-16 E6 (n = 59)
and E7 (n = 22) were predicted using Immune Epitope
Database Analysis Resource. Among the 20 clusters of epitopes
in HPV-16 E6 generated, cluster 3 contained the most
epitopes (10 epitopes), representing HLA-A∗31:01 and -A∗33:03.
Of the 10 clusters of HPV-16 E7, cluster 3 contained
the most epitopes (5 epitopes), representing HLA-A∗01:01
and -A∗26:01. Based on their observations, the authors
suggested that a cocktail of E6 and E7 epitopes such as
52FAFRDLCIVYR62 of E6 (HLA-A∗02:06, HLA-A∗31:01, and
HLA-A∗33:03), 66PYAVCDKCLKF76 of E6 (HLA-A∗11:01 and
HLA-A∗24:02), 2HGDTPTLHEY11 of E7 (HLA-A∗01:01 and
HLA-A∗26:01), and 11YMLDLQPETT20 of E7 (HLA-A∗02:01)
could be used to vaccinate more than 50% of all individuals
worldwide (83).

de Oliveira et al. (84) reported the designing of amulti-epitope
recombinant protein. It contains the immunogenic epitopes of E6
and E7 proteins. This particular recombinant protein can protect
against HPV-induced tumors in CD4+ T cell-deficient mice but
not in mice deficient in CD8+ T cells. Moreover, the activities of
the T cells that are E6/E7 specific are also enhanced. So the use of

this multi-epitope protein is assumed to be a promising approach
to design a potent vaccine therapeutically against HPV-induced
tumors.

In another study, biopsies of nine cervical cancers
(HPV-16-infected) in patients with HLA-A∗02 were obtained.
The E7 oncogene-coding region was reported to be conserved
in all tumors. Of the nine samples, the E711−19 peptide
(11YMLDLQPET19) was detected by MS3 analysis of the
HLA-A∗02 immunoprecipitate from seven of them. However,
of the 13 epitopes predicted using the in silico approach,
only one was observed through an exquisitely sensitive
physical detection method, suggesting that bioinformatic
prediction should be used to identify probable epitopes for
confirmation by physical detection. Because the conserved
E711−19 peptide is the dominant HLA-A∗02 binding tumor
antigen in HPV-16 transformed cervical squamous cells cancers
and adenocarcinomas, it has the potential to be used for the
development of therapeutic cancer vaccines (85).

Sequence alignment studies have detected that the L2 proteins
of HPV are having greater intertype variability than L1 which
is responsible for the lower consistency of L2 protein as far as
positioning in the variable region is concerned. There is the
presence of greater number of epitopes in the region of L1
that is conserved and such regions are the prime targets for
antibodies (neutralizing types). It can, therefore, be mentioned
without a doubt that as far as designing vaccine is concerned
a better target is L1 protein compared to L2 (86). In silico
approaches to predict the epitopes are highly valuable compared
to conventional procedures that are costly and time-consuming.
The predicted peptides can then be tested both in vitro and in vivo
to verify their effectiveness in triggering an immune response.
Assays with short peptides (overlapping) covering the entire
sequence of the targeted protein/antigen are used to define CTL
epitopes (MHC Class I restricted). Determination of the epitopes
of HPV-16 is also done in the same way (53).

Recombinant Vaccines

Recombinant adeno-associated virus (rAAV)

Intranasal immunization against HPV-16 with recombinant
adeno-associated virus (rAAV) type 5 encoding the major
capsid protein L1 of HPV-16 showed that a single-dose of
this vaccine without an adjuvant was sufficient to elicit high
titers of mucosal antibodies in vaginal washes and L1-specific
serum antibodies (87). Immunization of mice with a single dose
of AAV5-HPV-16 L1 intranasally results in the development
of both cell-mediated as well as humoral immunity for a
prolonged period (88). Another study showed that rAAV-type 9
administered intranasally to mice induced high-titer and long-
lasting neutralizing antibodies against HPV-16 (89). A mutated
HPV-16 E6/E7 gene, whose product is not oncogenic, was
cloned into an adenoviral vector, and the vector elicited an
immune response that increased the clearance of established
HPV–positive-cancer in vivo (90).

Recombinant measles virus (MV) vaccine

A vaccine expressing the L1 capsid protein of HPV-16 that
was designed to protect against HPV-16 infection revealed
measles virus for to be a valuable vehicle for the development
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of inexpensive and effective vaccines (91, 92). In another
study, Gupta et al. (93) administered a recombinant live-
attenuated MV Edmonston-Zagreb (rMVEZ) strain as a viral
vector carrying heterologous genes that encoded the L1 major
capsid proteins of HPV-16 and HPV-18 to rhesus monkeys
(93). HPV-16L1/18L1-specific total IgG antibodies, neutralizing
antibodies, and related cellular immune responses in non-human
primates were comparable to those in response to the classical
recombinant Pichia pastoris expressing HPV protein. A patent
has been granted to Mendiretta et al. (94) for developing a dual
vaccine applicable for treatingmeasles andHPV by usingmeasles
vector and inserted genes coding for HPV antigens.

Vaccinia virus Ankara (MVA)-based vaccines

The growth of human tumors was effectively controlled by
immunization with the recombinant vaccinia virus Ankara
(MVA) expressing HPV E2 (MVA-E2). This vaccine showed
potential to be used as a therapeutic vaccine (95). The viral
vector-basedMVA-E2 therapeutic vaccine inhibited HPV growth
in high-grade lesions (CIN2 and CIN3) (96). Direct injection
of the vaccine has been done in the uterine cervix (97).
Immunization with this vaccine can eliminate precancerous
lesions (CIN1, CIN2, and CIN3) associated with infection by
oncogenic HPV types (98). A phase I/II study of the therapeutic
MVA-E2 vaccine indicated that this vaccine is highly effective
in inducing immune responses against human papilloma viruses
and regression of flat condyloma lesions in men (99). The
therapeutic antigen (TA)-HPV vaccine (improved by Celtic
Pharmaca, previously Xenova or Cantab) is based on a live
recombinant vaccinia virus strain (Wyeth) expressing a modified
E6/E7 fusion protein of HPV-16 and HPV-18 (100). Safety and
immunogenicity of the vaccine were confirmed in a proportion
of those patients vaccinated (101). Injection of TA-HPV vaccine
into the deltoid muscle has been done in a clinical study to
patients having grade III vulvar intraepithelial neoplasia (VIN)
and grade II vaginal intraepithelial neoplasia. After vaccination,
identification of the enhancement of T-cell-based immunity
(HPV E6 as well as E7 specific) has been done by employing
interferon-gamma (IFNγ) ELISPOT assay (102). A booster
vaccine TA-CIN (HPV-16 L2/E6/E7) in combination with TA-
HPV resulted in shrinkage of vulval intraepithelial neoplasias and
symptom relief in some patients, with some showing an immune
response (103). Multiple clinical trials have been conducted for
evaluation of the efficacy as well as safety of MVA-based vaccine
targeting the protein E2 (55, 104). For treating ano-genital lesions
(intra-epithelial, including urethral condyloma or anal lesions)
induced by HPV, phase III clinical study has been carried out
(105). The sequences of attenuated MVA (recombinant) that
encodes E6/E7 of HPV-16 (modified) are included in TG4001
vaccine. Further it is to be mentioned that this vaccine is nothing
but MVATG8042 suspension (106).

Bacteria-Based Vaccines

The reporting of Listeria-based vaccine for therapeutic purpose
against HPV was done for the first time in the year 2009 (107).
Two different vectors of a live-attenuated Listeria monocytogenes
(Lm) were engineered by Gunn et al. (108). In one, the Lm

vector was secreted with E7 as Lm-E7, and, in the other,
E7 was fused to non-hemolytic listeriolysin O (LLO) protein
of the bacteria (Lm-LLO-E7) (Figure 1). The most important
vaccine with anti-cancer activities is ADXS 11-001 (or ADXS-
HPV, formerly known as Lovaxin-C), a therapeutic Listeria-based
vaccine targeting an HPV E7 antigen (108, 109) and resulting
a TNF-alpha (TNF-α) response and IL-2 production by DCs
(110). The phase II FAWCETT trial (NCT02399813) is assessing
the safety of ADXS11-001 in patients with metastatic squamous
cell carcinomas of the anal canal (SCCA) and will be testing
for protection against cervical, oropharyngeal, and anal cancers
(111). Another bacteria-based vaccine expressing the viral E7
protein has been designed utilizing Lactobacillus casei as a vector.
The safety of the L. casei-based vaccine is relatively high and
oral administration is found to be fruitful. For evaluation of the
cellular immunity, this particular vaccine has been administered
in patients having CIN3. Majority of the patients that have
received the vaccine responded well with regression of the disease
which is associated with E7 specific cellular immunity. Enzyme-
linked immunospot (ELISPOT) assay has been employed for
evaluation of the E7 specific-cellular immunity. When treatment
with four-six capsules/day is done, there is exhibition of HPV
E7 specific-cellular immunity in lymphocytes of the cervix (112,
113).

Yeast-Based Vaccine

A recombinant HPV-16 L1-expressing Schizosaccharomyces
pombe yeast strain (HPV-16L1 yeast) produced edible HPV
vaccines that were administered to female BALB/c mice (114). A
codon-optimized HPV-16 L1 gene cloned into a non-integrative
expression vector was transformed in Pichia pastoris yeast cells.
Heparin-Sepharose chromatography was employed to purify L1
protein from the yeast extract. The resulting protein contained
native conformational epitopes, as evidenced by immuno-
electron microscopy, and showed great potential for use as a
low-cost vaccine (115, 116).

VLP-Based Vaccines

There has been the adoption of VLPs as platforms for developing
various candidates of HPV second-generation vaccine. VLPs
have close resemblance with HPV particles (native) and include
conformational epitopes which help in induction of neutralizing
antibodies (26). Vaccines based on VLPs are safer to use while
offering a display of B-cell epitope at greater density and
presentation of T-cell epitopes intracellularly (117). So VLPs are
known to be highly immunogenic. Due to the lack of viral gene,
the VLPs are fully non-infectious as well as non-oncogenic in
nature forming structure resembling the HPV virus outer shell.
They induce production of antibodies that react with the virus
(26, 118, 119). Moreover, one interesting feature of VLP vaccine
is that each of the vaccine has its adjuvant promoting durable
immunity (120). But producing them on a large scale is expensive
and difficult (54). Zhou et al. (121) explored VLP technology
for the development of an HPV vaccine, which led to the most
significant development in HPV vaccines and cervical cancer
control (121). They expressed recombinant open reading frame
(ORF) proteins L1 and L2 of HPV-16 in cells infected with a
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FIGURE 1 | Bacteria-based vaccines. Listeria monocytogenes can be used to secrete HPV E7 which activates CD4 helper T cells through MHC II antigen

presentation mechanism. Another method of E7 delivery is to fuse E7 to non-hemolytic listeriolysin O (LLO) protein of the bacteria (Lm-LLO-E7) and thereby on

delivery causes perforation of phagolysosome due to LLO and E7 protein made available to MHC I which activates cytotoxic T cells.

recombinant form of Vaccinia virus and explored the production
of HPV-like particles, which is useful for biochemical studies
and can provide a safe source of material for the development
of vaccines. One promising alternative approach to producing
recombinant VLP antigens is adding subdominant neutralizing
epitope in the L2 protein of the HPV (122). In a 5-year study to
assess the prophylactic efficacy of a quadrivalent HPV 6/11/16/18
L1 VLP vaccine in 552 adolescent and young adult females of 16–
23 years of age, vaccination reduced the incidence of cervical and
genital cancers, precancerous dysplasias, and genital warts, and
prevented infections with HPV-6, 11, 16, and 18 (123). When
immunologic responses in 1106 young females against HPV types
6, 11, 16, and 18 L1 VLP vaccine were measured, 12- to 26-
times higher levels of anti-HPV vaccine-type antibodies and an
anamnestic protective immune response was observed, with no
adverse side effects (124).

Mutant of Salmonella enterica serovar Typhi, i.e., Ty21a
engineered to produce VLPs with HPV-16 L1 was administered
as a potent live HPV vaccine to simultaneously induce protective
immunity against cervical cancer and typhoid fever (125). Live

bacteria-based HPV vaccines such as attenuated Shigella can
be used to produce VLP (126) and to promote potent local
and systemic immune responses (127). This is a prophylactic,
efficient, and low-cost mucosal vaccine. Heterologous production
of HPV-16 L1 protein in Lactococcus lactis was demonstrated
using two vectors, pCYT, and pSEC, designed for intra- or
extracellular expression, respectively (128). The results of a study
by Cortes-Perez et al. (128) revealed that the use of recombinant
food-grade lactic acid bacteria such as the L. lactis for the
production of L1-based VLPs in a safe mucosal vector is a
promising approach to creating HPV-16 prophylactic vaccines.

Abdoli et al. (129) designed HPV-16 VLPs with L1 protein
in Spodoptera frugiperda 9 (Sf9) insect cells and suggested
administration of recombinant baculovirus containing the HPV-
16 L1 gene as a prophylactic vaccine and for diagnostic
tests (129). Also, a modified baculovirus-based (MultiBac)
approach to producing VLPs for heterologous expression of
the HPV L1 protein in insect cells was used by Senger et al.
(130). Self-assembly of the L1 protein of HPV-6a into VLPs
was demonstrated in both L1- and L1+ L2- coexpressing
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Saccharomyces cerevisiae (131). An alternative HPV antigen to
elicit an immune response against HPV is the L1 pentameric
subunit or capsomere with conserved neutralizing epitopes (132).
Expression of recombinant HPV capsomeres in Escherichia coli
may substantially reduce manufacturing costs. Studies in animal
models have shown that HPV capsomeres alone induce lower
antibody titers than those in VLPs (132). Expression of the L1
gene of HPV types 6 and 11; 16 and 18 have been reported
in S. cerevisiae for producing the HPV4 vaccine that is used
for protection against persistent infection caused by HPV (133,
134). Another vaccine similar to HPV4 is HPV2, which is used
for prevention of oncogenic HPV (23). In another study, a
recombinant major capsid L1 protein of HPV-11 was produced
intracellularly at high levels in an expression system based
on galactose-inducible S. cerevisiae with an HPV-6/11 hybrid
gene (135).

Moreover, VLPs of HPV-58 with the L1 protein produced
in S. cerevisiae elicited antibodies and antigen-specific CD4+
and CD8+ T cell responses without the need for an adjuvant
(136). Also, HPV-16 and -18 L1 protein expressed in E. coli
to produce bivalent VLPs has been demonstrated safe and
highly immunogenic as a vaccine candidate in preclinical studies
(137). Fusion of HPV L1 to the surface of Shigella sonnei
autotransporter, i.e., IcsA, introduced a new VLP strategy to
improve live attenuated Shigella-HPV vaccines for better stability
and more effective expression (138). Multivalent VLP vaccines
for HPV were introduced by Xu et al. (139) and revealed
that HPV-31 L1/L2 VLP-based vaccines induced strong type-
specific and cross-reactive antibodies. Moreover, tobacco plant-
based L1/L2 chimeras containing hybrid epitope sequences of
HPV-16 L1/L2 induced anti-L1 and anti-L2 responses, and
the antisera neutralized homologous HPV-16 and heterologous
HPV-52 pseudovirions in mice (140). Vaccines targeting the
L2 minor capsid antigen revealed particularly strong and long-
lasting antibody responses in mice, with a Th2 to Th1 shift in
response (141). VLPs displaying HPV L2 peptides for capsid
display, adjuvant ability, and fusion with early HPV antigens or
TLR agonists are in development to improve upon licensed HPV
vaccines (142). These vaccines elicit neutralizing antibodies and
can block infection with a wide range of HPV types (143).

Recently, the capacity of AS04-adjuvanted vaccines based on
VLP chimeras of L1 and two L2 epitopes to protect against HPV
was evaluated, and these chimeric vaccines induced immunity
and protected against various types of HPV (HPV-6, 11, 16,
31, 35, 39, 45, 58, and 59 as pseudovirions or quasivirions) in
both mouse and rabbit challenge models (144). Also, the use of
different antigens such as oncogenic peptides, synthetic peptides,
DNA, and bacterial antigens may allow the development of
effective prophylactic and therapeutic vaccines that can address
all of the issues associated with current vaccines.

Purified L1 capsomeres expressed in E. coli represent an
economical alternative to (VLP)-based prophylactic vaccines
against HPV-16 and 18 (145). Schädlich and colleagues
reported that the L11N10 protein was particularly immunologic
and that L1 constructs could be administered to produce
potent immunogenic responses to capsomeres in bacteria as a
potentially inexpensive alternative to VLP-based formulations.

Furthermore, in another study, tobacco plants were used to
express pentameric capsomeres of a modified HPV-16 L1 (L1-
2xCysM) protein to induce immunity against HPV (146).
Licensing of subunit vaccine (VLP-based) from the L1 protein
(plus adjuvant) has been done already (147). A novel VLP with
HPV-16 E5 based on a whole gene as well as long multi-epitope
gene version of E5 was designed by Cordeiro and collaborators
(148). It is interesting to note that for judgment of subunit
vaccines in future, the benchmark should be the HPV VLP
vaccines (149).

DNA Vaccines

The safety of DNA (naked) is relatively higher. They are stable
and lucrative due to ease of production and they have got
application in sustaining expression of antigen in the cells
at greater level (150–152). Additionally the DNA vaccines
do not evoke anti-DNA antibodies for which their repeated
administration can be done (153). Moreover, DNA vaccines offer
several other benefits such as having inherent adjuvant properties
that are lacking in a traditional peptide or attenuated-virus
vaccines, and they are highly effective in treating HPV infections.
In this category, ZYC-101 (developed at Eisai, formerly MGI
Pharma and previously known as Zycos Inc.), the precursor
of amolimogene bepiplasmid, which was evaluated in phase I
clinical trial, is based on a bacterial plasmid (BIOTOPE). It
encodes 25-residues of a humanMHC class I antigen (HLA-DRα)
trafficking peptide (MAISGVPVLGFFIIAVLMSAQESWA) fused
to an immunogenic peptide derived from the E7 protein of
HPV-16 (82LLMGTLGIVCPIC94) (154). This vaccine is effective
against anal and cervical dysplasias, with clinical outcomes
consisting of regression of AINs (3/12 PRs), as well as regression
of CINs (5/15 CRs) (155). Also, lesions showed the greatest
regression in patients <25 years of age. In another study, DNA
vaccine candidates with HPV-16 E6, E7, and L1 genes from an
Iranian isolate inserted into the mammalian expression vector,
pcDNA3 elicited therapeutic CTL responses to HPV-16 E6 and
E7 proteins (156). In another study, a DNA vaccine expressing
the E7 protein of HPV-16 with a mutation in the L-Y-C-Y-E pRb-
binding motif at amino acids 23–25 induced a potent CD8+ T
cell immune response, as well as promoted significant anti-tumor
effects in mice (157).

Moreover, the E7 oncoprotein of HPV linked to an interferon-
inducing 17-kDa protein (ISG15) as an adjuvant elicited
IFN-γ responses and cytolytic effector CD8 T-cell responses
(158). Recently, women with HPV-16 or 18 infections and
normal cervical cytology showed potent immune responses to a
GTL001 DNA vaccine with acceptable safety (159). Furthermore,
Hsp70 can play a significant role in modified HPV-16 E7
and Mycobacterium tuberculosis Hsp70 fusion DNA vaccine
and introduce as candidate therapeutic tumor vaccine (160).
Another vectored DNA-based vaccine is VGX-3100 (IgE leader-
E6/E7 DNA) developed by Inovio Pharmaceuticals, which is
administered intramuscularly by electroporation and targets the
E6 and E7 proteins of HPV-16 and 18 in CINs 2/3 (161). VGX-
3100 is the first therapeutic vaccine to show efficacy against
CIN2/3 associated with HPV-16 and 18. Safety, immunogenicity,
and efficacy of this vaccine were evaluated in phase I clinical trial
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that recruited 18 women who were previously treated for cervical
lesions. The intramuscular route (into the deltoid muscle) was
adopted for administration of the vaccine. This was followed
by electroporation (162, 163). Finally, these genotype-specific
vaccines are in phase I clinical trials and in demand to resolve
HPV infections and neoplasias (54).

However, it must be kept in mind that due to shortage of
specificity (cell type) DNA vaccines show low immunogenicity.
The DNA further lacks the capability (intrinsic) of amplification
or nature of spreading to the cells (in vivo) in the surrounding.
Nevertheless, there may be enhancement of potency of DNA
vaccines (used against cervical cancer induced by HPV) by
making DNA or the encoded antigen as the target to antigen
presenting cells (APCs) and along with this, modification of
the feature of APCs (antigen expressing) can boost immune
response induced by the vaccine (153). Furthermore, it is also
interesting to note that on employing as immunotherapeutic
interventions (stand alone), the DNA-based anticancer vaccines
are ineffective which can be explained by the establishment of
immunosuppression (either systemic or local) (161, 164–167).

Plant-Based Vaccines

Production of candidate HPV vaccines in plant systems is a
promising approach. These vaccines have been shown to be
efficient and immunogenic, even though they are in the early
stages of development (168, 169). One such vaccine is produced
in microalgae that have immunomodulatory properties (170,
171). In one study, a plant codon-optimized version of the HPV-
11 L1 major capsid protein coding sequence was synthesized
and transformed into tobacco and potato plants, resulting in
immunologically functional VLPs. The ingestion of this material
activated anti-VLP immune responses in mice (172). Moreover,
the L1 major capsid protein gene of HPV-16, with or without
nuclear localization signals, was integrated into the Nicotiana
tabacum cv. Xanthi genome and the proteins were assembled
into capsomeres to produce VLPs. Rabbits immunized with small
doses of the transgenic plants showed weak anti-HPV-16 L1
immune responses (173). Also, HPV-11 L1 major capsid protein
in transgenic Arabidopsis thaliana ecotype Columbia and N.
tabacum cv. Xanthi was evaluated as candidates for a low-cost
subunit vaccine. Results indicated that immunization of New
Zealand white rabbits with ∼50 µg of plant-derived HPV-11 L1
induced a weak immune response to native HPV-11 L1 VLPs, as
well as to HPV-11 pseudovirions (174).

Expression of an HPV-16 L2 epitope fused to the N- and
C-terminus of the coat protein of potato virus X (PVX CP) in
transgenic N. benthamiana plants was evaluated by Cerovska
et al. (175) and reported immunogenic in mice. In mouse sera,
antibodies titers against PVX CP and the L2 epitope (108–
120) were measured after vaccine delivery (175). Another study
revealed that the HPV-16 L1 protein expressed in tobacco
chloroplasts induced the self-assembly of VLPs that were highly
immunogenic in mice after intraperitoneal injection (176). A
circular dsDNA replicon was constructed by cloning a secreted
embryonic alkaline phosphatase (SEAP) reporter gene and
promoter into a geminivirus-derived plant expression vector that
was co-transfected with vectors expressing L1 and L2 proteins

into N. benthamiana plants, and an HPV-16 pseudovirus was
purified. This pseudovirus was neutralized by antisera against
current and candidate HPV vaccines and represents a potential
plant-derived vaccine (177). A N. benthamiana-derived fusion
protein with beta-1,3-1,4-glucanase (LicKM) of Clostridium
thermocellum elicited a protective response with a yield of 100
mg/kg biomass with 99% purity after metal ion chelation and
gel filtration purification (178). Transplastomic plants have been
used for expression of mutated L1 gene of HPV. This results in
the sole production of capsomeres that are pentameric in nature
(179, 180).

DC-Based Vaccines

This promising approach has been used to produce HPV
therapeutic vaccines. For example, HPV-16 E6 18–26 or HPV-
16 E7 12–20 peptides pulsed on immature DCs showed
specific immune effects in women that were protective against
advanced cervical cancer (181). In another study, a recombinant
adenovirus encoding codon-optimized HPV-16 E6 and E7
proteins linked to DCs induced protective immunity against
challenge by TC-1 cancer cells in vivo (182). For increasing
the efficacy of DC-based vaccines not only antigens, but also
novel strategies can also be incorporated into DCs. One classical
example is the introduction of the small hairpin (sh) RNA-
suppressor of cytokine signaling (SOCS1) into HPV-specific DC
vaccine (E7 pulsed) (183). For evaluation of the immunogenicity
as well as safety of such vaccines (DC-based), conduction of a
dose escalation trial (phase I) has been done in cervical cancer
(stage IIa or Ib) patients (184) In case of recurrency of cervical
cancer also, phase I clinical trial has been conducted (185).

An overview of advanced vaccine technologies available for
prevention and control of HPV is depicted in Figure 2.

Currently Available Prophylactic Vaccines
Currently, there are several licensed prophylactic HPV vaccines,
including Cervarix, Gardasil, and Gardasil 9. These vaccines are
all based on L1 structural proteins and are designed to inhibit
HPV infections on first exposure. Gardasil and Cervarix both
contain aluminum-based adjuvants and trigger strong protective
immune responses. These two vaccines are beneficial in case
of recurrent cervical cancer. Both Gardasil and Cervarix have
a similar efficiency against HPV-16 as well as HPV-18 (186–
188). They are also safe to used (189). However, case reports
from the U.S. Vaccine Adverse Event Reporting System (VAERS)
have shown that in spite of their efficacy and safety, a few
autoimmune side effects have occurred. These vaccines do not
induce sufficient cross-protection against non-vaccine types of
HPV, as cross-protective immunity was shown to decline with the
time (190, 191). To date, only bivalent and quadrivalent vaccines
have shown efficacy; but a newer nonavalent vaccine is also under
trial to evaluate its anti-HPV potential (192).

Gardasil

A tetravalent vaccine targeting HPV known as Gardasil or Silgard
(qHPV-6/11/16/18 vaccine; Kenilworth, NJ, USA) was licensed
in 2006 and is composed of 120 µg of antigen per dose (VLP of
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FIGURE 2 | Advanced vaccine technologies available for prevention and control of HPV.

recombinant L1 HPV-6 [20 µg], VLP of recombinant L1 HPV-
11 [40 µg], VLP of recombinant L1 HPV-16 [40 µg], and VLP
of recombinant L1 HPV-18 [20 µg]), adjuvanted with 225 µg
of aluminum hydroxyphosphate sulfate (123, 124, 193). This
vaccine is licensed in many countries and has been shown to
be immunogenic and safe and to inhibit infections with other
HPV serotypes. Elevated HPV antibodies have been found in all
vaccinated persons, ranging from 9 to 45 years of age. Gardasil
is administered in 0.5mL per dose to girls and women ages 9
to 26 years for the control of cervical, vulvar, vaginal, and anal
cancers induced by HPV-16 and 18, genital warts (condyloma
acuminata) induced by HPV-6 and 11, and dysplastic lesions
induced by HPV-6, 11, 16, and 18, as well as grades 1, 2 and 3
CINs, cervical adenocarcinomas in situ (AISs), grades 2 and 3
vulvar intraepithelial neoplasias (VINs), grades 2 and 3 vaginal
intraepithelial neoplasia (VaINs), and grades 1, 2, and 3 anal
intraepithelial neoplasia (AINs). Gardasil is also administered to
boys and men 9 to 26 years of age for the control of anal cancers
induced byHPV-16 and 18, genital warts (condyloma acuminata)
induced by HPV-6 and 11, dysplastic lesions induced by HPV-6,
11, 16, and 18, and grades 1, 2, and 3 AINs.

According to a FUTURE I and FUTURE II analysis, the
efficacy of cervical and vulvar neoplasias and grade I VINs are
30, 75, and 48% respectively, and 83% for condyloma acuminate
(194). Currently, the duration of protection by Gardasil is
considered 9 years (195).

Cervarix

A bivalent HPV vaccine (HPV-2; Cervarix, GlaxoSmithKline
Biologicals, Rixensart, Belgium) was licensed by the U.S. Food
and Drug Administration (FDA) for administration to females
10–25 years of age (196) and has been approved in Europe and
Australia (197). This is an L1 VLP vaccine that is produced
in a cabbage looper moth cell line (Trichoplusia ni [Hi 5])
infected with recombinant baculovirus HPV-16 and 18 L1 and
adjuvanted with 500 µg of AS04, which consists of 50 µg of 3-O-
deacetylated-4-monophosphoryl lipid A adsorbed into 500 µg of
aluminum hydroxide (198). It consists of VLPs of HPV-16 and
18, which induce 70% of cervical cancers worldwide and play
important roles in HPV-related vulvar, vaginal, penile, anal, and
oropharyngeal cancers (199, 200). The vaccine is composed of 20
µg of recombinant L1 from HPV-16 and 20 µg of recombinant
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L1 from HPV-18 and is administered intramuscularly in three
doses (the second dose given at least 1 month after the initial dose
and the third dose given at least 6 months after the initial dose).
The AS04 adjuvant in the vaccine induced increased expression
of phenotypic maturation markers along with production of pro-
inflammatory cytokines as well as cytotoxicity against tumor cells
that are positive for HPV when interleukin (IL)-15 dendritic
cell (DC) are exposed to the vaccine (201). The vaccine exerted
immunity againsy HPV via a novel mode, i.e., boosted innate
immunity, including killing of HPV-infected cells by DC and NK
cells. The PATRICIA clinical study revealed the efficacy of the
vaccine against HPV-16 and 18-associated precancerous cervical
lesions to be 92.9–98.1 and 30.4%, respectively, and suggested
cross-protection of other oncogenic HPV types such as HPV-
31 and 45 (11, 197). The effectiveness of this vaccine against
CIN2+ lesions with HPV-16 and 18 has also been reported. The
vaccine is well tolerated, highly immunogenic, and capable of
generating high titers of neutralizing antibody to HPV-16 and
18 (202, 203). A phase III double-blind, randomized controlled
trial of the Cervarix vaccine showed an efficacy of 90.4% against
CIN2+ lesions with HPV-16 and 18 (203). Cervarix induces high
antibody titers in comparison to natural infection. In women,
there has been demonstration of an enhanced humoral immune
response (204). Currently, the duration of protection generated
by Cervarix is estimated to be 9.4 years (205, 206). One study
showed that HPV universal mass vaccination of people in the UK
with Cervarix prevented females from developing cervical cancer
and protected males from HPV-16 and 18 infections (207).

Gardasil 9

Gardasil 9 (Merck and Co., Inc.), a 9vHPV
(6/11/16/18/31/33/45/52/58) VLP-based vaccine provides
protection against five additional oncogenic types (HPV-31, 33,
45, 52, and 58) and was approved by the FDA on December
10, 2014, for administration to females aged 9–26 years and
males aged 9–15 years (208). Gardasil 9 targets up to 90% of
genital warts (both Gardasil vaccines also target two HPV types
responsible for ∼90% of genital warts) (209). A phase III clinical
trial in women aged 16–26 years demonstrated the efficacy
of the vaccine in inhibiting HPV infection (210). In another
study, the safety and efficacy of the 9vHPV vaccine in males and
females of 9–26 years were assessed across seven phase III clinical
trials. The results showed that this vaccine was well tolerated
in subjects with a serious and non-serious adverse event profile
similar to that of the Gardasil qHPV vaccine, although injection-
site adverse events including pain, swelling, and erythema in
both males and females and headache in felames were more
common (≥10%) with the 9vHPV vaccine (211). Increased
use of the Gardasil 9 vaccine offers the hope of reducing
neonatal transmission of HPV and decreasing the incidence and
morbidity of recurrent respiratory (laryngeal) pappillomatosis
(RRP) (212). A study to estimate the public health effects and
cost-effectiveness of vaccination with Gardasil 9 in Germany
indicated that immunization of boys with the 9-valent vaccine
reduced the incidence of cervical cancer by 24% and anal cancers
in males and females of 30, and 14%, respectively, while over a
million cases of genital warts would be prevented in 100 years

(213). It is important to note that Gardasil-9 has not yet been
approved for use in subjects who have received three doses of
Gardasil or Cervarix (214). Moreover, Gardasil-9 is expected
to be more cost-effective than HPV vaccines currently in use
(215, 216).

GTL001

For eradication of cells infected with HPV, a therapeutic vaccine
(bivalent) known as GTL001 is available. It is a fusion of
HPV-16 E7 as well as HPV-18 E7 and detoxified adenylate
cyclase (CyaA) of Bordetella pertussis binding to specific CD11b+
antigen presenting cells (APC) (217). The interesting feature is
there is induction of T cell responses (CD4+ and CD8+) in
an antigen specific manner against the viral/tumor antigens. A
recombinant CyaA that bears the HPV-16 E7 (antigen) when
used for vaccination intradermally causes induction of a T cell
response. This requires adjuvantation with a Toll-like receptor
9 agonist, i.e., CpG oligodeoxynucleotide (ODN1826). This
ultimately results in elimination of tumors that express HPV-
16 E7 (218, 219). There are two GTL001 formulations, viz., a
solution form and a powder form (which is more concentrated
in nature) adjuvanted with imiquimod cream. The formulations
have been tested in a clinical trial (phase I) and both are found to
be safe and induced E7-specific CTL responses (159).

9-Valent HPV Vaccine

The safety as well as efficacy of the 9-valent vaccine providing
protection against HPV types 6, 11, 16, 18, 31, 33, 45, 52,
and 58 has been proven recently. This will help further in
reducing the incidences of infection due to HPV along with
the cancer related to the virus. Moreover, a herd immunity is
generated for providing indirect protection to individuals that are
unvaccinated (220). In boys as well as girls in the age group of 9–
15 years, geometric mean titer (GMT) (non-inferior) is generated
by 9-valent vaccine (208, 221, 222). The vaccine efficacy is proven
also in 16–26 years age group of males (223).

Safety of the Currentluy Used HPV
Vaccines
Safety of HPV vaccines was studied in both clinical trials
before they were licensed and through post-licensure surveillance
programmes (224–233). Like any other vaccines administered by
intramuscular route, the HPV vaccinees may get inflammation
(pain, erythema, swelling and pruritus) at the injection site.
The other side effects include pyrexia, headache, chill, weakness,
malaise, myalgia, and joint pain. These HPV vaccine-related
adverse effects (AEs) usually occur from day 1 to day 15 after
vaccination and mostly are mild; the vaccines are believed
to be well tolerated in girls, boys and young women (234).
Nevertheless, serious HPV vaccine related AEs that required
hospitalization occurred in vaccinees of 9-valent HPV vaccine
including asthmatic attack in a 10-year-old boy who had
experienced seasonal allergy and bronchial asthma; high fever
(>38◦C), body pain, headache, and malaise in a 26-year-old
woman; and occipital headache with photophobia, nausia and
chill in a 23-year-old woman (234). In a large cohort study
of >2 million young girls (aged 13–16 years) between 2008
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and 2012 in France of which 37% received HPV vaccine,
autoimmune diseases (AID) occurred in 4,096 subjects during
the follow-up time (mean of 33 months). The incidence of
AID was not increased after HPV vaccination, except Guillain-
Barre syndrome (GBS) which was found in 1.4 per 100,000
vaccinees versus 0.4 per 100,000 non-vaccinated subjects (232).
No increase risk of GBS was observed following HPV vaccination
in England (235). A systemic review and meta-analysis of 11
studies did not find any evidence of increased demyelinating
diseases after HPV vaccination (233). However, at least 10
cases of neurological events were reported worldwide after HPV
vaccination (236–241). A case-control epidemiological study of
the vaccine adverse event reporting system (VAERS) database was
undertaken to evaluate the risk for reported autoimmune adverse
events following quadrivalent HPV vaccination (242). Cases
with gastroenteritis, rheumatoid artritis, thrombocytopenia, SLE,
vasculitis, alopecia, CNS demyelinating conditions, ovarian
damage, or irritable bowel syndrome were significantly more
likely than control to have received quadrivalent HPV vaccine
(242).

Safety of HPV vaccines in pregnancy or immediately pre-
conceptually has been reviewed (230). The HPV vaccination
concerns were not only the maternal safety, but also (and
more) on the teratogenicity and other fetal adverse events (AEs)
following HPV vaccination, including spontaneous miscarriage,
preterm birth, congenital malformations, and fetal decease.
Pooled results from 11 studies which compared 16,142 women
who received at least one dose of either bivalent (2vHPV,
Cervarix R©) or quadrivalent (4vHPV, Gardasil R©) vaccine, with
13,811 girls/women who received control vaccine (hepatitis A
vaccine) indicated that the AEs in women who received the HPV
vaccine were not greater than the controls, among the age groups
10–14, 15–25, and >25 years and the follow-up periods 0–7, 7–
12, and >12 months. For the fetal safety, none of the studies
reported a significant increased rate of spontaneous abortion
and other fetal outcomes in overall subgroup analyses (e.g., age,
interval of time of conception and nearest vaccination, number
of vaccinations) compared with controls. The conclusion was the
risk of AEs during pregnancy is unrelated to HPV vaccination
before or during pregnancy (230).

THERAPEUTIC APPROACHES TO
HPV-INDUCED DISEASE

Currently, there are no HPV therapies available. Removal of
the abnormal tissue by surgical operation is currently the
recommended cure for cervical dysplasia. Removal of the affected
tissue, e.g., cervical conizations, however, can lead to premature
births. Thus, development of non-invasive treatment therapies
for HPV-induced cancers is needed, and therapeutic HPV
vaccines are a promising strategy (243, 244).

One study demonstrated the therapeutic potential of
curcumin in high-risk HPV-infected oral cancer cells. Curcumin
down-regulated HPV transcription by suppressing the cellular
transcription factors AP-1 and NF-κB and selectively inhibited
E6 oncogene-mediated p53 degradation during carcinogenesis

in HPV-16-positive oral cancer cells (245–248). Another study
showed that certain cervical cancers did not express HPV
oncogenes E6 and E7, and these were considered HPV-inactive
tumors because they showed increased WNT/β-catenin and
sonic hedgehog signaling, decreased DNA methylation, enriched
non-synonymous somatic mutations specifically targeting the
TP53, ARID, WNT, and PI3K pathways. Hence, these tumors
can be treated by therapies targeting WNT, PI3K, and/or TP53
mutations (249).

The regulatory activity of the immune system is influenced
by either chemotherapy or radiotherapy and in tumor models of
mice in combination with vaccination can increase the efficacy
of T cell-based immunity against HPV infection (250). The
lesions induced by HPV (that are of lesser risk and shows
infestation with regulatory T cells) can be successfully treated
by the use of cyclophosphamide at low dose thereby altering
the local environment of the immune system. In recent past,
properly planned randomized trial has been introduced in
patients with cervical cancer that shows metastasis to compare
solely chemotherapy versus chemotherapy combined with a long
synthetic peptide of HPV-16. Adoptive cell therapy (ACT) or
antibody based-therapeutic approaches have been proven to be
successful for treatment of patients with melanoma (251, 252).
Earlier, it was evident from various sources that effector T
cells that are specific to HPV can be obtained with consistency
from cervical cancer patients. By the significance of local
microenvironment of HPV-induced lesions, there may be a shift
in the local balance of immune effectors through treatment. For
example, uses of cyclooxygenase 2 (COX2) inhibitors (through
inhibition of prostaglandin E2 production) or inhibitors of
transforming growth factor beta (TGFβ) receptor kinase (type
I), anti-IL-6 or anti-IL-10 antibodies may prove to be efficacious.
Ultimately, the main goal is a suppression of regulatory T cells
and a generation of an effective effector T cell microenvironment
by identifying the combination that is optimum in enhanced
trafficking of the immune effector cells and their efficiency at
the affected site. This ultimately provides scope to the immunity
induced by vaccination for effective eradication of lesions that are
persistent. In this regard, a good example is the use of imiquimod
for priming the microenvironment to clear successfully HPV
induced-vulvar lesions that are immune-mediated (253, 254).

Photodynamic Therapy
For eliminating malignancies at an early Stage as well as for
palliative treatment of cutaneous Tumors AlongWith Tumors of
lungs and esophagus (at late stage), photodynamic therapy (PDT)
is an option already approved by Food and Drug Administration
(FDA) (255–258). PDT is another approach used widely to treat
various cancers. Topical administration of PDT is considered
to be most appropriate for cervical and vulval intraepithelial
lesions (259). 5-Aminolevulinic acid (ALA)-mediated PDT to
treat HPV-associated cervical condyloma has been evaluated for
HPV-6, 11, 16, and 18. Complete remission was observed after 1–
4 treatments in 98.2% of cases, resulting in an HPV clearance rate
of 83.9%, with no evidence of cervical structural changes. This
indicates the efficacy and safety of the PDT (260). Topical ALA-
PDT has been found efficacious and well tolerated when used to
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treat high-riskHPV infections (259). A photosensitizer dye IR700
coupled with HPV VLPs, when exposed to cervical cancer cell
lines and 690-nm light causes necrosis-like cell death by inducing
the influx of CD8+ and CD4+ T-cells into the treated tumors
(261).

Hexaminolevulinate-mediated PDT has been found to be safe
for treating cervical intraepithelial neoplasia (CIN) (262, 263).
Immune cell infiltration is a striking feature of photodynamic
therapy, and it forms the basis for treatment of neoplasms that
are HPV-associated; especially in the case of vulvar intraepithelial
neoplasia (VIN). In chronic VIN, there is an alteration of the
immunological balance if photodynamic therapy is employed.
This leads to clearance of virus as well as lesions (258).
Nevertheless for treating HPV infection the effectiveness of
antimicrobial photodynamic therapy (APDT) cannot be denied
(264, 265).

Cryotherapy
For treating cervical intraepithelial neoplasia, the efficacy along
with safety and acceptability of cryotherapy is well documented.
The cure rate with cryotherapy is very high (266). In low as well
as middle income countries, cryotherapy seems to be suitable.
But the shortage of refrigerant gas creates hindrance in the
application of cryotherapy for treating HPV (267, 268). It is
interesting to note that within a period of 3 months one-fourth
of the infection due to high risk HPV (hrHPV) can be cleared by
cryotherapy (269).

Cytotoxic Agents
A few cytotoxic agents, including podophyllin or trichloroacetic
acid, have been used topically to remove genital warts (270),
while 5-fluorouracil has been used to a lesser extent because
it elicits a strong inflammatory reaction (271). Anti-cancer
agents, i.e., arsenic trioxide (As2O3) and carboplatin target
transcription factors AP-1 and NF-κB, play important roles in
the expression of HPV oncoproteins E6 and E7 (272, 273). Some
immunomodulators like imiquimod have records of safety and
efficacy in treating HPV-caused genital warts (274). Aspergillus,
Gliocladium, and Penicillium species produce tricyclic alkaloid
gliotoxin (275) and effectively reduce the proliferation of HPV-
18 infected cells by inducing Bax, caspase-3, caspase-8, and
caspase-9 and suppressing Bcl-2 (276).

Antiviral Drugs
Cis-retinoic acid is used as adjunctive therapy for treating HPV-
induced lesion of the larynx; but due to efficacy issues, the
drug had been discontinued in patients suffering from recurrent
respiratory papillomatosis (RRP) (65). At present, the most
common drug used in adjuvant therapy of RRP is cidofovir. The
drug is used at a concentration of 5 mg/mL with a dose up to
the limit of 3 mg/kg. Such concentration and dose regimen can
be followed both in children as well as adults (65, 277–279).
Cidofovir can also be administered through inhalation, and in the
near future such inhalation therapy may provide scope further to
perform research on the clinical ground (280). The expression of
E6 as well as E7, has been reduced by cidofovir. This drug is also
involved in the reduction of metastatic characteristics of tumor

cells that are positive for HPV (281). Ribavirin and acyclovir
have also been used from time to time, but their clinical efficacy
is questionable (65). For reduction of the size of precancerous
lesions of cervix (PLC), an essential oil (natural) containing drug
known as anti-viral 2 (AV2) has been introduced. The drug
contains various organic compounds, viz., geraniol, eugenol,
nerolidol, and carvone which can confer a broad spectrum
effect (both on oral administration or topical application).
More than half of the size of lesion is reduced when AV2
is applied [(282), http://www.cesa-alliance.com/webapp/index.
html, (268)]. Xinfuning (a recombinant human interferon α-
2b vaginal effervescent capsule), used to treat vaginal infections,
enhances NK cell activity (283).

Both in vitro as well as in vivo, the activity of interferons
(IFNs) against HPV is well proven. Due to the anti-viral activity,
anti-proliferative nature and capability to generate host immune
response, interferons are quiet noteworthy for treatment of HPV
(284). For adjuvant therapy against papillomatosis of larynx,
interferons are among the earliest agents to be adopted. Biphasic
vesicles are used in recent time to deliver IFN-α topically
that ensures its delivery locally for a prolonged period without
much exposure systemically (285, 286). IFN-α co-administered
with retinoids has shown promising results when used to treat
cervical carcinomas (287). Combined therapy with IFN-α and
ribavirin has been found to be effective against perianal and
genital infection caused by HPV (288). Similarly, pegylated
interferon along with ribavirin is useful for treating disseminated
HPV infection (289). Treatment with IFN-α has been shown
efficacious in reducing the rate of condyloma recurrence (284).

Herbal Medicines
In the Chinese herbal medicine system, several plants with
anti-HPV activity have been identified. The Chinese medicine
named Paiteling, containing folium, sophora, cnidium, gall, and
javanica oil, inhibits HPV by destroying mitochondrial and other
membranes to cause necrosis (290). Carrageenan isolated from
red algae, is known to bind HPV virions and inhibit post-
attachment entry (291). Carrageenan gel as a sexual lubricant
has shown efficacy in preventing infection with an HPV-16
pseudovirus (292).

Significant activities against HPV are shown by certain
Chinese medicines (traditional) which are used for preventing as
well as treating cancer in relation to HPV. The inhibitory effect
of Chai Hu (from roots of Bupleurum chinense) on infection
due to HPV is well known. This particular medicine has been
found to interfere with DNA expression of HPV in genital warts.
Youdujing is another medicine that is responsible for reversion
of the cervical lesion function in patients having a greater risk
of infection due to HPV (293–295). Inhibition of the risk of
infection due to HPV can be done by Paiteling consisting of
folium as well as javanica oil as essential components. Moreover,
this medicine also contains gall and cnidium as well as sophora
all of which can ultimately cause the specific destruction of the
mitochondria as well as other biological membranes ultimately
resulting in degeneration of cells along with programmed cell
death (290). Treating with fraction of Pinellia extract causes
reduction of the expression of mRNA and level of protein of
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HPV E6 whereas there is increase in the protein level as well
as mRNA of p53 in cancer cells of the cervix. The antitumor
effect of the Pinellia extract fraction is thought to be due to
the down-regulation of expression of HPV E6 gene and p53
gene upregulation (296, 297). There is reduction of viral load
along with improvement of cytological as well as pathological
results in patients with infected cervix by application of Zibai gel
(298). Youdujing cream is clinically effective and for condyloma
acuminatum it is a popular choice. The amplification of HPV-
DNA is inhibited as is evident by in vitro experiments to reveal
the therapeutic efficacy of Youdujing in lesions of the genital tract
(299–301).

Ranpirnase RNAse
Ranpirnase RNAse is a peptide that cleaves double-stranded
RNA (dsRNA). It can eradicate HPV from cultured cells. This
drug has been used to treat several malignancies with few side
effects, even with a transiently increased serum creatinine level.
Three different formulations containing 1 mg/mL ranpirnase
were applied topically to genital or anal warts of male volunteers,
and it was moderately tolerated in these patients with a mean
healing time 30 days (302). HPV-11 is the HPV type primarily
responsible for genital warts, and ranpirnase is effective against
this type, as well as HPV-16. In a patent application by Sulley
and Squiquera (303), the enzyme is formulated with a vehicle that
does not affect its activity and can be applied topically to genital
warts for potential approval as a sexual lubricant. A close variant
of ranpirnase has been granted with patent, which contained
three mutations (I11V, D20B, and S103R) was found non-toxic
and well-tolerated in humans (304).

RNA Interference (RNAi)-Based Therapies
For cancer therapies based on RNAi, an ideal model system is the
HPV-induced tumors because there is expression of E6 as well as
E7 (the oncogenes responsible for causing cervical cancer) only
on tumor cells (305). As far as the RNAi therapy is concerned,
any of the non-structural (early genes) or structural genes (late
genes) of HPV can be targeted (306). The two siRNAs targeting
the E6/E7 promoter and E7 transcripts, and thereby knocking
down E6 and E7 mRNAs elicit high levels of TP53 expression.
Subsequently, apoptosis is induced in cell lines of cervical cancer
origin which are positive for HPV-16 (307–309). Nine siRNAs
designed by Chang et al. (310) were found to target E6 or
E6/E7 mRNA of HPV-16 and 18 specifically, and intratumoral
administration of these siRNAs resulted in induction of cervical
cancer cell apoptosis. In mice (immunocompetent), there is
development of tumors (small sized) when HPV-16 E7 siRNAs
are used for pre-treating tissue culture-1 cells of murine origin
(311). In Caski cells, there may be suppression of tumors if
siRNAs are injected intratumorally (312). HPV-siRNA plasmids
were constructed using a pTOPO-U6 or pTOPO-U6II vector.
HPV-16 and 18-type siRNA libraries have been screened for
potent siRNAs, which will subsequently be validated in in vitro
and in vivo experiments (313). However in the clinical setting,
the success of RNAi-based therapies is limited (314). It is further
interesting to note that the cisplastin sensitivity of cancerous cells

is increased when siRNA is used to target oncogenes of HPV as it
leads to reactivation of p53 pathway (305).

Localized Immunomodulation
For clearance or suppression of infection due to HPV
immunologically in a normal manner, the usefulness of localized
immunomodulation has already been proven. The Aldara cream
contains an active agent called imiquimod (a Toll like receptor-7
agonist) and this cream can be used topically. There is release
of interferons (type I) along with proinflammatory cytokines
due to activation of macrophages, dendritic cells along with
keratinocytes by imiquimod (315, 316). Imiquimod enhances
immunity by activating a Th1 response (317). Imiquimod causes
side effects that include irritation at the site of application.
Green tea leaves contain an extract known as polyphenon E
(sinecatechins) that causes immunomodulatory stimulation of
the clearance of the virus (318).

Immunotherapy
Immunotherapy has emerged as an adjunctive treatment
for standard cancer treatments (surgery, radiotherapy and/or
chemotherapy). Substances used in the cancer immunotherapy
include non-specific immune stimulators, cytokines, monoclonal
antibodies and adoptive or engineered autologous immune
cells, mainly T cells. The same strategies canbe applied for
treatment of HPV-induced cancers. Bacillus Calmette-Guerin
(BCG) given via catheter into bladder with tumor mass in
several cycles over several months reduces the otherwise high
recurence and progression rates of bladder cancer by causing
stimulation of effective immune response against cancer cells
(American Cancer Society). Cytokines (such as interferons)
enhance immune system aganst cancers. Therapeutic antibodies,
nakedly or conjugated (loaded) with radioisotope, toxin, or drug,
kill directly the cancer cells. Some antibodies recognizes molecule
which is highly expressed on cancer cells such that the cells
are better seen by the effector immune system for antibody-
dependent cell-mediated cytotoxicity (ADCC) or complement-
mediated cell lysis. Anitbody binding to cell surface receptor
can also cause inhibition of downstream cell signaling and
prevent cancer cell shading of decoy to increase effectiveness
of the host immune system. Monoclonal antibodies in the
form of bispecific T cell engager (BITE) bind to cancer
cell and effector T cell simultaneously and bring them into
vinicity for increasing the effector cell effectiveness. Antibodies
to immune checkpoint molecules on effector T cells such
as programmed cell death-1 (PD1) and cytotoxic lymphocyte
antigen-4 (CTLA-4) restores the effector T cell activity which
is suppressed by ligands highly expressed on the cancer cells
leading consequently to not only cancer cell death, but also
death of regulatory T cells in the tumor environment. Anti-PD-
1/OX40 monoclonal antibody treatment increased CD4+ and
CD8+ cells and decreased immunosuppressive CD4+FoxP3+
regulatory T (Treg) cells (319). Chimeric antigen receptor T
cells (engineered patient’s own T cells) (320) and cytokine
activated adoptive/autologous tumor infiltrating lymphocytes
(321) are effective in several cancer immunotherapy. These
options canbe adopted for treatment of HPV-mediated cancers.
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Two monoclonal antibodies against the L1 protein of HPV-16
have been produced for diagnostic and therapeutic purposes
(322). Anti-HPV 16/18 E6 (C1P5; Abcam) administered
repeatedly induced apoptosis of HPV-related cervical cancer
(323).

Miscellaneous Therapies
Cimetidine has been found to be useful for papillomas of
conjunctiva (in case of ocular surface infection due to HPV).
It augments the immune system by inhibition of T suppressor
cell function and enhances delayed-type hypersensitivity
(DTH) (324). One interesting immunomodulator is
dinitrochlorobenzene (DNCB) which may cause induction
of DTH response; thereby causing regression of tumor. It
has got direct application and is useful in case of surgical
failure (325). There is reduction in the rate of recurrence of
HPV-induced tumors by use of radiation therapy. Additionally
chemotherapy eye drops are found to be efficacious in clinical
various trials (326). It is also interesting to find that there is
effective inhibition of the growth of tumors (expressing HPV

E6 as well as E7) by cetuximab when grafting is done in severe
combined immunodeficient (SCID) mice (327).

An overview on various therapeutic approaches available for
treatment of HPV is depicted in Figure 3. Different patents
recital to the HPV are provided in Table 1 and the various
therapies available to treat HPV are summarized in Table 2.

Last but not the least this review is a unique/comprehensive
review which highlights the various advances in developing
vaccines (both prophylactic and therapeutic) and therapeutic
regimens along with recent patents coverage on drugs, vaccines
and therapeutics against HPV that will help the scientists
and medical practitioners to prevent, treat and facilitate the
eradication of the malignancies in relation to HPV in an
effective and more promising manner. Moreover, the mind of
researchers will be more innovative to combine therapeutic
vaccines against HPV with radiation and chemotherapy
for designing better control measures along with adopting
advanced therapeutic approaches to counter HPV infections
and the associated cancerous conditions. The advanced
information on HPV vaccines and therapeutics presented

FIGURE 3 | Various therapeutic approaches available for treatment of HPV.
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in this review compilation along with carrying out more
researches in futuristic prospects in the right directions
would pave way to design and develop suitable prophylactic
and therapeutic vaccines, drugs and treatment modalities
delivering clinical outcomes in an improved manner and to
combat HPV and its cancerous conditions effectively at global
level.

CONCLUSION AND FUTURE PROSPECTS

This review highlights the advances in designing prophylactic
and therapeutic vaccines as well as treatment regimens against
human papilloma virus (HPV) to encourage the development
of effective vaccines and therapies against this important
disease. For prevention of HPV infection, the use of topical
microbicides has been explored widely. For instance, like the use
of carrageenan to prevent genital infection due to HPV, several
patent applications for formulations are pending which comprise
several natural components, such asAloe vera, turmeric,Citrullus
colocynthis, hard sea salt, myrrh, and garlic to treat HPV.
More clinical trials are needed to be conducted to explore the
utility of topical microbicides. Studies through mathematical
modeling have predicted that vaccination can maintain the
antibody levels (especially against HPV-16 and 18) at a much
higher level than the level reached due to natural infection for
a period of minimum two decades after vaccination. So it can
eliminate the requirement of booster dose for a long period.
Derivation of the consensus sequence for E6 and E7 genes,
followed by codon optimization of these genes and their use as
immunogen will pave the way for effective prophylactics. Three
commercially available prophylactic vaccines show sufficient
efficacy; however, attempts to develop next-generation vaccines
that are inexpensive, effective, stable, and that show broad cross-
neutralizing immunity are in progress. Recombinant vaccine
immunogens based on transgenic plants are an attractive and
potentially affordable alternative to vaccines by injection. For
example, edible plants can be grown locally and distributed easily
without special training or equipment. Approved HPV vaccines
based on recombinant VLPs of important high-risk HPV L1
major capsid antigen are effective in controlling HPV infections,
but do not have therapeutic applications or protect against
cutaneous infections. There are studies to evaluate alternative
approaches to deliver current vaccine in a safer and affordable
way. For example, microneedle deliveries of lyophilized HPV
pseudovirions are thermostable and have been tested in a murine
model. Also, acceptance of HPV vaccines has been hindered by
many factors associated with place of residence, culture, and
economics. Administration of these vaccines has been virtually
non-existent in developing countries, mainly because of their
extremely high costs and the technical challenges of vaccination,
which require multiple doses over a 6-month period (388). Also,
refrigeration is needed during shipping and storage, introducing
logistical difficulties in areas that lack adequate infrastructure.
HPV vaccines cost approximately US $450 (Gardasil) and US
$495 (Gardasil 9) in the U.S. for the complete course of
three injections. Therefore, second-generation HPV vaccines are

needed to reduce the costs of vaccine production and increase
immunization schedule feasibility.

A subdominant neutralizing epitope in the HPV L2 protein is
an alternative approach to produce recombinant VLP antigens.
This well-conserved linear neutralizing HPV epitope, which
is located at the amino terminus of the L2 protein, may be
exposed while the virus is on the basement membrane during
infection. Attempts are being made to formulate more stable
VLPs for immunization, and in fact, VLPs which are subjected
to a disassembly and reassembly process have been found
to be more stable, and the patent has been granted to the
technology. Another alternative antigen for use in HPV vaccines
is the pentameric subunit or capsomere of the L1 protein
that has essential neutralizing epitopes to induce an immune
response to protect against HPV. Recombinant capsomeres
expressed in E. coli represent one important approach to reducing
manufacturing costs. Studies in animal models have reported
that HPV capsomeres alone induce lower antibody titers than
VLPs. Therefore, this approach will require further optimization
for increased antibody titers. However, the pentamers can be
lyophilized for greater thermostability, suggesting the potential
for formulations that can be shipped and stored without
refrigeration (389). Thus, use of capsomeres is an attractive
and affordable option for developing second-generation HPV
vaccines (389).

On the other hand, production of combined preventive-
therapeutic antigens, focusing on fusions of L2 with E7, or
both E6 and E7, is in the early stages, and their therapeutic
effectiveness has not been demonstrated. However, these
therapeutic vaccines have shown some promise in some early
clinical trials. Curcumin has also shown the potential to
prevent HPV-associated oral cancers by selectively inhibiting E6
oncogene-mediated p53 degradation. Apart from vaccination,
several therapeutic approaches are also becoming popular
nowadays to counter HPV, and if given in conjugation
with vaccines, the disease may be combated in a better
way. Among some treatment strategies, a photodynamic
therapy which uses 5-aminolevulinic acid has been tested
against HPV-6, 11, 16, and 18 and a higher clearance rate
(83.9%) has been observed, without affecting the cervical
tissue morphology. Topical application of few cytotoxic
compounds including podophyllin, arsenic trioxide, carboplatin
or trichloroacetic acid also has been suggested to remove genital
warts. Interferons and immunomodulators like imiquimod
also have been tested for their efficacy in removing genital
warts and found useful. Antivirals like cidofovir, ribavirin,
and acyclovir have been tested against HPV, but cidofovir
has been used widely, and since it can be administered
through inhalation, additional benefits are present for using
it in clinical applications. Ranpirnase RNase enzyme cleaves
dsRNAs, and in the form of a topically applicable ointment,
it has proved effective in treating anal warts. The treatment
modules encompassing the use of antisense RNA are still
in infancy but have shown some promise in therapeutic
efficacy.

For HPV vaccines, pre-adolescent girls are the primary target
but evaluation of the cost effectiveness of vaccination of other
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groups needs to be done. For certain candidate vaccines entering
phase III trial, a viable vaccine (prophylactic) against a few
types of HPV may become available in a less period of five
years. For complementing conventional therapy designing of
the therapeutic vaccines (under investigation) are done mostly.
However, the extent of benefit or the cost at which such benefits
can be offered to the women are not yet clear. Clearing of the
earliest stage of infection due to HPV by therapeutic vaccines
is possible but is less developed. Certainly such vaccines hold
promises to reduce the suffering as well as cost of treatment
associated with disease of the cervix. For precancerous lesions,
it is, however, crucial to continue the process of development
of accurate screening as well as treatment plans and programs
as there is forward movement of the process of vaccine
development.

No one can deny the fact that vaccination against HPV
has proven to be a landmark in the history of prevention
of cancer. The incidence of HPV-induced cervical cancer will
reduce drastically if adolescent girls are immunized, and this
must be the priority not only in the industrialized world, but
also in developing nations where it is sometimes impossible to
detect the precancerous lesions at an early stage. It is however
unfortunate that even in the developed nations of the Western
world, the screening to detect cervical HPV-induced cancer is
not performed on a regular basis. In this context, implementation
of immunization of girls in every nation universally is of
immense benefit. To succeed in such aspect of prevention of
HPV infection especially in women, convincing the parents as
well as their daughters is a top priority. Similarly, vaccination in
homosexual males is of utmost relevance concerning prevention
of HPV in the community. But to assess the sexual orientation

in every male is somewhat difficult for which universal male
vaccination is essential. With the usage of efficient vaccination
and application of potent therapeutics, the effective elimination
of the disease is expected and in fact combinations of several
therapies have helped people in getting rid of this ailment.
For all these reasons, it is necessary for the public health
authorities to remain proactive and at the same time innovative
methods will also be required for financing introduction
of HPV vaccine and advancing the development of potent
therapeutics.
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