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Chronic stress is common among cancer patients due to the psychological, operative, or
pharmaceutical stressors at the time of diagnosis or during the treatment of cancers. The
continuous activations of the hypothalamic-pituitary-adrenal (HPA) axis and the
sympathetic nervous system (SNS), as results of chronic stress, have been
demonstrated to take part in several cancer-promoting processes, such as
tumorigenesis, progression, metastasis, and multi-drug resistance, by altering the
tumor microenvironment (TME). Stressed TME is generally characterized by the
increased proportion of cancer-promoting cells and cytokines, the reduction and
malfunction of immune-supportive cells and cytokines, augmented angiogenesis,
enhanced epithelial-mesenchymal transition, and damaged extracellular matrix. For the
negative effects that these alterations can cause in terms of the efficacies of anti-cancer
treatments and prognosis of patients, supplementary pharmacological or
psychotherapeutic strategies targeting HPA, SNS, or psychological stress may be
effective in improving the prognosis of cancer patients. Here, we review the
characteristics and mechanisms of TME alterations under chronic stress, their
influences on anti-cancer therapies, and accessory interventions and therapies for
stressed cancer patients.
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INTRODUCTION

Chronic stress, which is associated with the constant activation of the hypothalamic-pituitary-
adrenal (HPA) axis and the sympathetic nervous system (SNS) and release of stress hormones
including catecholamines and glucocorticoids, occurs frequently in cancer patients during
cancer diagnosis and treatment (Gil et al., 2012). The catecholamines and glucocorticoids
then activate the adrenergic receptors and glucocorticoid receptors, which belong to the G
protein-coupled receptor (GPCR) family and nuclear receptor family respectively, to activate
several signaling pathways or alter the transcriptions directly. Unlike the transient secretion of
stress hormones in acute stress, lasting elevations of catecholamines and glucocorticoids not
only cause mental diseases such as anxiety disorder and depression, but also takes part in the
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tumorigenesis, progression, metastasis, and drug resistance of
various cancers (Reiche et al., 2004). A meta-analysis suggested
that stress-related psychosocial factors are associated with
higher cancer incidence in initially healthy populations,
poorer survival in patients with diagnosed cancer, and
higher cancer-related mortality (Chida et al., 2008). Thus,
chronic stress is a noteworthy issue in terms of anti-cancer
treatments.

Tumor microenvironment (TME), consisting of tumor cells,
tumor stromal cells, and non-cellular components, is largely
involved in the formation, maintenance, and multidrug
resistance (MDR) of cancers (Baghban et al., 2020). Initially,
the pro-cancer effects of persistent activations of the HPA axis
and SNS under chronic stress are thought to depend mostly on
their regulations on systematic immune functions (Sloan et al.,
2007; Silverman and Sternberg, 2012). Nowadays, extensive
studies have revealed that chronic stress is also responsible for
altering the TME, including the tumor cells, cancer stromal cells,
and extracellular matrix (ECM), thus participants in cancer-
promoting processes.

This review focuses on the consequences of chronic stress on
TME and summarizes the characteristics and mechanisms of
TME alterations under chronic stress, based on which we
emphasize the negative effects of chronic stress on anti-tumor
therapies and the implications for formulating well-rounded anti-
cancer strategies.

FEATURES OF TME UNDER CHRONIC
STRESS

The TME of patients with chronic stress is distinct from the TME
of patients without it, manifested in the differences in the types,
statuses, and quantities of immune cells, the class and amounts of
cytokines, augmented angiogenesis, enhanced epithelial-
mesenchymal transition (EMT), and damaged ECM.

Immune Cells
Generally, the effects of chronic stress on Immune cells in TME
are embodied in decreased numbers or functions of immune-
supportive cells and increased amounts of exhausted immune
cells and immunosuppressive cells (Figure 1).

Dendritic cells (DCs) are essential in tumor antigen
presentation and the initiation of cancer adaptive immunity
(Gardner and Ruffell, 2016). Nonetheless, Chronic stress or
exposure to glucocorticoids disabled immature DCs to
undergo full maturation and prime Th1 cells and CD8+ T cells
efficiently in a rodent model with melanoma, yet the functions of
mature DCs were unaffected (Matyszak et al., 2000; Sommershof
et al., 2017).

T lymphocytes serve as the main force in cancer adaptive
immunity, yet chronic stress leads to a reduction and dysfunction
of immune-supportive T cells along with a raise of
immunosuppressive T cells (Thommen and Schumacher,
2018). A reduction of cytotoxic T lymphocytes (CTLs) in
TME occurred after impaired DC maturation in both healthy
mice and the mice with melanoma (Bucsek et al., 2017;

Sommershof et al., 2017). Endogenous glucocorticoids
inhibited responses of DCs and T cells to type I interferons
(IFNs) and IFN-γ, respectively, which compromised the
differentiation or activations of these cells in the TME of mice
(Yang et al., 2019). Endogenous glucocorticoid signaling led to
dysfunctional CD8+ T cells characterized by increased
expressions of PD-1, TIM-3, and Lag3 (Acharya et al., 2020).
Stress-induced β-AR activation suppressed T-cell receptor (TCR)
signaling in a rodent melanoma model and a rodent colon cancer
model (Qiao et al., 2021). β2-AR activations in regulatory T
(Treg) cells increased their immunosuppressive functions
associated with decreased interleukin (IL-2) level and
improved differentiation of CD4+ Foxp3- T cells into Foxp3+
Tregs in a rodent model (Guereschi et al., 2013). Stressed mice
also had increased suppressive CD25+ cells in tumors of UV-
induced squamous cell carcinoma (Saul et al., 2005).

Natural killer (NK) cells, acting through NK cell cytotoxicity
(NKCC), represent pivotal cells in tumor innate immunity
(DeNardo and Ruffell, 2019). Surgical stress reduced NKCC and
NK cell expression of Fas ligand and CD11a in the blood of mice
with melanoma or Lewis lung carcinoma (Glasner et al., 2010).
Similar diminished NKCC was observed in blood samples from
stressed rodent models with leukemia and breast cancer (Ben-
Eliyahu et al., 1999). A study on 42 patients with epithelial
ovarian cancer revealed that psychological distress was related to
lower NK cytotoxicity in TIL (Lutgendorf et al., 2005). Another
study revealed impaired NK cell lysis, associated with altered
expression of killer immunoglobin-like receptors, in breast cancer
patients with high levels of psychological stress (Varker et al., 2007).

Myeloid-derived suppressor cells (MDSCs), presenting in
individuals with cancer or chronic stress, play a key role in
immune suppression (Gabrilovich, 2017). The operative stress
increased the number of immunosuppressive MDSCs in TME
(Ma et al., 2019). Similarly, an increase of MDSCs and Treg cells
was detected in another stressed male rodent model (Schmidt
et al., 2016).

Macrophages are also important components of TME, with
which tumors enhance cell proliferation, angiogenesis, and
metastasis (DeNardo and Ruffell, 2019). Prostate cancer
patients with a higher score of depression revealed higher
CD68+ tumor-associated macrophage (TAM) infiltration
(Cheng et al., 2019), and daily restraint stress increased
infiltration of CD68+ macrophages in rodent models of
ovarian cancer as well (Colon-Echevarria et al., 2020).
Moreover, β2-AR activation promoted macrophages to
polarize to immunosuppressive M2 subtype in a rodent breast
cancer model (Qin et al., 2015).

In addition, cancer-associated fibroblast (CAF) can regulate
TME through cell-cell contact, releasing growth factors, and
remodeling the extracellular matrix (Chen and Song, 2019).
The activation of α2-ARs boosts the growth and proliferation
of fibroblasts, increasing the concentration of growth factors in
TME (Bruzzone et al., 2011; Shan et al., 2014).

Cytokines
Unsurprisingly, the cytokines originating from both tumor
cells and stromal cells in stressed TME show cancer-
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promoting properties (Figure 1). Glucocorticoids reduced the
number of IFN-γ-producing cells and the amount of IFN-γ
produced in TME of the rodent melanoma model (Matyszak
et al., 2000; Sommershof et al., 2017). Increased MDSCs in
TME up-regulated transforming growth factor-beta 1 (TGF-
β1), vascular endothelial growth factor (VEGF), and
Interleukin-10 (IL-10) in rodent breast cancer models (Ma
et al., 2019). And glucocorticoid could upregulate the
expression of TGF-β receptor type II on ovarian cancer
cells and enhance their responsiveness to TGF-β1 (Chen
et al., 2010). The activation of β-AR enhanced the secretion
of neuropeptide Y (NPY) in a rodent prostate cancer model
and subsequently promoted TAM trafficking (Cheng et al.,
2019). The level of IL-6 was elevated in the TME of a prostate
cancer model due to TAM activation and tumor cell secretion
induced by β-AR signaling (Powell et al., 2013; Cheng et al.,
2019). Elevations of matrix metalloproteinase (MMP)-9 in
TAMs were detected in epithelial ovarian cancer tissue of
patients with chronic stress (Lutgendorf et al., 2008). The
expressions of VEGF, MMP-2, and MMP-9 were increased in
a stressed rodent model of ovarian carcinoma and another
stressed rodent model of lung carcinoma (Thaker et al., 2006;
Wu et al., 2015), and the same upregulations were detected in
nasopharyngeal carcinoma tumor cells treated with
norepinephrine (Yang E. V. et al., 2006). Similar
upregulations of VEGF and MMP-2 were observed in a
rodent oral cancer model (Xie et al., 2015). The
upregulated expression of VEGF, IL-8, and IL-6 was also
observed in human melanoma tumor cell lines treated with
norepinephrine (Yang et al., 2009). Elevated PGE2 secretion
was detected in epinephrine-treated ex vivo human breast and
colon cancer explant and mammary tumors of chronic stress-
exposed mice due to activation (Muthuswamy et al., 2017).
Additionally, the cytokine analyses in a stressed rodent
ovarian cancer model revealed up-regulation of a large
scale of cytokines, including platelet-derived growth factor
AA (PDGF-AA), epithelial cell-derived neutrophil-activating
peptide (ENA-78), angiogenin, VEGF, granulocyte-
macrophage colony-stimulating factor (GM-CSF), IL-5,
Lipocalin-2, macrophage migration inhibitory factor (MIF),
and transferrin receptor (TfR) (Colon-Echevarria et al., 2020).

Angiogenesis
Overexpression of VEGF and other pro-angiogenic factors
like IL-6, TGF-beta, and MMPs, as one of the critical features
of stressed TME, leads to enhanced angiogenesis of solid
tumors (Kerbel, 2008). This effect was observed in the
stressed rodent models of ovarian cancer, oral cancer, and
lung cancer, as mentioned above (Thaker et al., 2006; Wu
et al., 2015; Xie et al., 2015). Additionally, the expression of
VEGFR-2 on endothelial cells was upregulated in the stressed
rodent lung cancer model, which also contributes to enhanced
angiogenesis (Wu et al., 2015). Moreover, Chronic stress
promoted VEGF/FGF2-mediated angiogenesis in a rodent
model of breast cancer by down-regulating peroxisome
proliferator-activated receptor γ (PPARγ) (Zhou et al.,
2020). Enhanced angiogenesis induced by chronic stress

and β-adrenergic signaling via histone deacetylase-2
(HDAC2)-mediated suppression of thrombospondin-1 was
also observed in a stressed model of prostate cancer
(Hulsurkar et al., 2017). What’s worse, chaotic and
unfunctional vessels induced by intense angiogenesis lead
to other problems like acidosis and hypoxia in TME (Neri
and Supuran, 2011; Rey et al., 2017).

Epithelial-Mesenchymal Transition
As TGF-β family signaling is crucial in EMT, chronic stress also
promotes EMT because TGF-β1 is markedly upregulated in
stressed TME (Lamouille et al., 2014). A high concentration of
TGF-β1 induces EMT of tumor cells and promotes tumor
metastasis in stressed rodent models with breast cancer (Ma
et al., 2019). Norepinephrine induced EMT, reflected in
E-cadherin downregulation and vimentin upregulation, via
β-AR/TGF-β1/p-Smad3/Snail pathway or β-AR/TGF-β1/HIF-
1α/Snail pathway in gastric, colonic, and pneumonic cancer
cell lines in vitro (Shan et al., 2014; Zhang et al., 2016). In
addition, Chronic stress downregulates E-cadherin expression
and upregulates vimentin expression through the activation of
miR-337-3p/STAT3 in a stressed rodent model with breast cancer
(Du et al., 2020).

Moreover, given that the activation of ARs can induce the
activations of protein kinase A (PKA) and protein kinase C
(PKC) (Biazi et al., 2018; Durkee et al., 2019; Cole and Sood,
2012) (Figure 2), chronic stress can be associated with EMT
via PKA and PKC signaling. It is well established that PKC
promotes EMT by activating various downstream molecules.
PKCα was regarded as a central signaling node for EMT in
breast cancer (Tam et al., 2013). PKCθ was reported to induce
EMT through TGF-βand NF-κB signaling (Zafar et al., 2014;
Zafar et al., 2015), and PKCδ could induce EMT via
phosphorylation of Bcl-2 associated athanogene 3 (BAG3)
(Li et al., 2013). Moreover, a study showed that PKC-
induced EMT was associated with a down-regulation of
carbonic anhydrase 12 (CAXII) (Vergara et al., 2020). In
contrast, the activation of PKA favored the epithelial type
and contributed to the mesenchymal-epithelial transition
(MET) of the tumor cells (Nadella et al., 2008;
Pattabiraman et al., 2016). Yet, research showed that PKA
promoted TGF-βinduced EMT (Yang Y. et al., 2006), and
enhanced activity of PKA plays an important role in
hypoxia-mediated EMT (Shaikh et al., 2012). However,
research on PKA/PKC-induced EMT using stress or stress
hormone-treated models is lacking, so the exact roles of PKA
and PKC in chronic stress-induced EMT still need further
investigations.

Additionally, it is notable that chronic stress is also associated
with deteriorations of gut microbiota (Gao et al., 2018), which can
facilitate EMT through microbiota-host interactions (Vergara
et al., 2019).

Extracellular Matrix
Elevations of MMPs were present in TME of various cancers
(Thaker et al., 2006; Lutgendorf et al., 2008; Wu et al., 2015; Xie
et al., 2015), which are likely to cause damages to ECM and
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promote cancer metastasis (Najafi et al., 2019). Additionally,
glucocorticoids can downregulate the synthesis of tenascin-C,
a vital protein in the extracellular matrix, in a rodent Wilms’
tumor model, even though local stimulatory growth factors are
present (Talts et al., 1995).

Metabolism
Chronic stress can cause molecular and functional recalibrations of
mitochondria andmetabolic disorders in immune cells (Picard and
McEwen, 2018; Fan et al., 2019), which can alter the metabolic
features in TME. Also, hostile TME with limited oxygen and
nutrients can lead to metabolic reprogramming of local T cells
and impair their functions (Pearce et al., 2013). Chronic stress-
induced up-regulation of epinephrine could activate lactate
dehydrogenase A (LDHA) to generate lactate and promote
breast cancer stem-like properties in a rodent model (Cui et al.,

2019). Besides, β-AR activation depressed endothelial oxidative
phosphorylation and turned on the angiogenic switch for tumor
progression in a rodent prostate cancer model (Zahalka et al.,
2017). Additionally, the activations of PKC and PKA can lead to
unfavorable metabolic alterations and fuel cancer progression
(Aggarwal et al., 2019; Liu et al., 2019; Vergara et al., 2020).

MECHANISMS FOR TME ALTERATIONS
UNDER CHRONIC STRESS

The TME alterations under chronic stress are mainly derived
from activated AR signaling and glucocorticoid signaling. Under
chronic stress, SNS is constantly activated, resulting in a high
concentration of catecholamine in solid tumor tissues, which
drives from both circulating blood and local sympathetic neurons

FIGURE 1 | Comparison of immune cells and cytokines in the stressed and unstressed tumor microenvironment (TME). Stressed TME is characterized by (I),
decreased proportion and dysfunction of immune-supportive cells, including DCs and CTLs, as well as an increased proportion of cancer-promoting cells, such as
MDSCs, Treg cells, CAFs, TAMs, and M2macrophages; (II), increased concentrations of cytokines that impair anti-cancer immunity and induce angiogenesis, epithelial-
mesenchymal transition, and extracellular matrix damage, as well as a decreased concentration of IFN-γ. Abbreviations: IFN, interferon; MMP, matrix
metalloproteinase; IL, interleukin; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; DC, dendritic cell; CTL, cytotoxic T lymphocyte, CAF,
cancer-associated fibroblast; Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell; TAM, tumor-associated macrophage;NK cell, natural killer cell; FasL, Fas
ligand; NKCC, NK cell cytotoxicity; ECM, extracellular matrix.
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(Reiche et al., 2004). Additionally, endogenous glucocorticoids,
deriving from the adrenal cortex, of which the concentration in
the blood increases under chronic stress via the HPA axis, easily
diffuse across the membrane of various cells in TME (Kadmiel
and Cidlowski, 2013). One thing to point out here is that the
enhanced β-adrenergic signaling and glucocorticoid signaling in
TME can be induced by not only chronic stress, but also TME
hypoxia (Chiarugi and Filippi, 2015).

α-AR signaling is partly responsible for TME alterations. There
are two subtypes of α-ARs, including α1-AR and α2-AR, both of
which belong to the GPCR family (Taylor and Cassagnol, 2021). The
activation of α1-AR leads to the increase of intracellular calcium
concentration via the PLC-IP3/DAG pathway, while the activation
of α2-AR results in the inhibition of adenylyl cyclase, which
decreases the concentration of cytoplasmic calcium and cAMP
(Biazi et al., 2018; Durkee et al., 2019) (Figure 2).

FIGURE 2 |Chronic stress-induced signaling pathways acting upon tumormicroenvironment. Adrenergic receptors (ARs), including α-AR, β2-AR, and β3-ARget involved in
chronic stress-induced tumor microenvironment (TME) alterations; ARs are G protein-coupled receptors (GPCRs), the binding of AR agonists, such as norepinephrine and
epinephrine, to which activates intracellular Gαs protein. ActivatedGαs either activates PLC (α1-AR) or AC (α1-AR, β2-AR, and β3-AR), which subsequently induces an intracellular
increase of IP3 andDAG, or cAMP, respectively, and then the secondmessengers initiate activation of several signaling pathways, including the PKA, PKC, EPAC, andCa2+-
CaMpathways. Glucocorticoid receptors (GRs), consisting of the glucocorticoid-binding subunit andHsp 90 protein, belong to the nuclear receptor family and locate intracellularly;
after glucocorticoids permeate through the cellmembrane andbind toGRs, theHspprotein depolymerizes from the polymeric substance and themain subunits ofGRs translocate
into the nucleus and initiate gene transcriptions. Transcriptions of various genes of cytokines or ligands are up-regulated or down-regulated, altogether causing the deterioration of
the TME, which leads to a large scale of cancer-promoting effects. Abbreviation: NE, norepinephrine; E, epinephrine; PLC, phospholipase C; PIP2, phosphatidylinositol (4,5)
bisphosphate; AC, adenylatecyclase; IP3, inositol triphosphate; DAG, diacylglycerol; CaM, calmodulin; PKC, protein kinase C; ATP, adenosine triphosphate; cAMP, cyclic
adenosinemonophosphate; PKA, protein kinase A; EPAC, exchange protein activated by adenylyl cyclase; Pap1, production of anthocyanin pigment 1; PI3K, phosphatidylinositol
3-kinase; MEK, mitogen-activated protein kinase kinase (MAPKK); ERK, extracellular regulated protein kinase; CREB, cAMP-responsive element-binding protein; GATA1, GATA
BindingProtein 1; STAT3, signal transducer and activator of transcription 3;GR, glucocorticoid receptor; Hsp, heat shock protein; IFN, interferon; NKCC,NKcell cytotoxicity; ECM,
extracellular matrix; CTL, cytotoxic T lymphocyte; EMT, epithelial-mesenchymal transition; MDR, multidrug resistance.
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β-ARs are expressed on the membranes of various tumor cells
and tumor-related cells, such as immune cells, fibroblast, and
epithelial cells, and epithelial cells, and two of the three subtypes
of β-ARs, including β2-AR and β3-AR, take part in tumorous
β-signaling (Daly and McGrath, 2011; Calvani et al., 2020). The
binding of catecholamine, like epinephrine and norepinephrine,
to β-ARs, contributes to the activation of guanylate cyclase,
leading to transient cyclic adenosine monophosphate (cAMP)
flux, which subsequently activates protein kinase A (PKA) and
guanine nucleotide exchange protein activated by adenylyl
cyclase (EPAC) (Cole and Sood, 2012). The two latter proteins
activate a variety of intracellular pathways which switch on or off
the transcriptions of genes, associating with inflammation,
angiogenesis, tissue invasion, distant metastasis (Thaker et al.,
2006; Cole and Sood, 2012; Duan et al., 2019) (Figure 2).

Glucocorticoids can be produced by the adrenal cortex and
translocated to the tumor, or produced locally by TAMs (Acharya
et al., 2020). Glucocorticoid receptors (GRs), located
intracellularly, once activated by glucocorticoid, get involved in
the formation of a complex and translocate to nuclei, which
induce transcriptionally activation or suppression of gene
expressions via direct interactions with DNA (Timmermans
et al., 2019). For instance, TSC22D3 is upregulated in response
to stress by glucocorticoid signaling, which blocks the response of
DC to type I IFN and IFN-γ+ T cell activation (Yang et al., 2019)
(Figure 2).

CHRONIC STRESS INFLUENTS
ANTI-CANCER THERAPY

It has been widely accepted that the TME profile plays a dominant
role in determining the efficacies of anti-cancer therapies (Roma-
Rodrigues et al., 2019). Not surprisingly, the TME alterations
under chronic stress have negative impacts on the efficacies of
cancer treatments, including chemotherapy, immunotherapy,
and targeted therapy.

Chemotherapy
Chronic stress-induced endogenous glucocorticoids have
unfavorable effects on the therapeutic response to
chemotherapy. Dexamethasone increased the adhesion to
ECM and the resistance to cisplatin and paclitaxel in two
human ovarian cancer cells (Chen et al., 2010). The
therapeutic of oxaliplatin (OXA)-based chemotherapy effect
was largely compromised in social-defeat (SD)-conditioned
mice (Yang et al., 2019). And a high expression of the
glucocorticoid receptors (GR) was correlated with shorter
metastasis-free survival in triple-negative breast cancer
(TNBC) patients undergoing chemotherapy (Chen et al., 2015).

Endogenous catecholamines, such as norepinephrine and
epinephrine, also interfere with chemotherapy. Catecholamines
reduced p53 protein concentrations in cancer cells and increased
the genetic instability of these cells, which significantly inhibited
paclitaxel-induced and cisplatin-induced apoptosis in ovarian
cancer cells (Hara et al., 2011; Kang et al., 2016). Yet,
reduction of stress-related signaling potentiated the effect of

chemotherapy in cancer patients has also been demonstrated
(Mravec et al., 2020).

Immunotherapy
Chronic-stress induced reductions of CD8+ T cells and CTLs
result in a cancer vaccine failure in a rodent melanoma model
(Sommershof et al., 2017). Dysfunction of CD8+ TILs induced by
endogenous glucocorticoid signaling is associated with failure to
respond to checkpoint blockade in both preclinical models and
melanoma patients (Acharya et al., 2020). Increased infiltration of
regulatory T-cells, decreased amount of CD8+ lymphocytes in
tumor sites were observed in bladder-tumor-bearing mice treated
with anti-PD-L1 under chronic stress. Therefore, chronic
psychological stress could weaken the potency of anti-PD-L1
immunotherapy (Zhou et al., 2021).

A glucocorticoid-inducible molecule, TSC22D3 plays an
important role in stress-induced immunosuppression as well
as perturb responses to prophylactic tumor vaccination and
PD-1-targeted immunotherapy (Yang et al., 2019). In addition,
psychological stress down-regulated the expression of
interleukin-2 (IL-2) receptor in peripheral blood leukocytes,
affects the therapeutic efficacy of IL-2 immunotherapy in renal
cell cancer patients (Zhang et al., 2020).

Molecule-Targeted Therapy
Since chronic stress increases VEGF secretion in TME, it can
impair the efficacies of anti-angiogenic agents. By upregulating
the VEGF expression via the β-AR-cAMP-PKA signaling
pathway, chronic stress and exogenous norepinephrine
markedly weakened the efficacy of sunitinib in rodent models
of colorectal cancer andmelanoma respectively (Deng et al., 2014;
Liu et al., 2015).

Chronic stress-induced stress hormone norepinephrine (NE)
promotes afatinib resistance by upregulating Cx32 expression
which could decrease the degradation of EGFR-TKI resistance-
associated proteins (MET, IGF-1R) and increase their
transcription levels (Xie et al., 2019). β2-AR activation on
non-small cell lung cancer (NSCLC) cell induces epidermal
growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)
resistance by inactivating liver kinase B1 (LKB1), elevating IL-6
expression, and MAPK pathway in a rodent model (Nilsson et al.,
2017). Indeed, in treatment-naive patients with advanced lung
adenocarcinoma receiving first-line EGFR-TKIs, prior b-blocker
use was associated with a longer time-to-discontinuation (TTD)
and overall survival (OS) (Chang et al., 2020).

ANTI-CANCER TREATMENTS AND
INTERVENTIONS TARGETING CHRONIC
STRESS
β-Blocker
β-blockers, such as propranolol and metoprolol, can block the
interactions between catecholamine and β-AR, which inhibits the
subsequent cancer-promoting effects induced by β-AR signaling
as mentioned above (Fumagalli et al., 2020). Blocking β-AR
interrupts the differentiation of exhausted T progenitors and
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decreases the number of exhausted T cells in TME (Qiao et al.,
2021). Propranolol reduced MDSC accumulation in the TME of
thermal-stressed mice treatments and controlled tumor growth
(MacDonald et al., 2021). Blocking β-AR also increases glycolysis
and oxidative phosphorylation in tumor-infiltrating lymphocytes
(TIL), which leads to increased CD28 expression and enhanced
anti-tumor functions (Qiao et al., 2021). Propranolol can enhance
the sensitivity of gastric cancer cells to radiation in vitro by
inhibiting NF-κB-VEGF/EGFR/COX-2 pathway (Liao et al.,
2010).

Combined administration of propranolol and etodolac, a
cyclooxygenase-2 inhibitor, improved the survival rate of mice
with melanoma or Lewis lung carcinoma (Glasner et al., 2010). A
prospective pilot study showed that the combination of
propranolol with chemotherapy improved the quality of life
(QOL) of patients with epithelial ovarian cancer (Ramondetta
et al., 2019).

The combination of propranolol with targeted therapy may
improve the efficacy. An exploratory analysis of the LUX-
Lung3 study revealed a significant PFS prolongation of
NSCLC patients taking β-blockers with EGFR-TKI afatinib
compared with those taking afatinib alone (median 11.1 vs.
6.9 months, p = 0.0001), indicating there is a synergic effect
combining β-blockers with anti-EGFR therapy (Nilsson et al.,
2017).

As the favorable efficacy of immunotherapy is based on the
premise of an immune-supportive TME, β-blockers may be
ideal companions for immunotherapy owing to their capacity of
inhibiting β-AR-induced TME deterioration. The increased
density of CTLs and decreased expression of PD-1 induced
by propranolol enhanced the efficacy of anti-PD-1 agents in a
rodent model. Propranolol strongly improved the efficacy of an
anti-tumor STxBE7 vaccine by enhancing the frequency of
CTLs in a rodent model (Daher et al., 2019). Propranolol
increased the concentration of IL-12, IL-17, 1L-2, and IFN-γ
in the breast tumor of mice and assisted with a tumor lysate
vaccine (Ashrafi et al., 2017). A phase I study showed promising
safety and activity of combining propranolol and
pembrolizumab in the first-line treatment of metastatic
melanoma (Gandhi et al., 2021). A meta-analysis revealed
that β-blockers significantly improved DFS (HR 0.03, 95% CI
0.01–0.17) and OS (HR 0.04, 95% CI 0.00–0.38) in melanoma
patients, but the beneficial effect is quite tumor-specific (Yap
et al., 2018).

α-Blocker
α-blockers can also function as anti-cancer agents.
Quinazoline α-1 blockers, such as prazosin, doxazosin, and
terazosin, have shown promising anti-cancer effects in various
types of cancer, and benefit chemotherapy, radiotherapy, and
anti-EGFR therapy (Ashrafi et al., 2017). The VEGF-induced
angiogenesis is inhibited by an α-blocker, doxazosin, in human
umbilical vein endothelial cells (Keledjian et al., 2005).
Another selective α1-blocker, naftopidil, presents with anti-
proliferative and cytotoxic effects on prostate cancer as well as
several other cancer types in vitro, ex vivo, and in vivo (Florent
et al., 2020).

Stress-Reducing Interventions
Moreover, interventions targeting directly on physical or
psychological stressors may ameliorate the TME and benefit
anti-cancer treatments as well. The activation of the brain
reward system decreased SNS activity and β-adrenergic
signaling, which led to less immunosuppressive MDSCs in a
murine model (Ben-Shaanan et al., 2018). Thermal treatments,
including weekly whole-body hyperthermia and housing mice at
their thermoneutral or sub-thermoneutral temperature, also
decreased MDSC accumulation and tumor growth of mice
(MacDonald et al., 2021). A similar enhancement of immune
checkpoint inhibitor efficacy was observed in a rodent model with
physiologically reduced stress (Bucsek et al., 2017). Mice housed
in an enriched environment displayed enhanced NK-cell activity
and increased infiltration of NK cells into TME (Song et al., 2017).
Stress-reducing approaches, such as yoga, mindfulness, and
cognitive behavioral therapy, have shown broad clinical
benefits of increasing proportions of anti-tumor immune cells
and cytokines in several studies, yet the results of these studies
were limited with small sample sizes and short follow-ups
(Antoni and Dhabhar, 2019).

Others
Additionally, a variety of other drugs may also reverse the
unfavorable TME alterations in terms of chronic stress.
Zoledronic acid, an anti-cancer adjuvant drug, is proficient
in abrogating stress-induced macrophage infiltration, and
PDGF-AA expression in a rodent ovarian cancer model
(Colon-Echevarria et al., 2020). Antidepressants, such as
fluoxetine and sertraline, can also alleviate chronic stress
and have the potential in associating with cancer
treatments, which still need further clinical confirmation
(Di Rosso et al., 2018).

Some other strategies targeting chronic stress-inducible
inflammatory signaling have shown promising efficacies in
clinical practice. Bevacizumab, an anti-VEGF agent, is now
applicable for a wide range of solid tumors and has shown
favorable efficacies combined with chemotherapy, immune
checkpoint inhibitors, anti-EGFR therapy, and PARP
inhibitors (Garcia et al., 2020). Anti-IL-6 or Anti-IL-6 receptor
agents, such as tocilizumab and siltuximab, have not shown
satisfactory efficacies in cancers (Rossi et al., 2015), yet
tocilizumab has been widely used to treat cytokine release
syndrome induced by CAR T-cell toxicity (Brudno and
Kochenderfer, 2019).

DISCUSSION

In summary, the TME under chronic stress is differentiated from
others by increased numbers and enhanced functions of
immunosuppressive cells, decreased amounts and impaired
functions of immunosupportive cells, associated with
corresponding changes in cytokines, which results in intense
angiogenesis, boosted tumor cell proliferation and enhanced
EMT inside of the TME. The over-secretion of glucocorticoid
and catecholamines deriving from persistent activations of the
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HPA axis and SNS mostly contribute to the TME alterations
under chronic stress. These alterations can reduce the efficacies of
anti-tumor therapies, like chemotherapy, immunotherapy, and
targeted therapy. Drugs, such as α-blockers, β-blockers,
antidepressants, and interventions, like meditation and
mindfulness, may cut down the negative effects of chronic
stress, which should draw the attention of clinical oncologists
in adopting treatment plans for patients with chronic stress.

Still, recent studies for the interactions of chronic stress and
TME have limitations, such as absences of evaluation of animal
stress levels within the group and assessments for stress levels
before investigations in animal models (Hylander et al., 2019).
Therefore, researchers should value the importance of stress
quantification in research, and approaches, such as detections
of serum glucocorticoids and catecholamines before further
procedures, should be taken to control potential bias.
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