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Abstract 

Developmental and epileptic encephalopathies (DEEs) are a group of severe epilepsies that are characterized by 
seizures and developmental delay. DEEs are primarily attributed to genetic causes and an increasing number of cases 
have been correlated with variants in ion channel genes. In this study, we report a child with an early severe DEE. 
Whole exome sequencing showed a de novo heterozygous variant (c.4873–4881 duplication) in the SCN8A gene and 
an inherited heterozygous variant (c.952G > A) in the CACNA1H gene encoding for  Nav1.6 voltage‑gated sodium and 
 Cav3.2 voltage‑gated calcium channels, respectively. In vitro functional analysis of human  Nav1.6 and  Cav3.2 chan‑
nel variants revealed mild but significant alterations of their gating properties that were in general consistent with a 
gain‑ and loss‑of‑channel function, respectively. Although additional studies will be required to confirm the actual 
pathogenic involvement of SCN8A and CACNA1H, these findings add to the notion that rare ion channel variants may 
contribute to the etiology of DEEs.
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Main text
Developmental and epileptic encephalopathies (DEEs) 
are a group of severe epilepsies that are characterized 
by seizures often drug-resistant, and developmental 
delay leading to varying degrees of intellectual, psychiat-
ric, behavioral, and motor disabilities [1]. DEEs are pri-
marily attributed to genetic causes and while recessive 
and X-linked variants have been found, the majority of 
patients show de novo pathogenic variants [2]. Recently, 

an increasing number of DEE cases have been correlated 
with variants in ion channel genes [3].

In the present study, we report a girl with an early 
severe DEE. She was born by emergency caesarean sec-
tion at 37  weeks due to placenta previa and was the 
first child of non-consanguineous parents. Immediately 
after birth, she presented with trembling despite nor-
mal blood sugar levels. In the early postnatal period, 
she developed myoclonic jerks in all limbs, diagnosed as 
infantile spasms but did not respond to steroids. By the 
age of 2  months, she started having generalized tonic–
clonic seizures and recurrent status epilepticus that 
poorly responded to antiepileptic medication including 
clobazam, levetiracetam, phenobarbital and topiramate. 
Seizures were characterized by right eye deviation and 
generalized tonic posturing. She also presented with 
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additional complications including scoliosis, bilateral 
hip dislocation and recurrent pneumonia, and by the 
age of 3 she developed myoclonus, spastic quadriplegia 
with generalized hypertonia and hyperreflexia with clo-
nus. Secondary skeletal abnormalities were also observed 
including flattening of the head and chest, severe 
kyphoscoliosis and flexion contractures. An MRI brain 
scan showed generalized brain atrophy with marked 
insular atrophy and bright white matter on flair. Blood 
tests were in general normal and only creatine phos-
phokinase levels were increased, probably as secondary 
consequence of seizures. The patient died at the age of 
4. Whole exome sequencing (EGL Genetics) showed a 
de novo heterologous duplication (c.4873_4881dup) in 
SCN8A (Fig.  1a) causing the duplication of amino acid 
G1625_I1627 (p.G1625_I1627dup) within the highly con-
served transmembrane IVS4 segment (voltage sensor) of 
the voltage-gated sodium channel  Nav1.6 (Fig.  1b). This 
variant has never been reported in the Genome Aggre-
gation Database (gnomAD) and was predicted to be 
deleterious (PROVEAN algorithm). In addition, a rare 
heterozygous missense variant (c.952G > A) in CAC-
NA1H (Fig.  1a) was inherited from the father who was 
asymptomatic. This variant that caused the substitution 
of a glycine at position 318 by a serine (p.G318S) within 
the first pore-forming loop of the voltage-gated cal-
cium channel  Cav3.2 (Fig.  1b) has never been reported 
and was not predicted to be deleterious. To assess the 
impact of these mutations, the G1625_I1627 duplica-
tion and G318S missense variant were introduced into 
the human  Nav1.6 (UniProt Q9UQD0-1) and  Cav3.2 
(UniProt O95180-1) channels, respectively, and recom-
binant channels were expressed in HEK cells for electro-
physiological analysis. The sodium conductance recorded 
from cells expressing the duplication variant  (Nav1.6dup) 
in combination with the human  Navb2 ancillary subu-
nit (Uniprot O60939) was similar to the one measured 
from cells expressing the wild-type channel  (Nav1.6wt) 
(Fig. 1c–e and Additional file 1: Table S1). However, the 
mean half activation potential of  Nav1.6dup was shifted 

toward more hyperpolarized potentials by −  5.4  mV 
(p = 0.0005) (Fig. 1f and Additional file 1: Table S1) to val-
ues similar to  Nav1.6wt expressed without the  Navb2 sub-
unit (Additional file 1: Fig. S1 and Table S1). In contrast, 
we did not observe any gating alteration of  Nav1.6dup in 
the absence of  Navb2. While the current literature on 
the effect of  Navb on the regulation of  Nav1.6 is rather 
sparse and conflicting [4, 5], these results suggest that 
phenotypic expression of SCN8A duplication variant may 
depend on the molecular composition of  Nav1.6, possibly 
by disrupting  Navb-dependent regulation of the channel. 
Other gating properties including steady-state inactiva-
tion and recovery from inactivation were not affected 
(Fig.  1g, h and Additional file  1: Table  S1). In addition, 
recording of T-type currents from cells expressing the 
 Cav3.2 G318S variant  (Cav3.2G>S) did not reveal any 
alteration of the T-type conductance compared to cells 
expression the wild-type channel  (Cav3.2wt) (Fig.  1i–k 
and Additional file 1: Table S1). However, the mean half 
activation potential of the  Cav3.2G>S variant was shifted 
toward more positive potentials by + 4.3 mV (p = 0.0048) 
(Fig. 1l and Additional file 1: Table S1) without any addi-
tional alteration of the other gating properties (Fig. 1m, n 
and Additional file 1: Table S1).

In summary, we reported the case of a child with 
severe DEE in whom a de novo mutation in SCN8A 
and an inherited rare CACNA1H variant were found. 
Pathogenic variants in SCN8A have originally been 
described in patients with DEE [6–9]. Most are de novo 
missense variants clustered in the highly conserved 
transmembrane domains of  Nav1.6 and are in general 
consistent with a gain-of-function pathogenic mecha-
nism predicted to increase neuronal excitability and 
seizure susceptibility [6, 10, 11]. Our observation that 
the SCN8A duplication variant produced a hyperpolar-
izing shift of the voltage-dependence of activation of 
 Nav1.6 is also consistent with a gain-of-function (GoF) 
of the channel. Although future studies will be required 
to further assess the importance of the molecular com-
position of the channel in the phenotypic expression of 

Fig. 1 Electrophysiological properties of  Nav1.6 and  Cav3.2 channel variants associated with developmental and epileptic encephalopathy. a 
Family pedigree chart. Filled and open symbols indicate affected and unaffected individuals, respectively. b Location of the  Nav1.6 G1625_I1627 
duplication (red circle) and  Cav3.2 G318S missense variants (blue circle) within the secondary membrane topology of the channels. c Representative 
sodium current traces recorded from cells expressing wild‑type  Nav1.6  (Nav1.6wt, black traces) and  Nav1.6 duplication variant  (Nav1.6dup, red traces) 
in combination with  Navb2. d Corresponding mean current–voltage (I/V) relationship. e Corresponding mean maximal macroscopic conductance 
(Gmax) values obtained from the fit of the I/V curves with the modified Boltzmann Eq. (1). f Corresponding mean normalized voltage‑dependence 
of activation. The voltage‑dependence of activation for  Nav1.6wt in the absence of  Navb2 is shown for comparison (dotted line). Inset shows 
corresponding mean half‑activation potential values obtained from the fit of the activation curve with the modified Boltzmann Eq. (2). g Mean 
normalized voltage‑dependence of steady‑state inactivation for  Nav1.6wt and Nav1.6dup. Inset shows corresponding mean half‑inactivation 
potential values obtained from the fit of the inactivation curves with the two‑state Boltzmann function (3). h Mean normalized recovery from 
inactivation kinetics. Inset shows corresponding mean time constant t values of recovery from inactivation obtained by fitting recovery curves with 
a single‑exponential function (4). i-n Legend same as in (c‑h) but for cells expressing wild type  Cav3.2  (Cav3.2wt, black) and  Cav3.2 G318S  (Cav3.2G>S, 
blue) channel variants

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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SCN8A variants, the results presented here strengthen 
the notion that GoF SCN8A mutations may represent 
a general pathogenic mechanism in DEEs. In contrast, 
CACNA1H has never been associated with DEEs. 
Instead, GoF CACNA1H variants have been linked to 
absence epilepsy and primary aldosteronism [12] while 
loss-of-function (LoF) variants have been reported in 
autism spectrum disorders [13], amyotrophic lateral 
sclerosis [14, 15], and congenital amyotrophy [16]. It 
is not clear to which extent the LoF CACNA1H vari-
ant we identified in our patient may have contributed 
to the disease. Given that the father from whom the 
child inherited this variant was asymptomatic, this 
variant may not have had a major contribution to the 
development of the disease on its own. However, it is 
a possibility that it may have precipitated its develop-
ment by interacting with other genes. This notion is 
supported by previous studies showing that CACNA1G 
 (Cav3.1) and CACNA1A  (Cav2.1) are genetic modifiers 
of epilepsy associated with Dravet syndrome [17–19]. 
While additional studies using primary neurons will be 
required to uncover the detailed underlying pathogenic 
mechanisms of  Nav1.6 and  Cav3.2 variants, the current 
findings add to the notion that rare ion channel vari-
ants may contribute to the etiology of DEEs.
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Additional file 1: Fig. S1. Electrophysiological properties of Nav1.6 vari‑
ant expressed in the absence of Navb2. a Representative sodium current 
traces recorded from cells expressing wild‑type Nav1.6 (Nav1.6wt, black 
traces) and Nav1.6 duplication variant (Nav1.6dup, red traces). b Corre‑
sponding mean current–voltage (I/V) relationship. c Corresponding mean 
maximal macroscopic conductance (Gmax) values obtained from the fit 
of the I/V curves with the modified Boltzmann Eq. (1). d Corresponding 
mean normalized voltage dependence of activation. Inset shows cor‑
responding mean half‑activation potential values obtained from the fit of 
the activation curve with the modified Boltzmann Eq. (2). e Mean normal‑
ized voltage‑dependence of steady‑state inactivation for Nav1.6wt and 
Nav1.6dup. Inset shows corresponding mean half‑inactivation potential 
values obtained from the fit of the inactivation curves with the two‑state 
Boltzmann function (3). f Mean normalized recovery from inactivation 
kinetics. Inset shows corresponding mean time constant t values of 
recovery from inactivation obtained by fitting recovery curves with a 
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