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SUMMARY
There is an increasing expectation that computational approaches may supplement existing human deci-
sion-making. Frontloading of models for cardiac safety prediction is no exception to this trend, and ongoing
regulatory initiatives propose use of high-throughput in vitro data combined with computational models for
calculating proarrhythmic risk. Evaluation of these models requires robust assessment of the outcomes.
Using FDA Adverse Event Reporting System reports and electronic healthcare claims data from the
Truven-MarketScan US claims database, we quantify the incidence rate of arrhythmia in patients and how
this changes depending on patient characteristics. First, we propose that such datasets are a complemen-
tary resource for determining relative drug risk and assessing the performance of cardiac safety models for
regulatory use. Second, the results suggest important determinants for appropriate stratification of patients
and evaluation of additional drug risk in prescribing and clinical support algorithms and for precision health.
INTRODUCTION

Over the past 10 years there has been an emphasis on use of in

silico approaches for cardiac risk assessment. Initially, these

computational tools were used to aid pharmaceutical industry

decision-making1–3 and, more recently, by offering an interpreta-

tion of in vitro assay data for regulatory purposes.4 There are

good reasons for doing so, most notably an increasing amount

(quality and throughput) of in vitro data,5,6 in silico tools,2,3,5,7–15

supporting research activities,4,16–18 and pressures to adapt an

imperfect but apparently successful pair of International Council

for Harmonisation of Technical Requirements for Pharmaceuti-

cals for HumanUse (ICH) guidance documents, tomotivate these

efforts.

These guidance documents were introduced in response to a

number of drugs being removed from the market in the 1990s

and 2000s19 and were implemented to require testing of com-

pounds for their ability to modulate the human Ether-à-go-go-

Related Gene (hERG) potassium channel currents (ICH S7B)

and to test compound effects on the QT interval measured

from the clinical body surface electrocardiogram (ECG) (ICH

E14). Although perceived to be successful in reducing

arrhythmia-related (specifically torsades de pointes) drug with-

drawal, there was concern that discarding promising therapies

on a perceived hERG risk negatively affected novel drug devel-
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opment because these screens result in false positives. To

counter this and to incorporate the improved understanding of

the mechanisms of proarrhythmia, the Comprehensive In Vitro

Proarrhythmia Assay (CiPA) initiative was tasked with defining

a new paradigm for cardiac risk assessment using a combination

of in vitro screening, stem cell-derived cardiomyocyte tests, and

in silico predictions.20,21

Some of the earlier in silico studies focused on supplementing

pre-clinical decisions; for instance, by replacing the need for iso-

lated animal-derived cardiomyocyte experiments.2,22 Over time,

the output of in silico studies has been challenged to address

increasingly more ambitious goals; namely, correlation of simu-

lated cellular action potential biomarkers with the measure be-

tween Q wave and T wave (QT interval) in the body-surface

ECG from the clinical thorough QT (TQT) study3 and proarrhyth-

mia.23,24 It is important to note that the underlying models have

not fundamentally changed in that time, but novel metrics that

integrate predictions from single-cell simulations are being

considered as surrogate indicators for proarrhythmia.23,25 The

ambition to extend single-cell simulations to a population-level

risk therefore necessitates a thorough evaluation of these

in silico tools as a key step toward understanding their utility to

predict arrhythmic risk. In a recent study, we showed how a

different selection of compounds can have a profound effect

on the evaluation score of these models;26 therefore, a more
ports Medicine 1, 100076, August 25, 2020 ª 2020 The Authors. 1
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rigorous effort to establish a fixed and balanced compound set

for model evaluation should be considered. Two ongoing initia-

tives, CiPA and the Japanese induced Pluripotent Stem (iPS)

cellsCardiac Safety Assessment (JiCSA) initiative, are attempt-

ing to establish a set of in vitro data for model evaluation. Typi-

cally, selected evaluation compounds are scored using Credi-

bleMeds evaluation27 or, in the case of CiPA, interpretation of

the CredibleMeds score, including expert assessment that also

accounts for clinical experience.

The classification schemes described above and others rele-

vant within the field (such as Redfern category28) are designed

to simplify risk information, which is a quantitative continuous

measure, into a set of qualitative categories. Although this is a

valuable (and sometimes necessary) exercise for supporting de-

cision-making, it comes at the cost of losing information and

introducing subjectivity, particularly when new information or

new compounds are required to be evaluated. This concern is

well recognized in medicine, where a desire to dichotomize

continuous scales is also prevalent, such as ‘‘low’’ or ‘‘high’’

cholesterol. It has been argued that such dichotomization leads

to reduced statistical power in detecting cause and effect.29 A

recent review by Wisniowska and Polak30 discusses a number

of issues that occur when attempting to compare cardiac risk

across different classification schemes. One such limitation is

how a ranking could be applied, e.g., to previously uncharacter-

ized drugs. The ability to rank compounds in terms of putative

risk would be advantageous for ongoing and continual model

performance assessment beyond the immediate needs of the

CiPA initiative.

To date, consideration of these regulation-led efforts for pro-

arrhythmic risk prediction has prioritized focus on reproducibility

and variability of the in vitro (i.e., input) data for themodels. In this

study, we aim to complement those activities by focusing more

on the risk classification (i.e., output) scores in the evaluation da-

tasets, and we set out to take advantage of the considerable

post-marketing medical use of a broader set of evaluation drugs

to establish the frequency of adverse cardiac events. Use of

such post-market (i.e., real-world) data sources not only pro-

vides an estimate of the rate of adverse events that are observed

in a real-life population but, we hypothesize, will also provide a

more quantitative and continuous metric for assessing pro-

arrhythmic risk.

However, although post-market observational data sources

may be a valuable way of gaining insights into routine healthcare

practice, they are not without complexity and show variability in

patients and in the reporting practices inherent in the real world.

One limitation of the data from adverse event databases is that

the number of events is not normalized to the number of pre-

scriptions—what we call the denominator problem. In the US

Food and Drug Administration (FDA) Adverse Event Reporting

System (FAERS), a high incidence of adverse events for a given

drug may simply reflect highly prescribed drugs; therefore, sta-

tistical methods to identify clinically important adverse events

(i.e., when particular adverse events are seen more often than

expected) are invaluable for pharmacovigilance.31 For this study,

we used a disproportionality metric of empirical Bayes geometric

mean (EBGM)32 with a threshold of EB05 > 2 as a positive signal

commonly used in pharmacovigilance.
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To additionally account for the denominator problem, the

Truven Health MarketScan� Research Databases were used,

which contain individual-level, de-identified healthcare claims in-

formation from employers, health plans, hospitals, andMedicare

and Medicaid programs. Since their creation in the early 1990s,

the MarketScan Databases have grown into one of the largest

collections of de-identified patient-level data in the United

States. These databases reflect real-world treatment patterns

and costs by tracking millions of patients as they travel through

the healthcare system, offering detailed information about all as-

pects of care. Data about individual patients are integrated from

all providers of care, maintaining all healthcare utilization and

cost record connections at the patient level. Used primarily for

research, these databases are fully compliant with United States

privacy laws and regulations (e.g., Health Insurance Portability

and Accountability Act (HIPAA)).

Until now, many of the existing in silicomodels were designed

and developed to give insights to cardiomyocyte electrophysi-

ology and cellular-level outcomes. Extrapolation to population

effects was never the primary design goal, and although ap-

proaches have been developed to allow surrogate markers to

be evaluated, validation of suchmarkers needs careful consider-

ation. Blinded studies for in silico risk assessment, as performed

recently by Zhou et al.,33 are significantly more difficult when the

performance or outcomes of the drug effects are defined up

front, such as the CiPA classification or CredibleMeds, and a

more objective performance metric based on observational

data could be used instead.

We set out to test the utility of these so-called real-world data-

sets to provide insights into the categorization of compounds for

proarrhythmic potential to support or refute the clinician-led

understanding of risk. Coinciding with the recent General Princi-

ples for the Validation of Proarrhythmia Risk Prediction Models,34

theworkwas not intended to establish newcardiac safetymetrics.

Instead, the work was motivated to be complementary and to

highlight datasets that should prove to be helpful when appraising

the existing metrics, assays, and computational models that

have been developed to allow early assessment of cardiac risk

potential, particularly in cases of discordance between metrics,

and also to stratify individual drug risk in patient subsets.

RESULTS

Cardiac Adverse Events per Year Analysis and Its
Regulatory Effect
It is perceived that the regulations in ICH documents S7B and

E14 mean that no new drugs have been associated with

increased risk of torsades de pointes (TdP) arrhythmias. This

study set out to query whether this statement is equivalent to

there being no new reports of TdP events. Indeed it would be

intuitive to expect that TdP (and other related ventricular condi-

tions) might be observed to have decreased since introduction of

these regulations. Therefore, an early aim was to assess TdP

incidence and update and extend a previous analysis by Stock-

bridge et al.,19 who reviewed the annual number of reports

received by the FAERS.

The Pharmapendium (Elsevier) tool provides access for

querying FAERS reports of TdP events. To recognize that



Figure 1. Adverse Cardiac Events Being Re-

ported over Time

Number of cardiac-related adverse events per year

of event or year of submitted report from FAERS

reports extracted from Pharmapendium (Elsevier).
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arrhythmia events may be recorded differently clinically than

TdP, we selected other heart-related adverse events in addition

to TdP, some as sibling Medical Dictionary for Regulatory Activ-

ities (MedDRA) terms to TdP (Figure S1) for the years 2000–2015.

It is worth noting that FAERS data provide outcomes for each

adverse event and that, for cases where ‘‘ventricular fibrillation’’

is reported, approximately 45% result in a fatal outcome,

whereas fatality is associated with approximately 12% for re-

ports of TdP. A further significant finding is a reporting delay,

observed as a discrepancy between the occurrence date of

the adverse event and the reported date to the FDA. Of 56,682

unique cases, 15,931 do not report the event date, and of the re-

maining cases, only 16,376 (i.e., ~40%) are reported in the same

year as the event date, with 2,771 (i.e., ~7%) showing a delay of 5

years or more. Consequently, examining the incidence of car-

diac adverse events on a year-by-year basis (Figure 1A) reflects

the observation as a drop in the most recent years. For this

reason, we also present the data as events per submission

year (Figure 1B), where the perceived drop in events is not

observed.

The FAERS data, together with pharmacovigilance analysis,

enable the user to spot drug safety signals in a timely manner.

However, the database is not without limitations; FAERS does

not explicitly account for whether (or how) the drug caused the

adverse events or the volume of prescriptions, nor is it exhaus-

tive in covering all possible adverse events. In other words, drugs

that are more highly prescribed would be expected to show

higher total numbers of events than drugs with the same level

of risk that are prescribed less frequently. To partially account

for this limitation, a disproportionality metric using the EBGM

analysis was used to account for whether a cardiac adverse

event rate is disproportionately higher than these background

rates. The EB05 is the lower bound of the 95% confidence inter-

val of the EBGM;31 EB05 values greater than 2 are considered to

show a signal and, therefore, a drug-induced risk increase.35 Ta-

ble 1 shows the CiPA reference drugs ranked by EB05 value and

the corresponding CiPA and CredibleMeds classifications

together with the frequently used safety margin built based on

the hERG half maximal inhibitory concentration (IC50)/free high-

est concentration of a drug in the blood (Cmax ) ratio. It is impor-

tant to recognize that only 6 of 28 CiPA compounds have an

EB05 value of less than a positive pharmacovigilance ‘‘signal’’
Cell Rep
threshold of 2, which indicates a set of

drugs showing a higher propensity for car-

diac disorders than other adverse events.

Interestingly, ranking of compounds

based on their EB05 score (Table 1) shows

some discordance between different clas-

sification systems. For instance, vandeta-

nib has a low EB05 value but is classified
as high risk by CredibleMeds and CiPA. The inverse is also

seen with the anti-arrhythmic drug ranolazine, which has a high

EB05 value but is ranked ‘‘very low’’ by CiPA. Of the CiPA com-

pounds, it is striking that 8 of the drugs are indicated primarily as

anti-anginal or anti-arrhythmic drugs where it might reasonably

be expected to see a higher proportion of cardiac adverse

events because of patients’ comorbidities. For this reason, we

chose to investigate whether an expanded set of drugs (beyond

the CiPA list) would provide more drugs with a low EB05 value

and cover a more diverse range of drug classes because repre-

senting negative drugs is also important for model evaluation.

Expanded Compound Set for Data Visualizations
To ensure consistency and overlap with previous work, a search

was conducted for studies that had already compiled lists of

compounds relevant for cardiac risk assessment andmodel vali-

dation.2,3,5,6 The motivation was to minimize introduction of

novel compounds, consolidate prior work, and promote

consistency across studies, as discussed recently.26 Ideally,

compounds that have information on ion channel effects, cardi-

omyocyte action potentials, and ECG effects are most suited for

understanding the predictive capacity of pro-arrhythmia models

to most reasonably assess their translational capacity.

We composed an initial list of 149 drugs that have a broad

range of molecular and in vivo effects. The drugs in our set are

comprised of those under study by the JiCSA and CiPA initia-

tives,21,40 in a recent in vitro assay study6 and by three other

in vitro/in silico combination studies2,3,5 and, finally, an unpub-

lished list of 66 reference drugs we judged to give a balance of

positive and, critically, negative effects in cardiac ion channel as-

says. The full list of drugs is given in Data S3, but a number of

interesting findings were uncovered in this exercise. Most

notably, the overlap between the different studies was low,

with no drugs being studied in all of the prior studies; only 4 drugs

(quinidine, dofetilide, cisapride, and terfenadine) were studied in

6 of the 7 studies. Furthermore, 89 of the total list of 149 drugs

are unique to a single study, meaning that a cross-comparison

of different in silico tools is currently difficult to interpret when

different sets of compounds are used for evaluation; see, for

example, Figure 4 from Davies et al.26 Therefore, the consensus

list of 149 compounds was used as the basis for onward anal-

ysis, recognizing that not all of the compounds on this list are
orts Medicine 1, 100076, August 25, 2020 3



Table 1. Ranking of CiPA Drugs by Disproportionality (EB05) for Cardiac Adverse Events

Generic

Drug Name EB05 TdP EB05 VT EB05 VA

CiPA

Classification

CredibleMeds

Classification

hERG IC50/Free

Cmax Ratio Drug Class

Ibutilide 218.45 101.022 2.901 high risk of TdP 3.37 anti-arrhythmic

Azimilide 94.351 1.381 NC high NC 11.50 anti-arrhythmic

Bepridil 81.663 38.276 5.155 high risk of TdP 1.42 anti-anginal

Sotalol 70.355 18.029 14.276 high risk of TdP 17.2 anti-arrhythmic

Methadone 36.408 3.998 1.87 high risk of TdP 4.90 opiate

Quinidine 35.667 12.296 2.768 high risk of TdP 0.92 anti-arrhythmic

Cisapride 30.654 21.801 5.117 intermediate risk of TdP 8.25 gastro-intestinal stimulant

Terfenadine 24.417 9.397 3.085 intermediate risk of TdP 0.41 antihistamine

Flecainide 23.364 20.567 4.123 very low risk of TdP 59.01 anti-arrhythmic

Ranolazine 22.444 4.375 0.205 very low conditional risk of TdP 2.69 anti-anginal

Dofetilide 20.983 14.397 6.235 high risk of TdP 4.36 anti-arrhythmic

Droperidol 19.454 4.564 2.899 intermediate risk of TdP 11.46 anti-psychotic/anti-emetic

Domperidone 18.85 1.468 1.455 intermediate risk of TdP 810.98 anti-emetic

Astemizole 18.549 15.499 1.965 intermediate risk of TdP 24.55 antihistamine

Pimozide 17.093 2.332 0.25 intermediate risk of TdP 16.60 anti-psychotic

Ondansetron 15.333 6.395 1.281 intermediate risk of TdP 62.62 anti-emetic

Clarithromycin 7.69 3.016 1.898 intermediate risk of TdP 77.41 antibiotic

Chlorpromazine 5.483 1.78 0.679 intermediate risk of TdP 64.71 anti-psychotic/anti-emetic

Loratadine 4.873 3.043 0.583 very low NC 11111.11 antihistamine

Verapamil 3.426 2.381 2.104 very low NC 7.35 anti-hypertensive

Metoprolol 3.176 3.318 1.955 very low NC 326.06 adrenoceptor antagonist

Mexiletine 2.649 10.083 3.986 very low NC 130.11 neuromuscular

blocking agent

Diltiazem 2.62 1.443 0.925 very low NC 210.42 anti-arrhythmic

Risperidone 1.257 0.706 0.543 intermediate possible risk of TdP 176.99 anti-psychotic, atypical

Nitrendipine 0.618 0.228 NC very low NC 50345 anti-hypertensive

Vandetanib 0.546 NC NC high risk of TdP 2.45 anti-cancer

Nifedipine 0.391 0.42 0.76 very low NC 1754.4 anti-hypertensive

Clozapine 0.191 0.291 0.372 intermediate possible risk of TdP 7.06 anti-psychotic, atypical

Tamoxifen 0.077 0.172 0.06 very low possible risk of TdP 284.1 anti-cancer

NC, not classified. The hERG IC50/free Cmax ratio is derived from experimental hERG data and supplemented with prior published values;5,36–39, see

Data S3 for full details. Typically, a threshold of 30 is regarded as a cutoff between high- and low-risk drugs.28 Abbreviations for EB05 values are as

follows: TdP, torsades de pointes; VT, ventricular tachycardia; VA, ventricular arrhythmia. CredibleMeds classification and drug classification were

correct as of the date of last access (May 22, 2018; http://crediblemeds.org/index.php/login/dlcheck).
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approved for clinical use and sowould not be identifiable in post-

market observational databases.

We now examine how the propensity of cardiac disorders in

FAERS reports is distributed in this expanded set of com-

pounds. Figure 2 shows the distribution of EB05 values for

TdP and ventricular tachycardia (a sibling MedDRA term for

TdP). 28 CiPA compounds are highlighted on the plot according

to their risk classification. Again, many of them are presented in

the top right quadrant of the EB05 plot, indicating that this set of

compounds is unevenly distributed toward more active com-

pounds. We propose that including additional compounds

(shown in Figure 2 as non-colored compounds) will facilitate

improved evaluation of positive and (equally important) nega-

tive signals. In Figure 1, we can see that ventricular tachycardia

(VT) is more frequently reported than TdP. Because we see a

strong correlation between TdP and VT, VT and similar adverse
4 Cell Reports Medicine 1, 100076, August 25, 2020
events (i.e., MedDRA sibling terms to TdP) could potentially be

included as part of the overall cardiac risk assessment of a

given drug. Broadening the range of terms considered (as

done for CredibleMeds) would improve risk sensitivity. This is

exemplified by mexiletine, which is classified as low risk by

CiPA, and is supported by the marginal EB05 value (EB05 =

2.6) and yet appears to be of higher risk for VT (EB05 = 10.1)

or ventricular arrhythmia (EB05 = 4.0). Recognizing that this

correlation may simply be representative of co-reporting of

the adverse event, we investigated the underlying co-occur-

rence rate. It was found that the number of VT reports that

also co-reported TdP was only approximately 10% (i.e., 1,525

of 15,041). This demonstrates that, typically, cardiac adverse

events are reported as one term or another and emphasizes a

need to consider a broader scope of adverse outcomes beyond

TdP; e.g., VT and ventricular tachyarrhythmia.41,42

http://crediblemeds.org/index.php/login/dlcheck


Figure 2. Distribution of the Extended Compound Set for TdP and VT

FAERS Reports (Empirica-Derived Data)

(A and B) The axes show EB05 values for the indicated MedDRA code, and

each spot represents one of the selected compounds. Horizontal and vertical

red lines show EB05 threshold = 2. The same data are shown in both plots with

different highlighting that represents (A) CiPA classification and (B) hERG

IC50/free Cmax. Arrows indicate drugs showing concordance (Con), discor-

dance (Dis), or unknown (Un) between, e.g., hERG IC50/free Cmax ratio, CiPA,

and the EBGM score (also presented in Table 1). A full list of drugs labeled in

the order of Data S3 is presented in Figure S2.

See also Data S1.
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We analyzed each drug for FAERS reports and also used the

MarketScan database (data were collected for the period of

January 1, 2009, through December 31, 2014). Because data

from healthcare claims are recorded longitudinally along with

prescription use, it is possible to normalize events based on

drug use (i.e., providing an incidence rate).

Using Electronic Claims Data to Inform Different
Outcomes
An optimal strategy for evaluating safety model performance

would be to compare against a continuous and objective metric

that can be readily calculated for an extended set of compounds.
For this purpose, we queried how translation of prior metrics (e.g.,

hERG IC50/free Cmax ratio and a prior categorization [CiPA risk

category]) compares with results from insurance claims records.

The claims data in Figure 3 show a clear trend between total

exposure (in patient years) and the incidence of cardiac

dysrhythmia, indicating a previously unreported underlying

background rate of cardiac dysrhythmia. Color indicates the

CiPA score and hERG IC50/Free Cmax ratio. Although

some higher-classification drugs (e.g., a CiPA value of high or

ratio < 30) appear to stand out above the main cluster, others

cannot be readily differentiated from the group.

To examinewhethermeasured hERG IC50/freeCmax ratios are

concordant with the safety risk, as indicated by the EB05 param-

eter (from the FAERSdatabase) or the normalized incidence rates

(gauged from the MarketScan database), we combined two of

these parameters at a time in a conjoint visualization (Figure 4).

We use the log-transformed hERG IC50/free Cmax ratio in this

case to achieve the effect that higher numerical values represent

a higher risk for TdP, which is our targeted endpoint. Based on

these graphs, it becomes clear that the hERG measurements

coarsely reflect the trend in safety risks signaled by either of

the other data sources (FAERS EB05 or MarketScan incidence

rate), and although the overall correlation is not very strong (the

coefficient of determination R2 = 0.1155 for EB05 and R2 =

0.0573 for the incidence rate), the trends are still significant

because of the large number of observations (**p = 0.0016 for

EB05 and *p = 0.04 for the incidence rate). The prediction interval

from a line of best fit shows how hERG measurements actually

scatter very widely around this overall trend, which raises con-

cerns regarding use of fixed thresholds on hERG IC50/free

Cmax values to stratify compounds with regard to their expected

risk of causing TdP events.

The Importance of Patient Sub-grouping
The striking correlation of exposure to incidence motivated a

need to investigate whether drugs with higher incidence are

observed in all patient types or whether it is skewed by only a

few subtypes. Therefore, a further derivation of the aggregated

data and the benefit of working with observational claims data

are to explore how patient subtypes affect the rate of cardiac

dysrhythmia. For this purpose, we separated each drug into up

to 32 individual subtypes based on gender, age (less than 18,

between 18 and 44, 45–64, and older 65 years), and degree of

comorbidities. Comorbidities were evaluated using the Charlson

index, which accounts for a patient’s pre-existing conditions

and, accordingly, provides a weighted analysis, and binned

into 4 groups (score = 0, 1, 2, or R3)43. It is worthwhile to note

that not all drugs showed the full range of these combinations,

reflecting that not all drugs are prescribed for all subtypes;

e.g., vandetanib, an anti-cancer agent, is unlikely to have been

prescribed for lower Charlson index patient subgroups. This

rich dataset provides the previously unexplored ability to query

our pre-existing assumptions about the correlation with drug

risk classification and observed levels of pro-arrhythmia. This

is critical to ensure that we allow unknown influences in addition

to ion channel inhibition as factors predicting pro-arrhythmic po-

tential. Identified factors such as age and comorbidities could be

subsequently incorporated more explicitly into mathematical
Cell Reports Medicine 1, 100076, August 25, 2020 5



Figure 3. Translation of Different Ranking Strategies of the

Observed Claims Data (from MarketScan)

(A and B) Individual drugs (spots) are overlaid with color for the following

reference markers: (A) CiPA ranking and (B) hERG IC50/free Cmax ratio. Drugs

with a total patient exposure of less than 100 patient years were excluded from

the analysis.

See also Data S2 and S3.
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models or implicitly via a population-type approach, as sug-

gested previously.2,10,44

Exploring the different subsets also enabled us to make an es-

timate of the background rate of cardiac dysrhythmia within each

of the different subgroups. This is important for understanding

the patient context of intended drug risk because not all drugs

elicit an adverse response in all patient subtypes. Therefore, an

understanding of the expected rate of cardiac dysrhythmia
6 Cell Reports Medicine 1, 100076, August 25, 2020
(CD) in each different patient subtype should offer an alternative

mechanism for categorizing drug risk, given the variable baseline

of incidence, and, hence, allow more stratified treatment op-

tions. To carry out this analysis, we excluded drugs where total

use was less than 100 patient years (as this tends to skew the

incidence rate and is not sufficiently representative). From this,

the average incidence rate across drugs for each age group

and comorbidity group was calculated (Table S2). In general,

we observe that older patient subgroups and those in which

the Charlson comorbidity score was greater than 3 tend to

show the highest incidence rates compared with subgroups

where no comorbidities were identified.

Drugs could be broadly be categorized into 3 distinct types of

profiles: those that showed an elevated incidence of proarrhyth-

mia regardless of patient subgroup, those showing a normal (or

lower) incidence of CD regardless of subgroup, and those that

show a differential response between patient subgroups. Three

exemplar drugs—the antiarrhythmic flecainide, the antibiotic

moxifloxacin, and the antidepressant desvenlafaxine—are

shown in Figure 5. In the case of flecainide, for each patient sub-

group, a higher rate of CD incidence was observed than the

aggregated value of 23.0. For moxifloxacin, the subgroups are

highly variable for incidence rate, whereas for desvenlafaxine,

the majority of subgroups are near or below this background

rate. It is interesting to note that the EB05 values for these drugs

(flecainide, 23.36; moxifloxacin, 6.6; desvenlafaxine, 0.13) corre-

late well with the observed claims data and indicate that EB05

may have merit as a useful metric for quantifying proarrhythmia,

particularly when other classifications schemes are missing, as

in the case of desvenlafaxine.

A further observation with moxifloxacin and flecainide was

how the subgroup incidence rate was highly correlated with

the age of the patient (inversely for flecainide), and we chose

to investigate whether this was related to isolated drugs or a

more general finding. Interestingly, for other antiarrhythmics

(amiodarone, disopyramide, dofetilide, dronedarone, quinidine,

and sotalol) and antibiotics (azithromycin, ciprofloxacin, clari-

thromycin, erythromycin, metronidazole, and pentamidine) in

the evaluation set, a very similar pattern of age dependency

was observed. This observation indicates that it could be related

to the class of drugs or even the underlying medical condition45

for which the drugs are being rather than a specific action of the

drug. This could have implications for how drugs are classified

for cardiac risk; patient age could be a strong predictor for risk

classification. This also suggests how appropriate stratification

of patient subsets could be useful in prescribing and clinical sup-

port algorithms (i.e., to avoid prescribing to subtypes most at

risk).

Future Metrics for Classifying Drug Risk
In this study, we considered how post-market datasets may

complement and augment our current assumptions regarding

drug-induced cardiac risk. When considering a far wider selec-

tion of drugs than previous studies, together with a wider portfo-

lio of complementary data sources, we can challenge or confirm

our empirical assessment of cardiac risk, which can potentially

lead to an improvement in our evaluation of in silico and/or

in vitro models. However, it is apparent that no single marker



Figure 4. Concordance of Safety Signals

(A) logarithmic plots of hERG IC50/free Cmax (triangles) and EB05 for TdP (circles, obtained from FAERS). Compounds were sorted by their EB05 values from

large to small.

(legend continued on next page)
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Figure 5. Stratification of Patient Subtypes ShowsDifferences in the

Incidence of CD

A scatterplot of CD rates shows incidence rate differences between patient

subgroups (split into up to 32 individual subtypes based on age, gender, and

comorbidity index) for 3 exemplar drugs of high incidence, mixed incidence,

and low incidence, derived from the MarketScan claims database. Colors

represent different age groups for patients: green, patients younger than

18 years; yellow, between 18 and 45 years; orange, between 45 and 65 years;

red, over 65 years. Dashed lines represent the mean incidence rates across all

drugs for these age groups together with the overall mean incidence rate

(black dashed line), as seen in Table S2.
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(i.e., the hERG IC50/free Cmax ratio), will successfully categorize

each drug. Table 2 shows a selection of drugs for which different

classifications overlaid with claims data from MarketScan

demonstrate concordance or discordance between classifica-

tion systems and also where opportunities for classifying

unknown drugs can be used. This is well recognized by the

Arizona Center for Education and Research on Therapeutics

(AZCERT) group, which has developed a method (adverse

drug event causality analysis [ADECA]) for stratifying risk based

onmultiple inputs, including FAERS, clinical evidence of TdP and

hERG inhibition, and the QTDrugs list. The ADECA process per-

forms this well by considering multiple data points from 4

different sources, including biomedical literature, drug labels,

and adverse event reports, when classifying a risk score.46 How-

ever, the list is limited in its utility for validation and benchmarking

because lack of categorization of a drug cannot be used as an

equivalent to ‘‘no risk,’’ and many drugs remain uncategorized,

partially because of incomplete data or a lag in the report times
(B) logarithmic plots of hERG IC50/free Cmax and normalized incidence rate for

dence rate from large to small.

(A) and (B) Points are color coded byCiPA classification; compounds that were not

for the safety margin ratio transformation to account for the compound sorting. A l

by the respective other variable) is indicated with a red line and the correspondin
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of FAERS reports or literature evidence. There remains a need for

a systematic, transparent, and (preferably) automated approach

to quantify cardiac risk for a chemical. This would ideally build on

and develop work already done to provide transparent and avail-

able models for cardiac risk assessment; e.g., by the FDA

(https://github.com/FDA/CiPA) and also open-source platform

AP-Portal, a cardiac electrophysiology simulator based on the

published interface developed by Williams and Mirams8. We

propose that electronic health care records should be consid-

ered together with other risk factors, such as patient comorbid-

ities, co-medications, and lifestyle factors (among others), in line

with the current healthcare digitalization trend within the next

decade.

DISCUSSION

The purpose of our study was to highlight that cardiac risk deci-

sion-making requires us to not only use empirical knowledge of

drug use but also to augment it with larger observational

post-market data (e.g., FAERS, health insurance claims, and elec-

tronic patient healthcare records) that are able to support or refute

the clinician-led understanding of risk. To the same extent that

high quality input data are a necessity for meaningful training of

in silico models (e.g., the model parameters), so too must high-

quality outcome data be considered for the models’ credibility or

for model validation exercises. Consideration of the outcome

data is critical for the model validation exercise to ensure a model

that is best in class for arrhythmia prediction and compound strat-

ification.47 Similar challenges have been reported before; for

instance, for classificationof hepatotoxicity48 or predictionof can-

cer driver genes, where the gold standard or truth is unknown.49 A

potential consequenceof failing toconsider outcomes is that false

confidencecanbeattributed to the selectedmodel and, therefore,

subsequent predictions of novel compounds.

In this study, we chose to supplement and review the existing

standard approaches (e.g., hERG IC50/free Cmax safety margin

ratio and CiPA classification ranking) by considering how data-

sets that account for the incidence of proarrhythmia derived

from the real-world setting can be used to support ongoing

evaluation of proarrhythmic risk and offer an opportunity to test

our prior assumptions regarding cardiac safety outcomes in

patients.

An important motivation for this study was to better under-

stand the possible limitations of the current models to help shape

the direction of future development. Whether this means

including additional biological details to better represent patient

variability or using more empirical models should be an ongoing

challenge for the computational biology community, who are

likely to be beneficiaries from the extensive datasets being

generated within the CiPA and JiCSA initiatives to support these

efforts. An important aspect of CiPA and similar initiatives is to

consider how to perform an ongoing evaluation of models as
CD (obtained from MarketScan). Compounds were sorted by normalized inci-

included in the CiPA list are colored in gray. Note that –log function was applied

inear regression of hERG IC50/free Cmax values by compound rank (as ordered

g 95% prediction interval with a shaded area.

https://github.com/FDA/CiPA


Table 2. Selected Drugs Exhibiting Concordance or Discordance across Different Risk Classification Schemes or Drugs that Are

Currently Uncategorized and where Novel Quantitative Metrics Could Be Supportive

Drug

CD

incidence

Incidence

Rate per

1,000 Years

Delta from

Background

Rate

CiPA

Classification CredibleMeds

hERG

IC50/Free

Cmax Ratio EB05 Drug Class

Concordant Drugs

Dofetilide 2,749 157.58 134.58 high risk of TdP 4.36 20.98 anti-arrhythmic

Loratadine 2,016 13.07 �9.93 very low N/A 11,111.1 4.87 antihistamine

Nifedipine 8,563 20.27 �2.73 very low N/A 1,754.4 0.39 calcium channel

blocker

Quinidine 421 87.75 64.75 high risk of TdP 0.92 35.67 anti-arrhythmic

Sotalol 13,186 124.65 101.65 high risk of TdP 17.2 70.36 anti-arrhythmic

Discordant Drugs

Amiodarone 21,788 162.2 139.2 N/A risk of TdP 737.1 21.35 anti-arrhythmic

Methadone 1,662 19.73 �3.27 high risk of TdP 4.9 36.41 opiate

Mexiletine 1,250 280.45 257.45 very low N/A 130.11 2.65 anti-arrhythmic

Paliperidone 119 10.13 �12.87 N/A possible risk

of TdP

87.0 0.57 anti-psychotic

Risperidone 4,066 18.47 �4.53 intermediate possible risk

of TdP

176.99 1.26 anti-psychotic

Unclassified Compounds

Desvenlafaxine 2,222 8.26 �14.74 N/A N/A N/A 0.13 antidepressants

Propafenonea 6,643 135.17 112.17 N/A N/A N/A 3.38 anti-arrhythmic
aPropafenone was added (March 1, 2018) to the CredibleMeds listing as having a conditional risk for TdP.

Article
ll

OPEN ACCESS
new data emerges; e.g., post-market safety signals. In this

study, we suggest the types of datasets and possible metrics

that would support this effort. Therefore, it was important to

carefully consider the data source for its appropriateness for vali-

dation of in silico predictions. I It is equally essential that we

recognize that lack of a strong signal in the post-market and in-

surance claims data for drugs with a previously identified risk of

pro-arrhythmic potential should challenge us to re-evaluate our

risk categorizations.

Observational claims data sources offer great potential for be-

ing able to supplement our existing data resources, such as

biomedical literature or clinical trial data repositories (e.g.,

https://clinicalstudydatarequest.com/). However, there are still

a number of limitations of these data sources that should be

overcome to improve the relevance; these are discussed briefly

here. For instance, for this study, we include an incidence rate for

‘‘drug-burdened’’ patients; i.e., we can only include patients who

have visited their medical professional, and the calculation of a

background rate in healthy patients is typically not collected.

However, the opportunity of mobile health (e.g., the AliveCor

device50) may allow improved understanding of the true back-

ground in an otherwise healthy population. In a recent study, Hin-

gorani et al.51 estimate that 13 healthy volunteers in 1,000 (1.3%)

would be expected to show non-sustained VT (NSVT) over a

24-h ECG recording period. Solomon et al.52 look at arrhythmia

detection beyond 24 h and conclude that the incidence of back-

ground arrhythmia could be higher still, with 18.3% incidence of

NSVT in 128,401 continuously monitored patients over 14 days.

Interoperability across the different post-market datasets

(e.g., between FAERS and claims data) is hampered by the
different clinical coding dictionaries that are used to identify a

medical event. For FAERS, events are represented by the

MedDRA dictionary, whereas claims data use the International

Classification of Diseases, Ninth Revision, Clinical Modification

(ICD-9-CM) vocabulary. This means that, for a given event of

TdP, although this can be represented as such in FAERS, an

equivalent term is not available in the ICD-9-CM vocabulary

and, hence, would be recorded elsewhere. For the purpose of

this study, we made the assumption that CD in ICD-9-CM would

be an approximation of cases of TdP (and related arrhythmias)

but would also encompass other events. However, because

focusing solely on whether a drug has caused a TdP event might

limit our understanding of a more complete cardiac safety

concern, the broader term CD may be a more suitable outcome

measure.53

Comedications (sometimes referred to as polypharmacy) are a

frequent issue and another confounding factor with adverse

event reports. Recently, a study investigated the role of multi-

ple-ion-channel testing in determining the mechanistic reasons

of loperamide’s proarrhythmic potential in overdose situations.54

Many of the reported overdoses cases, however, also exhibited

polypharmacy, including drugs classified by CredibleMeds in

many of the subjects in which loperamide was a cause.55 This

polypharmacy observation is further supported by our analysis

of FAERS reports in which loperamide is rarely a primary

causative drug taken in isolation. This can make it particularly

challenging with regard to identifying the primary drug and/or un-

derlying genetic mutations responsible for the adverse event and

identifying the contributing effects of these comedications (and

comorbidities). Because this is the case, improvements in how
Cell Reports Medicine 1, 100076, August 25, 2020 9
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we assess drug risk in the context of typical comedications

(particularly, e.g., Cytochrome P450 (CYP) inhibitors and other

ion channel inhibitors) would be worthwhile and further support

a need for in silico or clinical decision support systems such as

CredibleMeds.

Ideally, an understanding of drug-induced proarrhythmia

cases rather than drug-associated cases would provide the ideal

calibration for computational modeling based on ion channel

screening data and in silico predictions. This has been advo-

cated previously by other reporters; for example, Mason56

recently proposed a need for formal validation with patient out-

comes to move away from the current ‘‘surrogate’’ (e.g., hERG

inhibition or QTc prolongation) model of cardiac risk. However,

studies tackling the epidemiology of drug-induced arrhythmia

are limited in the number of patients and cases studied; the Ber-

lin Pharmacovigilance Center (PVZ-FAKOS)57 and the Drug-

induced Arrhythmia Risk Evaluation (DARE)58 studies are recent

examples. Despite their small size (130 cases in DARE and 58 in

the PVZ-FAKOS study), there is useful understanding resulting

from these studies, notably identification of drugs with no previ-

ous classification risk of QTc prolongation or TdP, such as prop-

afenone. This observation clearly shows how existing classifica-

tions (CredibleMeds in this case) can be misleading for our

assumptions regarding proarrhythmic potential; a case of ‘‘the

unknown unknowns’’ (i.e., a negative CredibleMeds classifica-

tion) is not equivalent to no-risk. These studies point to further

improving our view of drug-induced arrhythmias. However,

these studies are difficult and costly to conduct; therefore, the

observational datasets (e.g., based on claims data) offer an

excellent bridging study.

Reporting dynamics and quality should be considered. A

pharmacovigilance signal that partly informs the CredibleMeds

classification can and does change over time, particularly for

newer-to-market drugs, as novel observations are made with

increasing clinical use. Hence, the stability and appropriateness

of these rankings will affect in silico model selection and

validation exercises; i.e., the optimum model may succeed at a

later time for no reason other than a change in risk evaluation of

one or more of the validation study drugs. The FAERS

datasets, for instance, are predominantly based on United

States reports (approximately 70% in 2014) and underreporting

of adverse events (e.g., 80% underreporting of serious adverse

drug reactions) has been reported previously.59 The reporters to

FAERS are also highly mixed. When we considered 6,470

individualTdPevents, 34%didnotgiveaprimary reporteroccupa-

tion, and only 28% were from a physician. This implies that more

than two-thirds of TdP reports are reported by individuals other

than a physician; this motivated us to consider insurance claims

data to reduce bias as a result of the reporter. In addition, FAERS

reports, perhaps linked to the reporter, can be influenced signifi-

cantly by external events, such as safety alerts and labeling of

the product with indications of cardiac events. In our sample set,

we identified 55 drugs with a product label containing a cardiac

warning (data obtained from CredibleMeds). The median EB05

value (for TdP) for drugs with a label warning for TdP was 7.84,

whereas drugs that did not specifically mention TdP was 1.48.

Although a product label can result in overreporting and underre-

porting of events, it is nevertheless consistent with the hypothesis
10 Cell Reports Medicine 1, 100076, August 25, 2020
that drugwarning labels for TdP can cause tendency in the health-

care community for overreporting events. A number of drugs are

highly reported for cardiac adverse events within a short period

of time and can potentially skew the data.60 We therefore recog-

nized a need for augmenting any reporter-led datasets because

of these biases, which would equally apply to FAERS, World

Health Organization, and European Medicines Agency adverse

events with insurance claims datasets.

Full coverage across datasets (e.g., data missing for hERG

IC50, drug Cmax, CredibleMeds analysis) or prior classifications

makes comprehensive cross-comparison more difficult and

limits the number of drugs for which comparisons can be

made. However, even with these limitations, this study captures

a number of drugs for which data across the different categories

are present; 57 drugs, for example, have information from claims

(MarketScan) data, hERG IC50 data, or EB05 (FAERS pharmaco-

vigilance) data, of which only 36 have a corresponding Credible-

Meds classification. We advocate for continual assessment and

experiments that help improve this set of 57 drugs, and this

should be a priority for further studies and developments in

this area. One outcome of the ongoing regulatory initiatives is

that multiple experimental values, rather than single IC50 re-

cords, will be generated and, therefore, will provide an under-

standing of experimental variation that can be subsequently

modeled to better represent experimental uncertainty.61

It has to be noted that it is not possible at this stage to gauge

the biases that are present in either data source, so a weak cor-

relation between different measures just reiterates a general

concern regarding blindly trusting the available data. The finding

does not challenge any specific parameter, so in practice, it

would be up to the prior assumptions of the researcher to prop-

erly weight the sources of evidence. One could, for example,

assume that a set of hERG channel binding values obtained un-

der constant conditions in one lab is much harder to question

than any observational dataset that comes with plenty of poten-

tial biases. From Figure 4, it can also be inferred that the CiPA

classification of compounds is backed by other measures,

mostly for the high-risk category, whereas separation between

amedium- and low-risk class is much harder to justify, especially

when looking at the reported incidence rates. If real, then this

finding would have notable implications for construction of

mathematical prediction models hinging on those labels.

An emergent outcome of this study is to demonstrate the po-

tential for a more general utility of post-market datasets for

modeling and simulation as a result of improving data access

and availability to more generally support systems pharma-

cology/biology model calibration and evaluation. Finally, the

data from post-market sources offer an opportunity to attribute

drug risk to many of the drugs uncategorized by CiPA, Credible-

Meds, or Redfern. As an example, propafenone (indicated in Fig-

ure 4) has recently been described as causing 3 proarrhythmia

cases;58 this was subsequently added (March 1, 2018) to the

CredibleMeds listing as having a conditional risk for TdP. The

disproportionality index calculated on FAERS data shows a

value of more than 2.0, and using the incidence data from

MarketScan data in Figure 4 also indicates that the drug resides

on the upper portion of the scatterplot, consistent with the signal

from FAERS. We anticipate that this work can also be valuable
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for drug repurposing and repositioning, particularly when the

benefit/risk is changed significantly for the new proposed indica-

tion. As a method for providing quantitative, transparent

proarrhythmic risk, these datasets are additional tools to support

clinical decision-making and risk/benefit analysis.

These datasets are still somewhat nascent in their utility to

support the field of quantitative systems pharmacology, but by

developing methods to show how they can be used, we also

show how future collection of real-world health datasets can

be aligned with supporting risk management. We hope this will

encourage experimentalists, data scientists, and clinicians to

work together to develop a transparent model-driven approach

based on FAIR (findable, accessible, interoperable, and reus-

able) data standards. The framework should enable scientists,

sponsors, and decision-makers to quantitatively evaluate the

probability of success of new medicines in a better computer-

augmented and human-rendered way that can support more

nuanced and patient-specific prescribing.

Limitations of Study
As discussed above, this work is not without limitations, the

most significant being the difference of correlation versus causa-

tion of drug-induced pro-arrhythmia. Being able to definitively

state that an arrhythmic event is the sole result of a prescribed

drug is hard, and we typically use surrogates such as prolonged

QTc. 2 recent studies, PVZ-FAKOS57 and DARE,58 have suc-

cessfully addressed this issue but are limited in size of patient

population. In our study, we looked at a fixed time period with

patient health records following commencement of a new drug

prescription to minimize the risk of confounders. Additionally,

there was a lack of consistency across the different post-market

datasets; i.e., between the FAERS and MarketScan data for

arrhythmia events because of differences in coding dictionaries

(Table S1). We therefore used CD from ICD-9 as a surrogate

for the MedDRA-coded events in FAERS; e.g., VT or TdP. The

intent of this study is to demonstrate what can be achieved

with current datasets.
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Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Liudmila Polonchuk

(liudmila.polonchuk@roche.com)

Materials Availability
This study did not generate any unique reagents/materials

Data and Code Availability
The published article includes all datasets generated during this study

EXPERIMENTAL MODEL AND SUBJECT DETAILS

hERG testing
To improve consistency and minimize lab-to-lab variance we chose to profile the electrophysiological effects of compounds against

hERG ourselves and collect free Cmax concentrations of drugs using, where possible a primarily single source. Assessment of pro-

arrhythmia algorithms will be most efficient if the compound set includes both positive and negative response compounds in order to

ensure an adequate assessment of a model’s positive and negative predictive values.

Compounds
Reference drugswere purchased from commercial vendors. Selection of test concentrations for each compoundwas done based on

the hERG potency data and the solubility in the extracellular solution. Stock solutions of compounds were freshly prepared in DMSO.

Test solutions were made such that solvent concentrations were kept constant throughout the experiment (0.1%).
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Cell culture
The CHO crelox hERG cell line (ATCC reference Nr. PTA-6812, female Chinese hamster cells) was generated and validated at

Roche.62 Ready-to-use frozen instant CHO-hERG cells are cryopreserved at Evotec (Germany). For the experimental use, the vials

with cryopreserved cells are thawed at 37�C, washed with the pre-warmed IMDM cell culture medium (GIBCO Life Technologies,

USA) and re-suspended in the extracellular solution.

Solutions
The extracellular solution contains (in mM): NaCl 150; KCl 4; CaCl2 1;MgCl2 1; HEPES 10; pH 7.2-7.4 with NaOH, osmolarity 290-330

mOsm. The internal solution contains (in mM): KCl, 10; KF, 100; NaCl, 10; HEPES, 10; EGTA, 20; pH = 7.0-7.4 with KOH, osmolarity

260-300 mOsm.

Electrophysiology
The hERG test is performed using automated patch clamp system SynchroPatch� 384 (Nanion Technologies GmbH, Germany) at

35-37�C following the experimental procedure described previously.63

Subjects
Patients were selected by exposure to either of a list of drug compounds (from NDC codes) used for this study from 2009 �2014. In

total, the cohort included 49,421,340 patients, of which 43.6%weremale (mean age 36.74 years) and 56.4% female (mean age 38.05

years). All enrolment records and inpatient, outpatient, ancillary, and drug claims were collected.

QUANTIFICATION AND STATISTICAL ANALYSIS

Datasets used in this study
The two post market datasets used in this study show different strengths and limitations and hence were both necessary for the pur-

pose of the included work, a summary of the major differences is provided in Table S1.

FAERS
The FDA Adverse Event Reporting System database (FAERS) is based upon voluntary reports of post marketed drug safety. It is a

useful resource for pharmacovigilance and monitoring of potential signals that can be apparent only when larger numbers of

patients are exposed to a drug, particularly for rare events such as ventricular arrhythmias. Data for this study was from FAERS

(since Nov 1997) up to March 31, 2015. EB05 values were calculated from the FAERS data using the Empirica Signal version 8.1

from Oracle. The cumulative gamma distribution function can be used to obtain percentiles of the posterior distribution of l. The

equation was as follows: EB05ij = Solution to: Prob(l < EB05 | Nij, q) = 0.05; where I and j represent the drug and event under study.

Duplicate reports as identified by Oracle were excluded from the analysis. MedDRA version 18.0 was used for the purpose of this

study.

Truven Health MarketScan� Commercial and Medicare Supplemental Database
Data used for the analysis were derived from the Truven Health MarketScan� Commercial Claims and Encounters and Medicare

Supplemental and Coordination of Benefits research data bases (Truven Health Analytics, Ann Arbor, Mich.) for the period January 1,

2009, through to December 31, 2014. These databases represent the health services of approximately 170million employees,

dependents, and retirees in the United States with primary or Medicare supplemental coverage through privately insured fee-for-ser-

vice, point-of-service, or capitated health plans.

Index Date
The index date for patients was the date they met the criteria of exposure to selected treatments according to the inclusion

criteria.

Exposure period (time at risk)
Claims supply days were used to determine exposure; if a claim had a missing or zero day supply the median day supply was as-

signed corresponding to the drug name and route of administration. Exposure was defined as the time from the first treatment claim

until the last treatment claim + median supply in the enrolment period. If two consecutive treatment claims in the exposure period

were more than two times the median supply days apart, this was considered a gap and treatment exposure was stopped at the

last treatment claim prior the gap + median supply days.

Outcomes
The present study assessed the incidence of Cardiac dysrhythmia from inpatient and outpatient claims using ICD-9 diagnosis

codes.
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Statistical Analysis
The incidence rates (per 1000 person-years, with 95% confidence intervals [CIs] calculated using the Poisson regression) of any

event were computed as the number of patients withR 1 event of interest divided by the sum of the person-time at risk until the first

event, or total exposure if no event occurred. The follow-up data were censored at either the date of the first occurrence of the cardiac

event for patients with the event of interest or the date corresponding to the end of their follow-up period (disenrollment or end of

exposure period).
Cell Reports Medicine 1, 100076, August 25, 2020 e4
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