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Abstract

Dysarthria may present during the natural course of many degenerative neurological condi-

tions. Hypokinetic and ataxic dysarthria are common in movement disorders and represent

the underlying neuropathology. We developed an artificial intelligence (AI) model to distin-

guish ataxic dysarthria and hypokinetic dysarthria from normal speech and differentiate

ataxic and hypokinetic speech in parkinsonian diseases and cerebellar ataxia. We screened

804 perceptual speech analyses performed in the Samsung Medical Center Neurology

Department between January 2017 and December 2020. The data of patients diagnosed

with parkinsonian disorders or cerebellar ataxia were included. Two speech tasks (number-

ing from 1 to 50 and reading nine sentences) were analyzed. We adopted convolutional neu-

ral networks and developed a patch-wise wave splitting and integrating AI system for audio

classification (PWSI-AI-AC) to differentiate between ataxic and hypokinetic speech. Of the

395 speech recordings for the reading task, 76, 112, and 207 were from normal, ataxic dys-

arthria, and hypokinetic dysarthria subjects, respectively. Of the 409 recordings of the num-

bering task, 82, 111, and 216 were from normal, ataxic dysarthria, and hypokinetic

dysarthria subjects, respectively. The reading and numbering task recordings were classi-

fied with 5-fold cross-validation using PWSI-AI-AC as follows: hypokinetic dysarthria vs. oth-

ers (area under the curve: 0.92 ± 0.01 and 0.92 ± 0.02), ataxia vs. others (0.93 ± 0.04 and

0.89 ± 0.02), hypokinetic dysarthria vs. ataxia (0.96 ± 0.02 and 0.95 ± 0.01), hypokinetic dys-

arthria vs. none (0.86 ± 0.03 and 0.87 ± 0.05), and ataxia vs. none (0.87 ± 0.07 and 0.87 ±
0.09), respectively. PWSI-AI-AC showed reliable performance in differentiating ataxic and

hypokinetic dysarthria and effectively augmented data to classify the types even with limited

training samples. The proposed fully automatic AI system outperforms neurology residents.
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Our model can provide effective guidelines for screening related diseases and differential

diagnosis of neurodegenerative diseases.

Introduction

Dysarthria is a major clinical sign of various neurological diseases that manifests as indiscern-

ible speech due to the dysfunction of muscles controlled by the nervous system involved in

speech production. The presentation of dysarthria is distinct, depending on each disease and

the causative neurological condition [1, 2]. While various types of dysarthria may present dur-

ing the natural course of degenerative neurological conditions, hypokinetic and ataxic dysar-

thria are important in movement disorders as they represent the underlying neuropathology

and are highly prevalent [3–6]. Representative neurodegenerative diseases with progressive

ataxic dysarthria include multiple systemic atrophy (MSA), sporadic or inherited cerebellar

ataxia, and multiple sclerosis. In Parkinson’s disease (PD) and progressive supranuclear palsy

(PSP), hypokinetic dysarthria presents as an early symptom, sometimes even before cardinal

signs such as resting tremor or rigidity are apparent [3, 7].

Detecting dysarthria and distinguishing between types of dysarthria is important for diag-

nosing the underlying disease and evaluating its progression [1]. The detection of hypokinetic

dysarthria is critical owing to the growing prevalence of neurodegenerative diseases such as

Alzheimer’s disease and PD, as a result of the growing aging population around the world [8,

9]. Ataxic dysarthria is also important as it is a relatively common presentation of ataxia in

pediatric and adult populations due to various etiologies [10, 11]. People with movement dis-

orders such as parkinsonian disorders or cerebellar ataxia tend to show specific types of dysar-

thria (hypokinetic or ataxic). Therefore, the ability to differentiate between patients who have

hypokinetic or ataxic dysarthria can help in the differential diagnosis of PD, PSP subtypes, and

MSA subtypes.

However, evaluation of the type and severity of dysarthria requires significant neurological

knowledge and experience and is performed by expert speech specialists or neurologists. Sub-

sequently, several automated systems that use machine or deep learning have been developed

with the aim of developing efficient tools to detect dysarthria. This approach includes auto-

mated measurement of acoustic analysis values in specific dysarthria [12], detection of disease

using voice recordings [13], and assessment of severity level [14]. These methods depended on

the extraction of acoustic features from speech utterances such as pitch and harmonics, shim-

mer, and jitter, followed by their classification using traditional machine learning methods

such as Gaussian mixture model (GMM), hidden Markov model (HMM), and support vector

machine (SVM). Identification of acoustic and spectral features in PD is performed using Mel-

frequency cepstral coefficients (MFCC), linear prediction coefficients, and GMM, achieving

an accuracy of 77.6% [15]. Wu et al. addressed acoustic features using MFCC, spherical K-

means, and the pooling method to detect PD and compared the accuracy of acoustic features

[16]. GMM and MFCC were used in detecting Huntington’s disease by learning acoustic and

lexical features of voice recordings [17].

Some studies have reported the use of a deep learning system that learned the voice record-

ing itself, not the acoustic feature. Lauraitis et al. adopted a bidirectional long short-term mem-

ory neural network and wavelet scattering transform with SVM classifier for detecting speech

impairment in patients [18]. Kumar et al. proposed a convolutional neural network (CNN)

model that learned sustained vowel sounds of patients with PD [19]. Nevertheless, these stud-

ies were limited because they only assessed a small group or one type of disease (e.g., PD,
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Alzheimer’s) and compared it with the results from healthy controls or one type of dysarthria.

Some studies used an augmentation method to overcome their small datasets with promising

results [20, 21]. However, no study has applied the augmentation method on several diseases

of the same speech disturbance. Learning the specific dysarthria type is more important than

merely learning a disease speech because various diseases show a mixture of dysarthria type,

and when AI can differentiate speech type, it can be applied to various diseases without learn-

ing every disease speech. Few studies have detected specific dysarthria types instead of diseases;

for instance, Kaya et al. used a VGG19-SVM hybrid model to detect ataxia in patients with

multiple sclerosis [22, 23]. However, further improvement is required for more accurate and

various disease differentiation. Therefore, there is a need for advanced modeling that can

mimic assessments conducted by experienced clinicians and differentiate between dysarthria

types.

We sought to develop a model to distinguish ataxic dysarthria and hypokinetic dysarthria

from normal speech and differentiate ataxic and hypokinetic speech in parkinsonian diseases

and cerebellar ataxia. To evaluate the performance of our model, we used a CNN suitable for

analyzing Mel spectrogram as the model input. To improve the diagnostic performance, we

proposed and applied a patch-wise wave splitting and integrating system, which amplifies the

amount of training data and improves the diagnostic generalizability.

Materials and methods

Study population and definition of dysarthria

We retrospectively screened perceptual speech analyses performed in the Neurology Depart-

ment of the Samsung Medical Center between January 2017 and December 2020. The analyses

of patients who were diagnosed with PD, atypical parkinsonian syndrome (i.e., MSA-P, and

PSP), and cerebellar ataxia (i.e., MSA-C, inherited cerebellar ataxia, and sporadic adult-onset

ataxia (SAOA)) were included. The diagnosis of each patient was determined based on these

criteria: PD was based on the United Kingdom Parkinson’s Disease Society Brain Bank criteria

[24] using 18-F N-(3-fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron

emission tomography (FP-CIT PET). Probable MSA and probable PSP were diagnosed based

on the second consensus diagnosis of MSA [25] and movement disorder society clinical diag-

nostic criteria for PSP [26], respectively. SAOA was diagnosed based on criteria outlined in

previous SAOA studies [27, 28]. Other inherited cerebellar ataxias were diagnosed when the

pathologic gene was found. Patients with concomitant or structural brain lesions, including

stroke, tumors, cardiopulmonary and musculoskeletal problems, or other neurological condi-

tions (e.g., myelopathy, known neuropathy, chronic vestibular dysfunction), which may affect

speech, were excluded.

Ataxic and hypokinetic dysarthria were defined according to the universal definition [29].

Experienced clinicians in speech analysis and speech therapy (MKS, SJH), specialized in the

differential diagnosis of neurogenic speech and language disorders, assessed and classified the

speech recordings and confirmed the type and severity of dysarthria in each patient. They clas-

sified the speech recordings independently and were not allowed to know each other’s classifi-

cation. No evidence of any dysarthria, ataxic and hypokinetic dysarthria, was identified, and

hereafter, we refer to no evidence of dysarthria as “none.”

This study was approved by the Institutional Review Board (IRB) of Samsung Medical Cen-

ter. No informed consent from patients was required because the study was a retrospective

observational study, and no figures or videos of a recognizable patient have been included

(IRB number: 2021-07-026).
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Protocol for perceptual speech analysis

Patient speech was digitally recorded using a headset microphone (Shure SM48 cardioid) posi-

tioned approximately 15 cm from the subject’s mouth at a sampling rate of 44,100 Hz, using a

multi-dimensional voice program (Kay Elemetrics, Lincoln Park, NJ, USA). Every recording

was executed in a soundproof room with only the patient and instructor present.

Two speech tasks were given, and at most, two trials were allowed in each task. In the num-

ber task, the patients were instructed to count from 1 to 50 as fast as possible without pausing,

if possible. This protocol was referred to as the number protocol (S1 File). In the autumn task,

the patients were instructed to read a specific paragraph consisting of nine sentences about

autumn. The patients were asked to read the sentences at their usual rate and loudness in this

task. The second protocol was referred to as the autumn protocol (S2 File).

Audio data acquisition: Patient demographics and diagnoses

A total of 804 perceptual speech analyses were screened, and 422 patients were included.

Among them, 395 participated in the autumn protocol, and 409 participated in the number

protocol. In the autumn protocol, 76 cases did not show evidence of dysarthria, 112 had ataxia,

and 207 had hypokinetic dysarthria. In the number protocol, 82 cases did not have evidence of

dysarthria, 111 were ataxic, and 216 were hypokinetic dysarthria. The number of patients in

each protocol is shown in Table 1. In addition, the demographic, specific diagnosis, and clini-

cal characteristics of the data we received are summarized and compared in Table 2.

Audio data pre-processing

We performed sound source pre-processing for each of the sound sources of these two proto-

cols so that the section from the time the patient started speaking to the time the patient fin-

ished speaking could be extracted through binary thresholding based on a specific volume

level of the waveform. This audio pre-processing is illustrated in Fig 1. We obtained the aver-

age root mean square (rms) sound level of the entire waveform and defined a value corre-

sponding to 50% of this value as the threshold. Thereafter, a waveform was newly extracted by

leaving only the values of the waveform with a value greater than this threshold value. This

pre-processing made it possible to effectively extract only the patient’s waveform from the

entire waveform file by removing the doctor’s voice or ambient background noise.

Algorithm overview: Patch-wise wave splitting and integrating AI system

(PWSI -AI)

Owing to the characteristics of medical data, the number of datasets required for learning by

the deep learning model is generally insufficient. We developed a patch-wise wave splitting

and integrating AI system for audio classification (PWSI-AI-AC) to overcome this problem.

This approach is illustrated with a comparison to the baseline model in Fig 2. To understand

Table 1. Number of patients in the autumn and number protocols.

Autumn Number

Hypokinetic 207 216

Ataxia 112 111

None 76 82

Total 395 409

https://doi.org/10.1371/journal.pone.0268337.t001
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the characteristics of the proposed technology, we first describe the existing baseline method

and then compare it to our method.

Baseline model

An existing general AI-based model for performing speech classification receives the entire

speech as the network input and learns to perform the binary classification based on the entire

speech input (training phase). After completing all training, the network receives the wave-

form of a test patient not used for training as an input and provides a binary classification pre-

diction result as an output (inference phase). These training and inference processes are

outlined in Fig 2(A), and the approaches are considered as the general process for our baseline

Table 2. Demographics and clinical characteristics.

Ataxic Hypokinetic None

Age (years) 65.00 ± 8.46 68.68 ± 9.40 74.00 ± 5.77

Sex, male 53 (47.3) 112 (51.9) 40 (48.8)

Degree of dysarthria (mild/moderate/severe) 50 (44.3)/57 (51.5)/ 5 (4.2) 107 (49.3)/92 (42.6)/17 (8.0) -

Data are presented as the mean ± standard deviation (SD) or n (%).

https://doi.org/10.1371/journal.pone.0268337.t002

Fig 1. Illustration of the pre-processing process. Top: entire waveform (blue line) and threshold (black line). Bottom: pre-processed

waveform where only the values above the threshold were extracted.

https://doi.org/10.1371/journal.pone.0268337.g001
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model. As a backbone model for the network in this study, we used CNN14 [30]. Specifically,

the learning and inference processes for this baseline technique can be formulated as detailed

in the following two paragraphs, respectively.

When there are training data of D patients, let xk denote the k-th patient’s waveform file.

The network fθ then takes xk as input and provides a two-dimensional probability vector

fθ(xk)2R2 as its output as follows: For k2{1,2,. . .,D},

fy xkð Þ ¼ softmax zyðxkÞð Þ ¼
ez0
y
ðxkÞ

P1

i¼0
eziyðxkÞ

;
ez1
y
ðxkÞ

P1

i¼0
eziyðxkÞ

 !

2 R2
; ð1Þ

where softmax denotes the softmax function allowing the sum of the network outputs to be 1

(i.e., let the network output be a probability vector), θ denotes the network parameter for

learning, and zyðxkÞ≔ðz0
y
ðxkÞ; z1

y
ðxkÞÞ 2 R

2
denotes the network latent feature vector before

the softmax output layer.

Fig 2. Overview of the proposed PWSI-AI-AC. (a) Baseline scheme: The network receives the entire waveform as an input and performs learning and

inference for the binary classification. (b) Proposed scheme: Unlike the baseline method, the entire waveform is divided into N patches, and the network

receives the individual patch waveform as input and learns to perform binary classification for each patch. In the inference phase, N results are synthesized

through majority voting to obtain the final binary classification result for the target patient. Through this diversity gain, performance improvement can be

achieved.

https://doi.org/10.1371/journal.pone.0268337.g002
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If the k-th patient has a specific disease, a positive label (i.e., ck = 1) is annotated; otherwise, a

negative label (i.e., ck = 0) is given. In this way, binary classification data for a total of D patients

were collected as fðxk; ckÞg
D
k¼1

. A total of five different binary classification datasets were pre-

pared according to the type of dysarthria. Further details are introduced in the next section.

Using each binary classified dataset, the network is trained to minimize the following objective:

y
�
¼ argmin

y

XD

k¼1
Lbceðck; fyðxkÞÞ; ð2Þ

where θ� indicates the trained parameter, and Lbce denotes the binary cross-entropy loss as spec-

ified in the following equation (I denotes the indicator function yielding 1 if the inner statement

is correct):

Lbce ck; fyðxkÞð Þ ¼ � I ck ¼ 0½ �log
ez0
y
ðxkÞ

P1

i¼0
eziyðxkÞ

 !

� I ck ¼ 1½ �log
ez1
y
ðxkÞ

P1

i¼0
eziyðxkÞ

 !

ð3Þ

In Eq (3), ck2{0,1} is the actual label information, and the log function input value is the esti-

mated probability value of the network for this label.

The network fθ�, trained according to Eq (2), receives the waveform xtest of the test patient

as an input and provides an estimate of the binary classification label as its output. This step

can be performed by obtaining the index of the largest value (an index having the highest prob-

ability value) among the two-dimensional probability vector values of the network as follows.

For scaling, we applied log to softmax and applied the argmax function from this log-softmax

value to select the corresponding index and performed binary classification:

ĉtest ¼ argmax
index2f0;1g

ðlog fy� ðxtestÞÞ

¼ argmax
index2f0;1g

ðlog softmaxðzy� ðxtestÞÞÞ

¼ argmax
index2f0;1g

log
ez

0
y�
ðxtestÞ

P1

i¼0
ez

i
y�
ðxtestÞ

 !

; log
ez

1
y�
ðxtestÞ

P1

i¼0
ez

i
y�
ðxtestÞ

 ! !
ð4Þ

Whether this label estimate ĉtest 2 f0; 1g is equal to the actual label ctest2{0,1} allows us to eval-

uate the binary classification performance of that baseline.

Proposed model

The training and inference processes of the proposed PWSI-AI-AC are provided in Fig 2(B).

Unlike the baseline model, the proposed PWSI-AI-AC model divides the entire speech section

(xk) into ‘N’ subsections (xik for i2{1,2,. . .,N}), assigns the same label to each subsection and

trains the network to receive these individual subsections as input and output for the corre-

sponding label (training phase). This patch-based approach augments the data ‘N’ times com-

pared to the baseline, which can improve the network classification performance. After

training the model, we performed the following three steps for the inference process: 1) (wave

splitting) generating ‘N’ patches that consisted of ‘N’ sub-intervals for an entire waveform, 2)

(generating ‘N’ patch-based predictions) individually inputting these ‘N’ patches into the

trained network and obtaining a prediction value for each patch for each class as the corre-

sponding value of the log-softmax output of the network, 3) (wave integrating) averaging the

‘N’ prediction values of ‘N’ patches for each class and deriving the final class label as the index

of the largest value among these average values through the argmax operation. In other words,

as the proposed method simultaneously uses N predictions instead of only one prediction (i.e.,
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combining N predictions by a majority vote to derive the final binary classification result),

unlike the existing method (i.e., baseline), it was possible to obtain improved diagnostic perfor-

mance by obtaining additional gains in diversity. Furthermore, we compared how the learning

and inference processes differ from the existing baseline model through the following

formulations.

For the training phase of the proposed PWSI-AI-AC, given the k-th patient’s waveform file

xk from training data of D patients, the proposed wave splitting process generates ‘N’ waveform

patch files (i.e., xik for i2{1,2,. . .,N}) by dividing the corresponding waveform xk into N inde-

pendent sections in chronological order as follows:

xk ! ðx
1

k; x
2

k; x
3

k; . . . ; ; xNk Þ for k 2 f1; 2; . . . ;DgÞ ð5Þ

While the baseline model uses an undivided waveform xk as the input, as shown in Eq (1),

the proposed model takes a divided waveform patch xik (for i2{1,2,. . .,N}) as the input and pro-

vides a two-dimensional probability vector fyðxikÞ 2 R
2

as its output as follows:

For i2{1,2,. . .,N},

fy xik
� �
¼ softmax zyðx

i
kÞ

� �
¼

ez0
y
ðxikÞ

P1

j¼0
ez

j
y
ðxikÞ
;

ez1
y
ðxikÞ

P1

j¼0
ez

j
y
ðxikÞ

0

@

1

A 2 R2
ð6Þ

Using a binary classified dataset as fðxk; ckÞg
D
k¼1

, the proposed model is trained to minimize

the following objective:

y
�
¼ argmin

y

XD

k¼1

XN

i¼1
Lbceðck; fyðx

i
kÞÞ: ð7Þ

This learning objective is similar to the baseline model but differs in that the proposed

model predicts the actual label ck of the waveform by using only a portion of the entire wave-

form as an input. As each (undivided) waveform xk has a unique label, all N patches (i.e., xik for

i2{1,2,. . .,N}) were assigned that same label.

For the inference phase of the proposed PWSI-AI-AC, as the proposed network uses indi-

vidual sections of the waveform as the input, a separate process (i.e., wave integrating) is

required in the inference step to fully use the entire waveform xtest for the test patient. In our

approach, the network fθ�, trained according to Eq (7), individually receives N divided wave-

form patches xitest (for i2{1,2,. . .,N}) of the target/original waveform xtest as an input and thus

provides multiple N estimates of the binary classification label as its outputs. Each of the N pre-

dicted values is expressed as follows: For i2{1,2,. . .,N}),

ĉitest ¼ argmax
index2f0;1g

ðlog fy� ðx
i
testÞÞ ¼ argmax

index2f0;1g
log

ez
0
y�
ðxitestÞ

P1

j¼0
ez

j
y�
ðxitestÞ

0

@

1

A; log
ez

1
y�
ðxitestÞ

P1

j¼0
ez

j
y�
ðxitestÞ

0

@

1

A

0

@

1

A ð8Þ

The proposed method calculates one final prediction result by synthesizing these N predic-

tion values using majority voting, which is expressed as follows:

ĉtest ¼ argmax
index2f0;1g

XN

i¼1
I½ĉitest ¼ 0�;

XN

i¼1
I½ĉitest ¼ 1�

� �

ð9Þ

Notably, this final label estimate ĉtest is equivalent to the result of averaging the ‘N’ prediction

values of ‘N’ patches for each class and deriving the final class label as the index of the largest
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value among these average values through the argmax operation as follows:

ĉtest ¼ argmax
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where the second equality is obtained by applying Eq (8). The final label prediction result

obtained in Eq (10) has lower computational complexity than that in Eq (9), as it does not

need to directly compute N individual predictions (i.e., ĉ itest for i2{1,2,. . .,N}) in Eq (8). There-

fore, we calculated the final prediction as in Eq (10).

In summary, the baseline model uses only one prediction result per test patient, but the pro-

posed model derives the diagnosis result by synthesizing N multiple prediction results. There-

fore, as the experimental results demonstrate, our model provides higher predictive

performance by exploiting the diversity gain.

Experimental settings and implementations for AI systems

The original audio length ranged from 19 to 315 seconds (s) in the autumn protocol from 11

to 103 s in the number protocol. After all audio files were pre-processed as described in Fig 1,

we resized all of these processed audio files to 30 s and use them as AI input. The baseline

model used a waveform set to 30 s, adjusted in this way, as an input. In the proposed

PWSI-AI-AC, the process of dividing each waveform into N was added. That is, each pre-pro-

cessed sound source was divided equally into N patches and adjusted to a length of 30 s for

each patch sound source in the same way as the baseline to enable a fair comparison. We in

this study set the number N of patches as 10 and 3 for autumn and number protocols, respec-

tively. This is because the average length of autumn protocol voice source files is approximately

three times longer than that for number protocol. So we tripled the number N of patches as 10

in the autumn protocol compared to that for number protocol (i.e., N = 3) to ensure that the

actual time interval covered by each patch was consistent, which showed higher performance

than other configurations.

We applied log-Mel transformation [30, 31] to each waveform, converted it to log-Mel

spectrogram, and used it as input for the AI network. Log-Mel spectrogram has already been

used as an input for CNN in audio tagging to derive good performance [32, 33]. Short time

Fourier transforms (STFTs) [34] are applied to time domain waveforms to calculate spectro-

grams. Mel filter banks are then applied to the spectrograms, followed by a logarithmic opera-

tion to extract log-Mel spectrograms [32, 33]. Therefore, a log-Mel spectrogram consisting of a

time axis and frequency axis (i.e., expressing one-dimensional sound source information as

two-dimensional information) can be extracted. This log-Mel spectrogram is illustrated in

Fig 3 according to the selected dysarthria types for each autumn and number protocol as

examples of cases where the number of patches was one.

As a neural network model for audio tagging, we adopted a CNN named CNN14 [30] as

our base model of AI, since it is suitable for using a log-Mel spectrogram as the model input.

CNN14 is a model modified by Kong et al. [30] to be more suitable for audio tagging, based on

the CNN structure called VGG [35] and consists of 14 layers. The detailed configuration of

CNN14 is illustrated in Fig 4. CNN14 has a total of six convolutional layers, and each convolu-

tional block is composed of two convolutional layers with a 3 × 3 kernel size. The number fol-

lowing the character @ indicates the number of feature maps. In this network, batch

normalization (BN) [36] and Rectified Linear Unit (ReLU) nonlinearity [37] were applied
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Fig 3. The log-Mel spectrogram of the waveform according to the selected dysarthria types (no evidence of dysarthria, hypokinetic dysarthria, and

ataxic dysarthria) for each autumn and number protocol.

https://doi.org/10.1371/journal.pone.0268337.g003

Fig 4. Configuration of CNN14. CNN14 is a representative network developed for audio-based classification, which converts input waveform into a log-Mel

spectrogram (i.e., converts one-dimensional information into two-dimensional image type information) and makes the CNN appended to the spectrogram.

The CNN is composed of convolution, batch normalization, and FC layers. In this study, the output size of the last layer was resized as two for binary

classification, and transfer learning was adopted.

https://doi.org/10.1371/journal.pone.0268337.g004
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between each convolutional layer, downsampling was performed using average pooling of 2 × 2

size before each convolutional block, and global average pooling [38] was applied after the last

convolutional layer to extract the representative value of the two-dimensional feature map for

each channel. As our task involved binary classification, we modified the original CNN14 to per-

form binary classification by adding a two-dimensional fully connected (FC) layer to the end of

CNN14 (i.e., total of 15 layers). This modification makes the output dimension of the modified

CNN14 become two so that it is possible to provide binary classification probability vectors for

both classes. Each waveform (i.e., the pre-processed entire waveform file in the case of baseline

model and the pre-processed waveform file of each individual patch divided into N pieces in the

case of proposed model) is converted into a two-dimensional image of log-Mel spectrogram as

shown in Fig 3. This spectrogram image is given as input to our CNN14, and the prediction

results for binary classification are provided as a network output of a two-dimensional vector.

This output vector is a softmax probability value that distinguishes whether the result is positive

or negative by selecting the value of the larger index among the two values.

In all experiments, we set the mini-batch size to 32, set the epoch to 10,000, and used binary

cross-entropy loss and the Adam optimizer with an initial learning rate of 0.001. Referring to

existing AI-related studies in which transfer learning improved performance [39–41], we also

adopted transfer learning [39] and set the parameters of CNN14 pre-trained on a large-scale

AudioSet [42] dataset as initial parameters for our training. We set the sampling rate of the

audio source to 32,000, window size to 1,024, hop size to 320, and window type to Hann as this

approach has been regarded as suitable for audio signal processing [30]. We applied two data

augmentation techniques, Mixup [43] and SpecAugment [44], to learn the network more

effectively even with a limited number of training samples. Mixup creates new data by mixing

two different sound sources and their labels into one, and SpecAugment augments data

through masking in the frequency and time domains on a Mel spectrogram. For the experi-

mental implementation environment, we used GPU GeForce GTX 1080Ti, CPU Intel1

Xeon1 CPU E5-2620 v4, and the Pytorch library.

Evaluation metrics for measuring classification performance

We evaluated the classification performance according to the following five statistical analyses:

area under the curve (AUC) for receiver operator characteristic (ROC), accuracy, precision,

and confusion matrix.

Accuracy is denoted by the percentage of the total number of test samples that the network

identified in the true labels. Precision denotes the class-wise averages of the proportions

detected correctly among all samples detected by the target class.

Because the tasks were built as binary-label classifications, we expressed the hypokinetic

dysarthria (H), ataxia (A), and none (N) cases as H, A, and N and calculated five true positive

(TP), false positive (FP), and false negative cases by selecting a target label i2{H, A} as positive

and the other labels to exclude the label as negative (i.e., case 1 (H vs. others) and case 2 (A vs.

others), respectively), selecting both labels H and A as positive and negative, respectively (i.e.,

case 3 (H vs. A)), selecting a target label i2{H, A} as positive, and regarding the label N as nega-

tive (i.e., case 4 (H vs. N) and case 5 (A vs. N), respectively).

Accuracy ¼
Tp þ Tn

Dtest
; ð11Þ

Precision ¼
TP

TP þ FP
ð12Þ
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where Ti is the number of testing samples with both labels and the estimate equal to i2{p = 1,

n = 0} = {positive, negative}, Dtest is the total number of testing samples, TP and FP denote TP

and FP, respectively, and Precision denotes the precision (i.e. positive (p) prediction value). All

statistical analyses were performed by 5-fold cross-validation in the internal dataset [45]. We

divided the entire dataset into five subsets. Thereafter, we trained the model using four subsets

and evaluated it on the remaining single subset, thereby obtaining the five trained models indi-

vidually. The five subsets of data for validation of each model were not duplicated, and the

average performance through this 5-fold cross-validation was calculated to obtain the final

AUC, accuracy, precision, and confusion matrix. Each fold of the autumn protocol consisted

of 41 (H), 23 (A), and 15 (N) audio sources, and each fold of the number protocol consisted of

43 (H), 22 (A), and 16 (N) audio sources. Samples for each protocol were selected from differ-

ent patients.

Classification performance of the doctors

To compare the performance between AI and doctors (humans), three doctors in the third

year of neurology residency went through the same 5-fold test for case 1 (hypokinetic dysar-

thria vs. others) and case 2 (ataxic vs. others). These doctors did not participate in the study

data extraction and did not receive any clinical information about the recordings. Each doctor

was evaluated separately and blinded from each other’s results. They were allowed to listen to

the recordings only one time. To prevent the learning effect in the same case, they had to listen

to 5-folds of the autumn protocol of case 1 followed by 5-folds of the autumn protocol of case

2 and then 5-folds of the number protocol of case 1 followed by the number protocol of case 2.

Results

Key performance evaluation of the proposed PWSI-AI compared to the

baseline model

To demonstrate the superiority and usefulness of the proposed PWSI-AI, we compared it to

the baseline model (i.e., the number of patches was set to one in PWSI-AI) in terms of the key

performance measurement, AUC. We summarized the corresponding comparison results for

each of the five cases in Table 3, where the macro-average AUCs were given through 5-fold

cross-validations. As a result, in the case of the autumn protocol, we observed that the pro-

posed PWSI-AI achieved an AUC performance improvement of 4% or more in all cases. In

the case of the number protocol, we also demonstrated that the proposed PWSI-AI has an

AUC performance improvement in all cases compared to the existing baseline AI model, of

approximately 3% on average in all cases. Therefore, through these results, we proved the

Table 3. Macro-average AUCs for the proposed PWSI-AI and baseline model.

Case/Protocol Autumn Number

Case 1 (H vs. O) 0.92 / 0.88 (+0.04) 0.92 / 0.87 (+0.05)

Case 2 (A vs. O) 0.93 / 0.86 (+0.07) 0.89 / 0.88 (+0.01)

Case 3 (H vs. A) 0.96 / 0.92 (+0.04) 0.95 / 0.93 (+0.02)

Case 4 (H vs. N) 0.86 / 0.80 (+0.06) 0.87 / 0.83 (+0.04)

Case 5 (A vs. N) 0.87 / 0.81 (+0.06) 0.87 / 0.84 (+0.03)

Data are presented as proposed/baseline (their difference). H, hypokinetic dysarthria; O, others; A, ataxic dysarthria;

N, none

https://doi.org/10.1371/journal.pone.0268337.t003
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effectiveness of the proposed technology by demonstrating that the application of wave split-

ting and integration improves the classification performance of AI.

This key result is supported by the 5-fold individual ROC curves drawn for each case of the

proposed PWSI-AI and the baseline model and the micro- and macro-average ROC curves,

AUCs, and SDs based on the 5-fold results shown in Figs 5–7. These figures show that the pro-

posed scheme also improved the micro-average AUCs of the baseline for cases 1, 2, and 3 (e.g.,

for case 3 in (a) and (b) of the autumn protocol in Fig 7, the proposed scheme (AUC: 0.9634)

improved the micro-average AUC of the baseline (AUC: 0.9168) by more than 4%), thereby

supporting the objectivity of the proposed technique and experiments. Specifically, no signifi-

cant difference between the micro-average AUC and macro-average AUC for each model was

observed, and our validation data were confirmed to be well-balanced for each class in each

fold.

Fig 5. Case 1: Hypokinetic dysarthria vs. others. Comparison of the performance between the proposed and baseline schemes in terms of AUC. (a)

Autumn + proposed, (b) Autumn + baseline, (c) Number + proposed, (d) Number + baseline.

https://doi.org/10.1371/journal.pone.0268337.g005
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Performance evaluation of the proposed PWSI-AI

Tables 4 and 5 can be used to examine the clinical effectiveness of the proposed technique and

detail the AUCs, accuracy, precision, and convolution matrix for each of the 5-type classifica-

tion cases. The average and SD were derived from each of the 5-fold cross-validations.

Table 4 shows that in both cases 1 and 2, AI correctly detects hypokinetic dysarthria or

ataxia in an environment with all three dysarthria types (i.e., hypokinetic dysarthria, ataxia,

and none), with an AUC performance of more than 0.9 and 0.89 and accuracy and precision

more than 80% and 77% in the autumn and number protocols, respectively. The autumn pro-

tocol showed higher performance than the number protocol because the voice length of the

autumn protocol was longer than that of the number protocol. In the autumn protocol, we

divided the waveform into ten but divided the value into three in the number protocol. The

voice data for the number protocol were only tripled, but in the autumn protocol, the data

Fig 6. Case 2: Ataxia vs. others. Comparison of the performance between the proposed and baseline schemes in terms of AUC. (a) Autumn + proposed,

(b) Autumn + baseline, (c) Number + proposed, (d) Number + baseline.

https://doi.org/10.1371/journal.pone.0268337.g006
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were augmented ten times, improving the AI diagnosis performance. Notably, for both proto-

cols, AI performed binary classification between hypokinetic dysarthria and ataxia with a high

AUC (>0.95) and high accuracy (>85%), as shown in case 3 in Table 4. We also observed in

cases 4 and 5 that AI performs the binary classification between hypokinetic dysarthria or

ataxia and none, with an AUC of�0.85 and accuracy of about 75% (Table 4).

To confirm the results in Table 4, we also developed Table 5 to assess the confusion matri-

ces. The results in Table 5 confirm that AI successfully performs classification (e.g., with high

precision and accuracy of more than 73% in all cases, as shown in Table 4), even if there are

some imbalances between the data of each class.

Comparison of the performance between AI and doctors

This section compares the results between the proposed PWSI-AI and neurology resident

doctors in discriminating a specific dysarthria type. We provided the same 5-fold data of

Fig 7. Case 3: Hypokinetic dysarthria vs. ataxia. Comparison of the performance between the proposed and baseline schemes in terms of AUC. (a)

Autumn + proposed, (b) Autumn + baseline, (c) Number + proposed, (d) Number + baseline.

https://doi.org/10.1371/journal.pone.0268337.g007
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Table 4. AUCs, accuracy, and precision for the proposed PWSI-AI.

Modality Autumn Number

Case Metrics Validation results of AI

Case 1: Hypo Vs. Others Macro-avg AUC 0.9218 ± 0.01 0.9217 ± 0.02

Micro-avg AUC 0.9099 ± 0.01 0.9072 ± 0.03

Accuracy, % 81.77 ± 2.62 83.88 ± 4.13

Precision, % 81.49 ± 2.81 (Hypo: 86.45 ± 3.38, Others: 76.53 ± 6.66) 83.8 ± 4.32 (Hypo: 85.68 ± 7.14, Others: 81.93 ± 11.11)

Case 2: Ataxia Vs. Others Macro-avg AUC 0.9311± 0.04 0.8940 ± 0.02

Micro-avg AUC 0.9379± 0.03 0.9204 ± 0.02

Accuracy, % 84.05 ± 2.91 77.99 ± 4.8

Precision, % 82.14 ± 5.7 (Ataxia: 77.71 ±13.54, Others: 86.57 ±3.64) 80.15 ± 3.17 (Ataxia: 84.78 ± 8.47, Others: 75.51 ± 8.43)

Case 3: Hypo Vs. Ataxia Macro-avg AUC 0.9634 ± 0.02 0.9544 ± 0.01

Micro-avg AUC 0.9585 ± 0.02 0.9507 ± 0.01

Accuracy, % 89.04 ± 5.28 85.93 ± 2.74

Precision, % 88.5 ± 5.71 (Hypo: 90.31 ± 4.28, Ataxia: 86.68 ± 7.42) 85.66 ± 2.46 (Hypo: 86.62 ± 6.67, Ataxia: 84.7 ± 8.2)

Case 4: Hypo Vs. None Macro-avg AUC 0.8605 ± 0.03 0.8696 ± 0.05

Micro-avg AUC 0.8814 ± 0.03 0.8907 ± 0.04

Accuracy, % 75.61 ± 4.22 73.82 ± 4.22

Precision, % 77.02 ± 2.64 (Hypo: 73.88 ± 6.84, None: 80.17 ± 5.01) 76.08 ± 7.1 (Hypo: 71.28 ± 7.16, None: 80.88 ± 17.7)

Case 5: Ataxia Vs. None Macro-avg AUC 0.8657 ± 0.07 0.8652 ± 0.09

Micro-avg AUC 0.8565 ± 0.07 0.8514 ± 0.09

Accuracy, % 74.96 ± 6.34 76.67 ± 11.94

Precision, % 73.64 ± 6.54 (Ataxia: 80.28 ± 7.78, None: 67 ± 9.75) 76.68 ± 10.95 (Ataxia: 76.52 ± 18.64, None: 76.84 ± 6.76)

Data are presented as the mean ± SD. AI, artificial intelligence; AUC, area under the curve, Hypo, hypokinetic dysarthria

https://doi.org/10.1371/journal.pone.0268337.t004

Table 5. Confusion matrices for the proposed PWSI-AI.

Protocol: Autumn Protocol: Number

Case 1: Hypo Vs. Others Confusion matrix Predicted Case 1: Hypo Vs. Others Confusion matrix Predicted

Hypo Others Hypo Others

Actual Hypo 35.8 ±1.79 5.6 ±1.34 Actual Hypo 37.0 ±2.92 6.2 ±3.11

Others 8.8 ±2.39 28.8 ±2.86 Others 7.0 ±4.36 31.6 ±4.1

Case 2: Ataxia Vs. Others Confusion matrix Predicted Case 2: Ataxia Vs. Others Confusion matrix Predicted

Ataxia Others Ataxia Others

Actual Ataxia 17.4 ±3.05 5.0 ±3.08 Actual Ataxia 18.8 ±1.64 3.4 ±1.95

Others 7.6 ±2.07 49.0 ±2.12 Others 14.6 ±5.08 45.0 ±5.0

Case 3: Hypo Vs. Ataxia Confusion matrix Predicted Case 3: Hypo Vs. Ataxia Confusion matrix Predicted

Hypo Ataxia Hypo Ataxia

Actual Hypo 37.4 ±2.07 4.0 ±1.73 Actual Hypo 37.4 ±2.61 5.8 ±2.95

Ataxia 3.0 ±1.73 19.4 ±1.52 Ataxia 3.4 ±1.82 18.8 ±1.79

Case 4: Hypo Vs. None Confusion matrix Predicted Case 4: Hypo Vs. None Confusion matrix Predicted

Hypo None Hypo None

Actual Hypo 30.6 ±3.05 10.8 ±2.77 Actual Hypo 30.8 ±3.19 12.4 ±3.05

None 3.0 ±0.71 12.2 ±1.1 None 3.2 ±3.03 13.2 ±2.59

Case 5: Ataxia Vs. None Confusion matrix Predicted Case 5: Ataxia Vs. None Confusion matrix Predicted

Ataxia None Ataxia None

Actual Ataxia 18.0 ±2.0 4.4 ±1.67 Actual Ataxia 17.0 ±4.18 5.2 ±4.09

None 5.0 ±1.41 10.2 ±1.64 None 3.8 ±1.1 12.6 ±1.14

Data are presented as the mean ± SD. Hypo, hypokinetic dysarthria

https://doi.org/10.1371/journal.pone.0268337.t005
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case 1 (hypokinetic dysarthria vs. others) and case 2 (ataxia vs. others), used to verify the

proposed PWSI-AI, to three resident doctors. The detailed setup for this step has been

introduced above, and the performance results are presented in Fig 8 (sensitivity, specific-

ity) and Table 6 (accuracy, precision). Fig 8 shows that the ROC curve of the proposed AI

technology was different by at least 0.1 in each direction of the x- and y-axes compared to

the resident doctors. These results show that the proposed AI technology has more than

10% higher sensitivity and specificity than the resident doctors. Similarly, as shown in

Table 6, the proposed AI technology has more than 5% higher accuracy and precision

than resident doctors in all protocols in cases 1 and 2. These results prove the effectiveness

of the proposed AI technology by suggesting that it can supplement the diagnosis of doc-

tors who are not voice-based diagnostic specialists.

Fig 8. Comparison of the performance between the proposed PWSI-AI and doctors in terms of the AUC. (a) and (c) Autumn protocol, (b) and (d)

Number protocol.

https://doi.org/10.1371/journal.pone.0268337.g008
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Discussion

Ataxic and hypokinetic dysarthria are important clinical clues for diagnosing and managing

many neurodegenerative diseases, including cerebellar ataxia and parkinsonian diseases. This

was the first study to develop automated analyses of speech recordings to differentiate ataxic

and hypokinetic dysarthria. Our AI model, PWSI-AI-AC, showed reliable performance in dif-

ferentiating ataxic and hypokinetic dysarthria, intrinsically augmenting data to effectively clas-

sify the types even with a small number of training samples. In all the tasks, the performance

parameters of our AI model were significantly better than those of resident doctors.

As the elderly population and the prevalence of neurodegenerative diseases increase glob-

ally due to increased life expectancy, this automated program for the differential typing of dys-

arthria can facilitate the diagnosis and assessment of the severity or stage of diseases [1]. In

particular, detecting hypokinetic dysarthria, which occurs in patients with PD, is needed for

the proper management of PD of which prevalence is growing worldwide [8, 9]. Furthermore,

ataxic dysarthria is a relatively common presentation of ataxia in pediatric and adult popula-

tions due to various etiologies and is also important to detect [10, 11]. Movement disorders

such as atypical parkinsonism tend to present as either the hypokinetic or ataxic type or a mix-

ture; this distinctive feature may make the differentiation efficient. Therefore, detecting hypo-

kinetic or ataxic dysarthria can be a major clue in differentiating Parkinson plus syndromes.

Identifying the presence of ataxic or hypokinetic dysarthria in patients based on AI analysis

will enable general doctors to provide more accurate differential diagnoses. As seen in the cur-

rent study, it is difficult for general doctors to distinguish the types of dysarthria. It can even

be challenging for diagnostic experts to differentiate PD from atypical parkinsonism based on

neurological examination. The accuracy of clinical diagnosis for PD by non-specialists was

reported to be 73.8% (95% CI 67.8%–79.6%), and the most frequent misdiagnosis in the clini-

cal setting is atypical parkinsonism [46]. In the process of diagnosis in which doctors combine

all available clinical clues, speech abnormality could play a significant role.

Older adults with neurodegenerative diseases often have limitations in ambulation, which

can inhibit them from visiting the hospital in person on a regular basis. Therefore, assessing

patients with dysarthria using AI remotely on a regular basis could help determine the progres-

sion or stage of the disease and develop a better management plan. More specifically, since dys-

arthria can be an important indirect sign of dysphagia, our AI can be used to screen for

dysarthria, the risk of dysphagia in PD, and atypical parkinsonism. In addition, AI detection of

hypokinetic dysarthria remotely can be utilized to detect dopaminergic response as the disease

progresses [47, 48].

Table 6. Comparison between the proposed PWSI-AI and doctors.

Doctor 1 Doctor 2 Doctor 3 Mean Doctors PWSI-AI

(C1/A) Accuracy 47.4 ± 8.4 51.1 ± 9.4 51.2 ± 5.4 49.9 ± 7.7 81.8 ± 2.6

(C1/A) Precision 71.5 ± 11.9 77.3 ± 8.8 75.9 ± 10.4 74.9 ± 10.4 81.5 ± 2.8

(C1/N) Accuracy 50.8 ± 7.5 53.5 ± 3.0 51.7 ± 6.9 52.0 ± 5.8 83.9 ± 4.1

(C1/N) Precision 73.3 ± 9.4 74.5 ± 9.4 78.5 ± 9.9 75.5 ± 9.54 83.8 ± 4.3

(C2/A) Accuracy 47.4 ± 10.0 40.2 ± 15.7 47.4 ± 9.7 45.0 ± 11.8 84.1 ± 2.9

(C2/A) Precision 51.6 ± 11.4 51.3 ± 17.2 53.2 ± 13.0 52.0 ± 13.9 82.1 ± 5.7

(C2/N) Accuracy 44.6 ± 0.07 41.0 ± 17.8 47.2 ± 8.6 44.3 ± 11.1 78.0 ± 4.8

(C2/N) Precision 52.4 ± 10.7 54.9 ± 13.3 55.2 ± 11.8 54.2 ± 11.9 80.2 ± 3.2

C1 and C2 (A and N) indicate cases 1 and 2 (autumn and number protocols), respectively.

The values are given as the mean and SD.

https://doi.org/10.1371/journal.pone.0268337.t006
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There was a significant and larger difference than expected in the performance of our AI

model and the resident doctors. As we mentioned before, neurological diagnosis can be chal-

lenging for general doctors, even resident doctors based in a neurology department. Neverthe-

less, the test conditions could have influenced the performance of the resident doctors. They

only had one chance to listen to the recordings. Furthermore, they had to listen to 800 record-

ings for the 5-folds test. Accordingly, there could have been a time limitation for listening to

one recording, and doctors could have had a tendency to decide the type with less information.

Moreover, they reported fatigue while listening to 80 recordings at once, which could have led

to them making mistakes. Our study shows how AI can complement the limitations that

humans have and produce better and more consistent performance than neurology resident

doctors in the same task.

Our AI model was better at detecting ataxic or hypokinetic dysarthria from other diseases

than cases without incidence, likely due to the relatively insufficient number of samples with-

out incidence, compared to the cases of hypokinetic and ataxic dysarthria. Nevertheless,

because AI can classify the hypokinetic dysarthria cases from the normal group with an AUC

of about 0.90 and an accuracy of 75%, this finding can be interpreted as a meaningful result

considering the difficulty for phonetically and clinically distinguishing between the hypoki-

netic dysarthria and normal groups [49].

Almost half of the cases of each type of dysarthria were mild in severity, and the majority

were less than moderate, which shows the reliability of our model to differentiate even mild

dysarthria. This data characteristic of our model shows the promising performance in early

detection of neurodegenerative disease in which dysarthria is usually mild or minimal. Fur-

thermore, although we developed the AI model using only the presence or absence of a type of

dysarthria and not incorporating the severity, the fact that our AI model resulted in an ROC

curve with high AUC, as shown in Figs 5–7, implies that it is clinically possible to quantita-

tively determine disease severity through the ROC curve with our AI technology. However,

improvement sensitivity is needed with a larger number of cases with varying disease severity.

We developed a patch-based approach called PWSI-AI-AC, which intrinsically augmented

the data ‘N’ times compared to the baseline. This approach helped improve the classification

performance of dysarthria types with the same number of patients. Our method can be used in

overcoming the limited numbers of data, a general limitation of previous studies. Using 409

recordings, we have achieved a detection accuracy similar to that obtained by Onur et al., who

used 33,877 sound recordings to achieve an accuracy of 89.75% in detecting PD from healthy

controls [19]. Previous studies performed data augmentation in the inter-sample [43] or fre-

quency [44] domain, but this study performed data augmentation in the time domain (i.e., via

the wave splitting), thus ensuring technical independence. In addition, while the existing data

augmentation techniques are designed to be used only in the learning process and not in the

inference process, the proposed data augmentation technique was applied (i.e., the wave split-

ting is performed) in both learning and inference processes, thereby ensuring the consistency

and additional diversity gains (jointly considering multiple diagnosis results individually

obtained by interval for one patient’s wavegram) in the inference process. Finally, the proposed

technique has advanced diagnostic performance compared to the baseline via the integration

that colligates the diagnostic results of augmented (i.e., patch-wise wave split) individual data

for each patient.

In our experiments using PWSI-AI-AC (e.g., Table 4), the number protocol showed a simi-

lar performance to the autumn protocol. The length of the number protocol was at least three

times shorter than that of the number protocol; this result suggests that the proposed

PWSI-AI-AC provides sufficiently high diagnostic performance and is robust to the sound

source length. Long protocols are conventionally preferred for precise diagnosis by doctors,
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but the short protocol can help shorten the examination time required. Therefore, the pro-

posed PWSI-AI-AC is expected to satisfy a variety of clinical needs.

Our model analyzed sentence-based, contextual speech (e.g., autumn and number proto-

cols) assessments, whereas most of the previous studies [50–54] analyzed continuing sound of

the vowel “a” or diadochokinetic (DDK, e.g., “pa”-“ta”-“ka”) tasks. Contextual speech is essen-

tial in evaluating the integrated function of all aspects of speech, while the sound of “a” or

DDK has limited value as the assessment of speed or regularity of articulatory movements

[55]. Therefore, our model can be used to learn the integrated information of speech, not just

part of the speech component. Quan et al. [54] conducted a comparative performance analysis

between pronunciation- (i.e., “a”) and short sentence-based protocols with an AI-based diag-

nostic system and showed that the sentence-based protocol outperformed the pronunciation-

based protocol even though both protocols captured 5 s in voice length. Our PWSI-AI-AC

approach can also be more appropriate for sentenced-based data like contextual speech

because it includes different syllables every second. In contrast, vowel or DDK tasks repeat the

same syllables, resulting in little difference among the patch data (i.e., the proposed method

makes a diagnosis by taking advantage of diversity through voice source multi-segmentation).

This study had several limitations. First, this was a single-center, single-ethnicity study. As a

result, the amount of the data in each dysarthria group was not equalized, and the group with-

out dysarthria was relatively small. However, we included pure hypokinetic and ataxic dysar-

thria with similar severity, improving the data quality. Even with our limited dataset, we could

acquire a certain level of accuracy and developed an AI model, PWSI-AI-AC. Second, we did

not enroll a normal matched elderly population as a control group to compare with the hypo-

kinetic and ataxic dysarthria cases. However, this study focused on the differential diagnosis of

dysarthria in patients and not just on screening healthy subjects. Third, we used binary classifi-

cation (hypokinetic and ataxic dysarthria) but did not examine the incidence of other dysar-

thria such as spastic, flaccid, or mixed types. Future research should assess whether our AI

model can detect the predominant type among various dysarthria.

Conclusions

The proposed patch-based AI diagnosis approach could intrinsically augment data to effec-

tively classify dysarthria types even with a small number of training samples, demonstrating

additional performance improvement compared to the existing AI models. Our findings dem-

onstrate the potential usefulness of our model to collect sufficient data in clinically difficult

environments. We found that ataxic and hypokinetic dysarthria could be detected and differ-

entiated by our proposed AI with higher performance than neurology resident doctors. There-

fore, this AI model could be used by physicians to screen for neurodegenerative diseases and

assist experts with the differential diagnosis of neurodegenerative diseases. Our model can be

integrated with other AI models to facilitate highly accurate differential diagnoses of neurode-

generative disorders. AI models that differentiate brain magnetic resonance or PET imaging

currently lack clinical information, and our model can address this significant gap. Further

development should be undertaken to enable multi-class differentiation among various types

of dysarthria such as spastic, flaccid, and even mixed cases using our AI model.

Supporting information

S1 File. Example for number protocol.
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S2 File. Example for autumn protocol.
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