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Abstract: In this paper, we study the boundary-layer flow of a Herschel–Bulkley fluid due to a moving
plate; this problem has been experimentally investigated by others, where the fluid was assumed to
be Carbopol, which has similar properties to cement. The computational fluid dynamics finite volume
method from the open-source toolbox/library OpenFOAM is used on structured quad grids to solve
the mass and the linear momentum conservation equations using the solver “overInterDyMFoam”
customized with non-Newtonian viscosity libraries. The governing equations are solved numerically
by using regularization methods in the context of the overset meshing technique. The results indicate
that there is a good comparison between the experimental data and the simulations. The boundary
layer thicknesses are predicted within the uncertainties of the measurements. The simulations indicate
strong sensitivities to the rheological properties of the fluid.
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1. Introduction

Constitutive modeling of complex fluids [1], sometimes referred to as non-linear fluids
or non-Newtonian fluids, has received much attention in the literature [2–4]. Most of the
naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts,
suspensions, blood, slurries, drilling fluids, mud, etc., [5–7]. There are many empirical or
semi-empirical constitutive equations that have been suggested for these fluids. Many non-
linear constitutive relations have also been derived based on the techniques of continuum
mechanics [8–11]. The non-linearities oftentimes appear due to higher gradient terms or
time derivatives.

Cement and concrete are among two of the most interesting complex materials. In
fact, at least since the publication of a paper by Rivlin & Ericksen [12], who discussed
fluids of complexity n (see also Truesdell & Noll [13]), to the recently published book [14],
the term ‘complex fluid’ refers, in general, to fluid-like materials whose response, namely
the stress tensor, is ‘non-linear’ in some fashion. This non-linearity can manifest itself
in a variety of forms such as memory effects, yield stress, creep or relaxation, normal–
stress differences, etc., [15,16]. Cement has many applications, and it has been used in the
oil and gas industries, where a cement slurry is pumped in the annulus space between
the well casing and the geological formations surrounding the wellbore. This is carried
out primarily to isolate the wellbore to keep fluids from migrating to other layers of the
formation and secondly to prevent the corrosion and the eventual damage to the casing
for the life of the well [17,18]. In time, the cement begins to harden. If the fluids from the
surrounding formations penetrate the well, then disasters, both financial and operational,
can occur, causing a shutdown and replacement of the cement. This unwanted phenomenon
is known as ‘gas migration’ (see, e.g., [19]). In their powder forms, cement and concrete
behave as bulk solids (granular materials); when mixed with water, initially they act
as flowing suspensions (slurry) [20,21]; with chemical reactions and hydration occurring
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inside the suspension, the cement becomes a paste-like material (viscoelastic or viscoplastic)
exhibiting yield stress and thixotropy [22,23]; and eventually, when it has hardened, the
cement behaves as a poro-elastic material. Thus, cement can behave and can respond
differently depending on the application and the conditions. When measuring its viscosity
or its yield stress, cement generally behaves like a viscoplastic material.

In polymers, we can see a similar diversity. Agassant et al. [24] (p. xix) indicate that,
in general, in polymer processing applications, one can distinguish three different stages:
(1) the plastification (molten) stage where the polymer goes from a solid-like material,
for example, powders or granular, to a fluid-like material, followed by (2) the molten
polymer (see also [25]) being pushed or forced into molds or dies, and finally, (3) the stage
where a final shape is given to the material, usually carried out via cooling. An excellent
and early reference where the fundamentals of the modeling of these various stages in
polymer processing are considered is the book by Middleman [26]. The Herschel–Bulkley
(H-B) fluid model has been used in a variety of applications. Some recent applications
are mentioned here. Ziaee at al. [27] studied colloidal-gas-aphron (CGA)-based fluids in
drilling applications by modeling the fluid as a H–B fluid. In their study of solid-free
polymer drilling fluid (SFPDF) with natural gas hydrates (NGH), Wang et al. [28], used the
Herschel–Bulkley model. A new promising area for the application and use of polymeric
gels seems to be in CO2 underground storage where supercritical gas tends to leak through
microcracks in wellbores (see [29]), where in some cases cement slurries, used in oilfields,
are too vicious and are not able to penetrate the cracks. Chauhan et al. [30] looked at
the characteristics of gum karaya suspensions as a fracturing fluid and developed an
empirical Herschel–Bulkley model capable of predicting the temperature and concentration
sensitivity of the apparent viscosity. Zheng et al. [31] looked at the effects of temperature
and the rheological impact of a commonly used drilling fluid polymer-treating agent used
in the petroleum industries; they mention that the dispersion was reasonably described
by a Herschel–Bulkley model. Millian et al. [32] studied the rheological behavior of gel
polymer electrolytes (GPE) used as a suspending fluid in a zinc-slurry-air RFB by fitting
their experimental data to the Herschel–Bulkley model.

In his pioneering work on flow of yield stress fluids, Oldroyd [33] proposed a plastic
boundary-layer theory, defined as a region of sufficiently slow plastic flow characterized
by a large Oldroyd (Od or Bingham) number and evolving in the limit of small Reynolds
numbers. Oldroyd further argued that the thickness of such a plastic boundary layer is
of the order of Od−1/2d (where d is a characteristic length). The proposed theory relied
upon a certain number of assumptions, especially at the boundary between the elastic
and the plastic states of the material, in addition to the assumption of a constant positive
sign of the velocity gradient inside the boundary layer. When such a slow steady plastic
flow develops near infinite or semi-finite thin plates, Oldroyd discussed a case of constant
thickness, as well as a case of a variable layer with a thickness ranging from zero at the
leading edge to a finite value far away from the edge. He also derived expressions for both
the velocity and the pressure distributions inside the boundary layer, which depend on the
Oldroyd number.

Piau [34] discussed Oldroyd’s theory by pointing out certain inconsistencies buried
in the approach; he mentioned five points. Essentially, these points can be summarized
as the Dirichlet and the Neumann velocity boundary condition issues at the outer limit
of the boundary layer where the transition occurs from a flowing material (a fluid) to an
elastic material and at the wall. In addition, Piau pointed out that the assumptions on the
pressure gradient and the symmetry conditions were not satisfied. Balmforth et al. [35]
also claim that “Oldroyd’s analysis runs into difficulties when the boundary layer buffers
a wall, being unable to satisfy all the boundary conditions and the continuity equation”.
Piau revisited the theory and, in contrast to Oldroyd’s approach, the Bingham stress of
the material’s plastic behavior was supplemented with the Hooke model for the linear
elastic behavior that prevails in the outer unyielded regions. Piau [34] further identified
and derived constant and variable lens-shaped boundary layer thicknesses and velocity
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distributions; he looked at the lower and the upper bound solutions consistent with the
outer elastic region. The (viscous) drag forces acting on the plate in the context of these
solutions, as derived by Piau, increase linearly with the yield stress and exhibits a relatively
weak dependence on the Oldroyd (or the Bingham) number, which was assumed to be
‘large’ while the dependence of the drag forces was proportional to Od−1/2.

Piau & Debiane [36] extended this work to shear-thinning fluids in the context of a
Herschel–Bulkley fluid with no-slip conditions at the walls. They showed that the boundary
thickness along with the velocity distribution, as well as the (viscous) drag force acting on
the plate, are explicitly functions of the power-law exponent. For instance, in the framework
of the constant thickness model of the boundary layer, the slope of the velocity distribution
is found to be determined by the power-law exponent. For the case of slip at the walls,
Piau & Debiane [36] introduced a dimensionless number (ratio of the yield stress to the
consistency index and the fluid velocity), which is a measure of the slip at the wall. In
the context of the constant-boundary-thickness model, they found that slip at the wall
reduces the viscous drag, while the fluid velocity inside the boundary layer increases with
decreasing slip. Ahonguio et al. [37] experimentally investigated the influence of slip at the
wall in the limit of non-inertial flow with relatively large Oldroyd numbers (varying from
16 to 40). These authors found that the slip velocity decreases with the Oldroyd number.
The consequences are (i) a thinner boundary layer and (ii) a reduction in the drag, which
is consistent with the slip at the wall described by Piau and Debiane [36], although the
definition of the boundary layer thickness in Ahonguio et al. [37] is different from that used
by Piau & Debiane. In another work, Ahonguio et al. [38] showed that their laboratory
measurements of the drag coefficient for a Carbopol gel flowing past a thin fixed plate
compared well with the Piau & Debiane model.

Balmforth et al. [39] revisited the derivation of Oldroyd’s theory by numerically
studying flow past a thin plate. These authors also investigated a jet-like intrusion; these
two examples, referred to as Oldroyd’s canonical problems, were meant to illustrate their
approach. Most importantly, Balmforth et al. discussed that the magnitude of the small
parameter (ε), associated with the re-scaling of the flow in the normal direction that sets
both the thickness of the boundary layer and the angular velocity of the rotating plug,
must be Bi−1/2 (Bi being the Bingham number) in order to match the pressure within the
viscoplastic boundary layer. These authors claim that there is “a missing ingredient in
Piau’s boundary-layer scaling argument”.

In the context of a boundary layer developing away from rigid boundaries (referred to
“remote boundary layers” by Oldroyd [33]), Chevalier et al. [40] discussed experiments of
slow injections of a yield stress fluid into a stagnant fluid (the same fluid), by means of an
extrusion syringe. They observed that the injected fluid penetrates as a solid-like block over
the whole injection surface, while the large surrounding material remains at rest. Their
study shows the existence of a thin boundary through which the motion of the injected
material occurs. They also reported a decrease in that boundary layer with an increasing of
the Bingham number. Chevalier et al. also looked at the data from Boujlel et al. [1] where a
plate was slowly immersed into a bath of Carbopol gel at rest. As the fluid was stressed
beyond the yield point, a thin layer around the plate developed. Boujlel et al. showed the
measurements of the boundary layer size for various immersion velocities as well as the
distribution of the velocity within the yielded region.

The response of a yield-stress fluid, for example, a Herschel–Bulkley fluid [41], due to
the motion of a plate can provide useful information about the resistance (drag) to flow
and how the plate can move in the yielded regions as opposed to the viscous regions of
the flow. In a sense, this flow arrangement can be thought of as an idealization of the slow
movement of a vane in a viscometer while measuring the yield stress of cement or a yield
stress fluid [42]. Carbopol is a fluid which has been studied extensively and has similar
properties to cement. In this paper, we present numerical solutions to the boundary-layer
flow of a Herschel–Bulkley fluid showing a solid-like behavior away from the boundaries,
which were reported by Boujlel et al. [1]. In Section 2, we provide a description of the
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problem while briefly mentioning the experimental investigation of Boujlel et al. [1], which
is relevant to our work. This is followed by an overview of the mathematical model (in
Sections 3 and 4) used to describe the fluid and the flow conditions. The numerical method
is presented in Section 5, and the results which are obtained using regularization approach
in the context of the overset meshing technique are compared and discussed against the
measurements of Boujlel et al. [1]. Finally, some conclusions and interesting points for
future work are provided.

2. Problem Statement

The experiments of Boujlel et al. [1] of a plate slowly being immersed in a yield stress
fluid are numerically investigated here. The yield stress fluid, which is at rest in a parallel-
piped-shaped container 10 cm wide, 25 cm high and 16 cm deep, is a solution of Carbopol
in water with a concentration of 0.5%. The fluid is assumed to behave as a Herschel–Bulkley
fluid, and its rheological properties are obtained from fitting of the rheometrical flow curves:
the yield stress (τ0), the consistency (k), and the power-law exponent (n) are approximated
as 59.5 Pa, 23.6 Pa.sn, and 0.38, respectively, for shear rates ranging between 10−2 s−1 and
102 s−1. The plate is 25 cm long (l), 7 cm wide (w) with a thickness (d) 1.5 mm. The flow
domain along with the immersed plate are sketched in Figure 1.
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The flow conditions simulated in this work are summarized in Table 1. A total of three
cases with different plate immersion velocity (Up) are considered. As shown in Table 1,
the flow conditions correspond to very small Reynolds numbers, usually associated with
the Stokes regime (Re � 1). In the limit of such (creeping) flow conditions where the
inertial effects are negligible, the flow depends on the Bingham number, which for these
experimental conditions, indicates yield stress effects which dominate the viscous ones
(by about 2 to 3 times). While the limit of small Reynolds numbers is attained, one may
notice that the Bingham numbers are not as large as they are prescribed in the theories
(see [33,34,36,39]). The Reynolds (Re) and the Bingham (Bi) numbers are defined below as
(see the dimensionless form of the equation):

Re = ρU2
p/k
(
Up/d

)n (1)

Bi = τ0/k
(
Up/d

)n (2)

where τ0 is the yield stress, k the consistency, n the power-law exponent, ρ the density
of the fluid, Up is a reference velocity, and d is a reference length. In their experiments,
Boujlel et al. defined an observation window (of 5 cm × 6.5 cm) 5 cm below the Carbopol
bath surface, where successive pictures were taken once the leading edge of the plate
appeared in the window until it was immersed to a depth of 20 cm. The average velocity
profile of the Carbopol as well as the boundary layer thickness discussed in the result
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sections below are extracted from these measurements at 15 cm above the leading edge of
the plate. The boundary layer thickness is estimated as the flow region extent delineated in
its upper bound by the constant fluid velocity.

Table 1. Flow conditions and the associated dimensionless numbers.

Case Up [m/s] Re [-] Bi [-]

1 1 5.2 × 10−5 2.93
2 3 3.1 × 10−4 1.93
3 5 7.0 × 10−4 1.59

As mentioned in the introduction, Piau & Debiane [36] showed that the boundary
layer thickness (δ) can, in the context of the Herschel–Bulkley fluid, be approximated by a
function which depends on the Oldroyd (or the Bingham) number:

δ ∼= d Bi−1/(1+n) (3)

3. Governing Equations

In this problem, we do not consider thermo-chemical or electromagnetic effects. There-
fore, the governing equations of motion for a single component fluid include the conserva-
tion equations for mass, linear momentum, and angular momentum (see, e.g., [43]).

3.1. Conservation of Mass

∂ρ

∂t
+ div(ρv) = 0, (4)

where ∂/∂t is the partial derivative with respect to time, div is the divergence operator,
v is the velocity vector, and ρ is the density of the fluid. If the fluid is assumed to be
incompressible, then it can only undergo isochoric (i.e., volume preserving) motions, so:

div v = 0 (5)

3.2. Conservation of Linear Momentum

ρ
dv
dt

= divT + ρb, (6)

where d/dt is the total time derivative given by d(.)/dt = ∂(.)/∂t + [grad(.)]v and grad is
the gradient operator, b is the body force vector, and T is the Cauchy stress tensor.

3.3. Conservation of Angular Momentum

The conservation of the angular momentum indicates that the stress tensor is symmet-
ric when there are no couple stresses, that is:

T = TT (7)

Looking at the above equations, we can see that before we can solve any problems, we
need a constitutive relation for T. In the next section, we provide a brief discussion of the
stress tensor T used in this paper.

These conservation equations are supplemented with boundary and initial conditions,
both at the walls and at the free-surface boundaries. The no-slip BC is prescribed at the
plate and the walls such that:

v = Up, at the plate boundaries (8)

v = 0, at the container′s walls (9)
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where Up is the plate immersion velocity. The Neumann zero gradient condition is imposed
at the free surface for the velocity vector. For the initial conditions, since the fluid is initially
at rest, we use:

v(x, 0) = 0 (10)

4. Constitutive Relation for the Stress Tensor

For many complex fluids, yield stress is an important rheological parameter [44–47].
In the oil and gas industries, predicting the yield stress for cement slurries is also impor-
tant [48]. Here, a cement slurry is pumped in the well and then it begins to hydrate quickly
and develop strength [49]. The difficulties related to yield stress measurements have been
discussed, for example in [50–53]. Coussot [53] and Coussot et al. [54] reviewed different
methods for measuring the yield stress for thixotropic non-Newtonian fluids. Experimental
measurements for the yield stress are usually conducted either by direct rheometric tech-
niques or indirect techniques. For a detailed discussion related to cement applications, see
the report by Tao et al. [55]. One of the disadvantages of the direct techniques is the wall-slip
effects, which cause under-estimation of the yield stress [56,57]. One of the most widely
used techniques to measure the yield stress is the vane method since there is no wall slip
during the shearing process within the material [56,58–60]. Using the vane method [58,61],
we can measure the peak torque–time response by rotating the vane immersed in the fluid.
As mentioned in the Introduction section, the motion of a vane in the paste/suspension is
of interest to us here.

In general, it can be assumed that the (Cauchy) stress tensor T for yield stress fluids,
such as cement, can be defined as

T = Ty + Tv (11)

where Ty is the yield stress tensor and Tv is the viscous stress tensor. In general, for cement,
the yield stress can be a function of many parameters, such as the volume fraction, w/c, etc.

Ty = Ty

(
φ,

w
c

, . . .
)

(12)

where φ is the volume fraction, and w/c is the water-to-cement ratio. In a recent review
article, Tao et al. [62], proposed a very general constitutive relationship for Tv:

Tv = −pI + µ0

(
1− φ

φm

)−β

(1 + λn)
[
1 + αtrA1

2
]m

A1 + α1A2 + α2A1
2 (13)

dλ

dt
=

1
t0
− κλ

.
γ (14)

where the kinematical tensors A1 and A2 are defined as:

A1 = gradv + (gradv)T (15)

A2 =
dA1

dt
+ A1(gradv) + (gradv)TA1 (16)

where p is the pressure, λ(t) is the structural parameter describing the degree of flocculation
or aggregation. They used Krieger’s idea [63] for the volume fraction dependence of the
viscosity, where µ0 is the (reference) coefficient of viscosity, tr is the trace operator, and m is
the power law exponent, a measure of non-linearity of the fluid related to the shear-thinning
effects (when m < 0) or shear-thickening effects (when m > 0). This model potentially is
capable of exhibiting normal stress effects through the terms α1 and α2, thixotropy effects
because of the presence of the structural parameter λ, shear-rate-dependent effects of the
viscosity through the two parameters α and m (showing shear-thinning or shear-thickening
effects), and the concentration dependency of viscosity through the two parameters φm and
β. A simplified version Equation (13) was used in our earlier study [62].
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For the yield stress part, historically, Oldroyd [33] derived a proper (frame invariant)
3D form for the Bingham fluid [64] by assuming that the material behaves as a linear elastic
solid below the yield stress; he used the von Mises criterion for the yield surface. Thus:

T =

ηp +
τy√
1
2 IIA1

A1 when
[

1
2

T : T
]
≥ τ2

y (17)

T = GE when
[

1
2

T : T
]
< τ2

y (18)

where G is the shear modulus, indicating that below the yield stress, the material behaves
as a linear elastic solid, obeying the Hooke’s Law, and where E is the strain tensor and the
second invariant of the tensor A1 is:

IIA1 ≡ A1 : A1 (19)

As Denn [65] indicates, if the material is assumed to be inelastic prior to yielding, then
G → ∞ , and Equation (18) is replaced by:

A1 = 0 when
[

1
2

T : T
]
< τ2

y (20)

Macosko [66] (p. 96) mentions that for many fluids with a yield stress, there is a
lower Newtonian regime rather than a Hookean one, and thus one can use a two-viscosity
(bi-viscous) model, such as:

T = ηpA1 for II1/2
A1
≤ .

γc (21)

T = 2

[
τy

|IIA1 |
1/2 + K|IIA1 |

n−1
2

]
A1 for II1/2

A1
>

.
γc (22)

where
.
γc is the critical shear rate. In this paper, we use the Herschel–Bulkley model, and

thixotropy is not considered. Thus, the stress in the fluid is given by:

T = −pI + τ (23)

where p is the pressure (the mean value of the stress tensor), I is the identity tensor, and τ
is the stress tensor:

τ =

[
k|IIA1 |

n−1
2 +

τ0

|IIA1 |
1/2

]
A1 for II1/2

τ > τ0 (24)

A1 = 0 for II1/2
τ ≤ τ0 (25)

in which τ0 is the yield stress, k is the consistency index, and n is the power-law exponent,
which measures of non-linearity of the fluid and is related to the shear-thinning effects
(when n < 1) or shear-thickening effects (when n > 1). IIτ and IIA1 are the second invariants
of the stress tensor and of the kinematical tensor A1. In Equation (24), the total contribution
in the brackets, which defines the viscosity of the fluid, is the sum of the shear (viscous)
(µv = k|IIA1 |

(n−1)/2) and the apparent (µapp = τ0/|IIA1 |
1/2) viscosities.

In this paper, we ignore the micro-structure of the cement, i.e., the size and the shape of
the particles, and the impact of the porosity and how the volume fraction affects the motion
of the fluid. Thus, we represent the cement suspension as a viscoplastic fluid modeled as a
Herschel–Bulkley fluid, given by Equations (23)–(25).
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5. Numerical Approach

The computational fluid dynamics finite volume method from the open-source tool-
box/library, OpenFOAM [67], is used on structured quad grids to solve the mass and
the linear momentum conservation equations, using the solver “overInterDyMFoam” cus-
tomized with non-Newtonian viscosity libraries. In our numerical scheme, we use the
regularization methods. Indeed, to avoid the numerical implementation challenges associ-
ated with the discontinuity (singularity) in the stress tensor field between the unyielded
and the yielded regions, the regularization method is used where the stress tensor τ is
replaced with an ε-dependent small parameter such that:

τε = ηε

(
|II2D|1/2

)
A1 (26)

where the ε-dependent viscosity ηε is approximated in this work according to Papanasta-
siou [68] by:

ηε

(
|IIA1 |

1/2
)
= k|IIA1 |

(n−1)/2 +
τ0

|IIA1 |
1/2

[
1− exp

(
−|IIA1 |

1/2

ε

)]
(27)

Two other commonly used regularization methods are also employed to study the
sensitivity of the solution to such viscosity approximations; these two methods are the
“simple” algebraic procedure (see e.g., [69]) and the approximation suggested by Bercovier
& Engelman [70], given below, respectively:

ηε

(
|IIA1 |

1/2
)
= k|IIA1 |

(n−1)/2 +
τ0

ε + |IIA1 |
1/2 (28)

ηε

(
|IIA1 |

1/2
)
= k|IIA1 |

(n−1)/2 +
τ0

[ε2 + |IIA1 |]
1/2 (29)

A detailed examination of the convergence challenges and issues associated with the
regularized solutions are discussed, for example, in Frigaard & Nouar [71] and Saramito &
Wachs [72].

Substituting Equations (23)–(25) in Equation (6), we have the basic equations, which
need to be solved numerically:

div v = 0 (30)

ρ

(
∂v
∂t

+ [gradv]v
)
= −grad p + div

(
ηε

(
|II2D|1/2

)
A1

)
+ ρg (31)

And the boundary conditions are,

• at the moving plate:

v = Up, (32)

n·grad p = −ρn·[v·grad v] (33)

• at the container’s walls:

v = 0 (34)

n·grad p = 0 (35)

and the initial conditions are:
v(x, 0) = 0, (36)

p(x, 0) = 0 (37)
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The dimensionless forms of the equations are presented in Appendix A.
The grid of the computational domain is generated relying upon the overset mesh

technique, which in this work consists of a uniform grid (in each direction) of the back-
ground mesh of the entire flow domain, supplemented by a fine grid around the downward
moving plate. With this fine (or overset) mesh, the grid in the normal direction to the plate is
clustered using nonuniform spacings according to a geometric series with a rational stretch-
ing factor; this would better capture the gradients as the plate moves through the fluid.
Figure 2 shows the background mesh, as well as the overset mesh which covers a region
that extends over 3 cm at either side of the plate. Shown in Table 2 is the summary of the
overset grid densities used to study the sensitivity of the solution to the mesh refinement.
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Table 2. Summary of the mesh densities.

Mesh Details Coarse Medium Finer

Wall-normal
[mm]

∆ymin 0.2 0.15 0.1
∆ymax 0.4 0.3 0.2

Streamwise, ∆x [mm] 1.25 1 0.8
Mesh size 60,404 89,940 138,824

The convective term in the momentum equations is discretized using the second order
“linear” scheme. Spatial gradients are also discretized using the second order “linear”
scheme (central differences with linear interpolation). The simulations are performed while
discretizing the unsteady terms with a backward Eulerian scheme. The coupling between
the background and the overset grids at these mesh boundaries is accomplished for the
resolved fields (v, p) through a cell-volume-weighted interpolation scheme.

In the next section we discuss the results of our numerical simulations.

6. Results
6.1. Flow Visualization

Figures 3a, 4a and 5a show the contour plots of the instantaneous (vertical) velocity of
the fluid as the plate is being immersed. As seen, the fluid mainly moves within a narrow
area around the plate. There are two recirculation zones below the plate’s leading edge,
and the upward displacements at either side of the plate are readily apparent beyond this
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narrow area in the vicinity of the plate, where the fluid is dragged down by the plate
(see Figures 3b, 4b and 5b). This flow pattern, which is consistent with the experimental
observations, remains unchanged with an increase in the immersion velocity.
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Figure 3. Snapshots of the flow for the plate immersion velocity of 1 mm/s. Parcels on the left-hand
side show the immersion after 10 cm, while those on the right-hand side show the immersion after
20 cm. The top contour plots are (a) the fluid velocity, and (c) the bottom contours are the square root
of the second invariant of the viscous stress tensor compared to the yield stress τ0. The middle vector
(b) fields show the velocity vectors within the domain.

The square root of the second invariant of the viscous tensor (i.e., |IIτ|1/2) plotted in
Figures 3c, 4c and 5c, is compared against the yield stress τ0. It appears that the larger
values of the second invariants of the viscous stress tensor are localized just around the
plate. The fluid region, which is identified as the region where the second invariant exceeds
the yield stress τ0, following the von Mises yield criterion, exhibits an anchor-like shape
around the plate. This indicates that, in addition to the material, which behaves as a fluid
within a small envelope surrounding the plate, there exists also a fluid-like region attached
to the leading edge of the plate which extends at either side of the leading edge of the
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plate. This could have originated from the material deformation caused and sustained by
the continuous penetration of the leading edge of the plate. Boujlel et al. [1] reported that
although some material was liquefied just below the leading edge of the plate, most of the
material was liquefied around the leading edge. Furthermore, two narrow fluid regions
also appear at the walls of the container.
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Figure 4. Snapshots of the flow for the plate immersion velocity of 3 mm/s. The top contour plots
are (a) the fluid velocity, and (c) the bottom contours are the square root of the second invariant of the
viscous stress tensor compared to the yield stress τ0. The middle vector (b) fields show the velocity
vectors within the domain.

Figure 6a–c compares the numerical predictions of the fluid velocity for the three
different immersion velocities of the plate. These comparisons show that, away from the
plate, within the previously identified solid-like region, the upward velocities of the fluid
are accurately captured. Near the plate, where the Carbopol behaves like a liquid, the
predictions are satisfactory as well. However, a slight mismatch of the profiles against the
measurements occurs as the solid-like behavior region is approached. The reason is unclear.
However, we can speculate that the solid–fluid transition, where both the solid and the
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liquid regimes could potentially co-exist, may have not been adequately captured in the
simulations. Putz & Burghelea [73] reported from their experimental observations that
such a transition is characterized by a competition between destruction and reformation of
the gel.
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Figure 5. Snapshots of the flow for the plate immersion velocity of 5 mm/s. The top contour plots
are (a) the fluid velocity, and (c) the bottom contours are the square root of the second invariant of the
viscous stress tensor compared to the yield stress τ0. The middle vector (b) fields show the velocity
vectors within the domain.

The boundary-layer thickness, measured as the extent of the yielded region adjacent
to the plate, is plotted for the three velocities in Figure 7. The plot shows that the variation
in the yielded region with the increase in the plate velocity is adequately predicted both in
trend and quantitatively; the maximum relative error over these three conditions is only
about 1.07%. The predictions are indeed within the uncertainties of the experimental data
as shown by the error bars.
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Figure 7. Thickness of the boundary layer with respect to the immersion velocity of the plate (left)
and the Bingham number (right).

We can see from Figure 7 that an increase in the Bingham number results in a decrease
in the boundary layer thickness. This suggests that for creeping flows, where the yield
stress dominates over the viscous stress, the boundary layer developing around the moving
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plate will exhibit a negative correlation dependence on the Bingham number. This is
consistent with the boundary layer theory proposed by Piau & Debiane [36], which is
an improvement and extension to the Herschel–Bulkley model of Oldroyd’s theory [33].
Indeed, Piau & Debiane showed that the boundary layer thickness scales as Bi−1/(1+n),
which with the current rheological properties results in Bi−0.7246 (given that n = 0.38).
However, the experimental data (or at least the subset investigated in this work), indicate
that the thickness scaled as Bi−0.1213.

6.2. Mesh and Regularization Sensitivities

The sensitivity of the solution to the mesh and the regularization method are examined
below for the plate velocity of 1 mm/s. The sensitivity to the mesh resolution is performed
using Papanastasiou’s approximation (with ε = 10−5). The mesh densities along with
the resolutions are summarized in Table 2. Figure 8 compares the velocity profiles for
the three grids against the measurements. It is apparent that the medium-grid solution
does quite well with the fine-grid prediction, while the coarse-grid one slightly deviates
from those two solutions. Furthermore, it can be seen from the fine-grid solution that the
slight mismatch remains despite the refinement, especially in the vicinity of the plate. As
summarized in Table 3, the predicted boundary layer thickness with respect to different
grids are within the measurement uncertainties. The prediction with the medium grid
compares well with the fine grid predictions and the slight mismatch in the velocity profile
marginally reflects grid resolution issues.
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Table 3. Summary of the boundary layer thickness sensitivities to the mesh refinement and the
regularization model.

Experiments [mm] Simulations

9.01 ± 0.20
Mesh Sensitivity [mm] Regularization Sensitivity [mm]

Coarse Medium Fine Simple Bercovier–Engelman Papanastasiou
8.64 8.92 9.33 12.67 9.21 8.92

The influence of the regularization method is shown in Figure 9. This plot shows that
there is little difference between the Bercovier–Engelman and the Papanastasiou methods.
The boundary layer thickness prediction compared in Table 3 shows that the difference is
very small. As for the “simple” regularization approach, the velocity profile seems to be
less accurately predicted; the same observation holds for the thickness of the boundary
layer (see Table 3).
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6.3. Results for Different Fluid Properties

Here, we look at the difference between the numerical predictions of the velocity
inside the boundary layer obtained by prescribing the thickness of the boundary layer (δ),
and the velocity distribution measured by Boujlel et al. (2012). This velocity distribution is
a function of the boundary layer thickness (δ) (see [1,36]):

u = Up

[
1−

(
1− y

δ

)1+1/n
]

, 0 < y < δ (38)

where Up is the plate velocity and n is the power-law exponent of the Herschel–Bulkley
fluid model.

In Figure 10, we plot the velocity distribution using the measured thickness of
δ = 9.01 mm and δ = 14.4 mm proposed by Boujlel et al. The plot prediction using the
measured thickness exhibits a less satisfactory agreement contrary to the larger boundary
layer thickness for which a very good agreement is found. Since the only difference is
due to a different value of the boundary layer thickness, which depends on the Bingham
number, we think it would be interesting to look at different values for the properties of the
fluid and see the impact on the results.
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Figure 10. Predictions of the velocity distribution using Piau and Debiane (2004) model for a
prescribed boundary layer thickness.

Although Boujlel et al. [1] carefully prepared and performed the measurements, they
did not mention uncertainties in their measurements. Piau [74] argued from an exten-
sive literature review that often the rheometry of Carbopol aqueous gels is not without
measurement difficulties.

We now look at the boundary-layer flow for different properties of a yield-stress fluid
modeled as a Herschel–Bulkley fluid. The results for the velocity profiles show a systematic
slight mismatch of the predictions against the measurements in the yielded region behaving
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as a solid-like material. Table 4 lists the different rheological properties which we use in
our simulations.

Table 4. Different rheological properties. (*) Bi is calculated for the plate immersion velocity of
1 mm/s. (-) refers to the same rheological property as the “Baseline” measured property.

τ0 [Pa] k n (*) Bi [-]

Baseline 59.5 23.6 0.38 2.94

Yield stress
40.0 - - 1.98
80.0 - - 3.95

Consistency - 14.0 - 4.96
- 34.0 - 2.04

Power-law exponent - - 0.25 2.79
- - 0.50 3.09

In Figures 11–14, we plot the variations in the mean velocity (U), the kinematic
viscosity (µ/ρ), and the mean shear stress (τxy) for different material properties.

Polymers 2022, 14, x FOR PEER REVIEW 18 of 24 
 

 

 

Figure 11. Influence of the yield stress on the distribution of the velocity (top plot) (a) for 

the plate immersion velocity of 1 mm/s. The middle (b) and the bottom (c) plots represent 

the variations in the kinematic viscosity and the mean shear stress, respectively. 

Figure 11. Influence of the yield stress on the distribution of the velocity (top plot) (a) for the plate
immersion velocity of 1 mm/s. The middle (b) and the bottom (c) plots represent the variations in
the kinematic viscosity and the mean shear stress, respectively.
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plot) for the plate immersion velocity of 1 mm/s. The middle (b) and the bottom(c) plots represent
the variation in the kinematic viscosity and the mean shear stress, respectively.
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Figure 14. Influence of the consistency index on the distribution of the velocity of the Carbopol fluid
(top plot) (a) for the plate immersion velocity of 1 mm/s. The middle (b) and the bottom (c) plots
represent the variation in the kinematic viscosity and the mean shear stress, respectively.

Figure 11a compares the velocity predictions for different values of the yield stress.
For smaller values of the yield stress, we see a better agreement with the experimental
data. We also notice similar behavior for the viscosity and the mean shear stress shown
in Figure 11b,c. The tendency of the fluid to resist shearing motion as conveyed by the
viscosity, clearly increases with the yield stress as shown in Figure 11b. This plot further
exhibits a steeper increase in the viscosity within the transition region between the fluid-like
and the solid-like behaviors. Figure 11c also shows how the mean shear stress changes
with the tangential shearing forces between the fluid and the plate, from near the plate to
the far-field regions. These clearly indicate an increase in the friction at the plate with the
yield stress, which result in slower velocities.

For different values of the power-law exponent (n), we could see similar tendencies
(see Figure 12). However, the variations are not that accentuated as is the case for the
yield stress discussed above. Only slight increases are apparent in both the viscosity and
the mean shear stress (see Figure 12b,c), which result in a slight change in the velocity,
especially for n = 0.25, where the mean shear stress is relatively higher compared to n = 0.38
and n = 0.50. The viscous and the apparent viscosities plotted in Figure 13 show that
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the apparent viscosity is one order of magnitude larger than the regular (shear) viscosity
for each of the power-law exponents used in this study. Therefore, even though some
shear-thinning effects takes place, the yield stress effects appear to be dominant. Piau &
Debiane [36] and later Boujlel et al. [1] showed that the slope is determined by the power
law exponent. In other words, the shear-thinning effects strongly influence the velocity
field in the boundary layer.

The velocity distribution in the vicinity of the plate plotted in Figure 14, shows that an
increase in the consistency index results in a steeper profile, thus reducing the discrepancy.
Typically, the change in the consistency index appears to show a similar change in the
viscosity and the mean shear stress. This is illustrated by an increase in the viscosity and
in the mean shear stress, especially in the wall region (see Figure 14b,c), causing a flatter
profile as a result of the increased friction at the wall.

7. Conclusions

The boundary layer experiments of Boujlel et al. [1], where a plate is slowly immersed
into a Carbopol yield-stress fluid, are numerically investigated. The fluid is modeled as a
Herschel–Bulkley fluid. The numerical approach uses the Papanastasiou regularization
of the apparent viscosity associated with the Herschel–Bulkley constitutive model in the
context of the overset meshing technique. The physics of the flow appears to be adequately
captured for the three flow conditions investigated in this work. It is seen that the boundary
layer develops in the vicinity of the plate as the leading edge steadily advances into the
fluid. The velocity distribution seems to be in good agreement with the measurements.
Specifically, the upward velocity distributions of the unyielded material are reasonably
captured. However, a slight mismatch is noticeable within the yielded region near the
solid-plug flow. It is shown that the transition between the fluid-like and the solid-like
states, is very sensitive to the rheological properties of the fluid. Subsequent simulations
show a strong dependence of the mean shear stress on these rheological properties that
could cause different values for the friction at the wall. This behavior is consistent with the
existing theories [36]. In our numerical investigations, we assume a no-slip condition at the
walls. The influence of the slip at the walls (see [36,38]) is left for future work.
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Appendix A

In this Appendix, we present the dimensionless form of the governing equations. As-
suming a reference length scale d and a reference velocity Up, we can define dimensionless
length, time, velocity, and pressure as:

x∗ = x/d, t∗ = η0t/ρd2, v∗ = v/Up, p∗ = pd/η0Up (A1)

where η0 = k
(
Up/d

)n−1 is a characteristic viscosity associated with Herschel–Bulkley
fluids. Thus, the dimensionless mass and momentum equations can be written as:

div∗v∗ = 0 (A2)

∂v∗

∂t∗
+ Re [grad∗v∗]v∗ = −grad∗p∗ + div[(1 + Bi)A∗1 ] + b∗ (A3)

where b∗ =
(
ρe2/η0Up

)
b is the dimensionless body force and Re and Bi are the Reynolds

and Bingham numbers, respectively. In the limit of Re→ 0 , the inertia does not contribute
to the flow dynamics.
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