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Colorectal cancer (CRC) is the second most lethal malignancy around the world. Limited
efficacy of immunotherapy creates an urgent need for development of novel treatment
targets. Secretogranin II (SCG2) is a member of the chromogranin family of acidic secretory
proteins, has a role in tumor microenvironment (TME) of lung adenocarcinoma and bladder
cancer. Besides, SCG2 is a stroma-related gene in CRC, its potential function in regulating
tumor immune infiltration of CRC needs to be fully elucidated. In this study, we used
western blot, real-time PCR, immunofluorescence and public databases to evaluate SCG2
expression levels and distribution. Survival analysis and functional enrichment analysis
were performed. We examined TME and tumor infiltrating immune cells using ESTIMATE
and CIBERSORT algorithm. The results showed that SCG2 expression was significantly
decreased in CRC tumor tissues, and differentially distributed between tumor and adjacent
normal tissues. SCG2 was an independent prognostic predictor in CRC. High expression
of SCG2 correlated with poor survival and advanced clinical stage in CRC patients. SCG2
might regulate multiple tumor- and immune-related pathways in CRC, influence tumor
immunity by regulating infiltration of immune cells and macrophage polarization in CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer, causing more than ninety
thousand deaths worldwide every year (Bray et al., 2018; Siegel et al., 2020). Although diagnosis and
treatment have been improved substantially, the prognosis of patients remains poor, especially in
those with higher TNM stage (Luebeck et al., 2013; Miller et al., 20162016). Abnormal expression of
multiple genes is usually associated with the occurrence of CRC (Meyerson et al., 2010). However, the
molecular mechanisms underlying CRC remain unclear. It is urgent to identify novel diagnostic
biomarkers and prognostic predictors for this disease.

New treatment modalities have been proposed for CRC, such as immunotherapy (Overman et al.,
2018). Recently, studies have shown that the tumor microenvironment (TME) significantly affects
CRC progression and therapeutic efficacy (Halama et al., 2011). Monoclonal antibodies against
programmed cell death 1 (PD-1), programmed death ligand-1 (PD-L1) and cytotoxic
T-lymphocyte–associated antigen 4 (CTLA4) have been proven effective in clinical trials (Rotte, 2019).
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However, anti-PD-1/PD-L1 therapy is unsatisfactory in metastatic
CRC (Le et al., 2015), whereas anti-CTLA-4 treatment showed a
limited response rate in advanced CRC (Chung et al., 2010).
Therefore, it is of paramount importance to find novel
immunotherapy targets of CRC.

Secretogranin II (SCG2) is a member of the tyrosine-
sulphated granin family expressed in endocrine,
neuroendocrine and neuronal tissues (Troger et al., 2017).
It is relevant to secretory vesicle formation and packaging
peptide hormones into vesicles (Beuret et al., 2004). SCG2 has
an important role in enhancing endothelial cell proliferation,
migration, and angiogenesis (Albrecht-Schgoer et al., 2012;
Hannon et al., 2018). Studies have revealed that the derived
peptides of SCG2, such as secretoneurin (SN) and EM66, are
useful markers of neuroendocrine tumors (Guillemot et al.,
2012). Besides, SCG2 could predict prognosis in Non-small
cell lung cancer as a potentially secreted biomarker (Cury et al.,
2019), reflect the TME of lung adenocarcinoma (Wang and
Chen, 2020) and bladder cancer (Luo et al., 2020). Recently,
Liu et al. (2020) identified SCG2 was a stroma-related gene and
predicted poor outcomes in CRC patients. However, the
relationship between SCG2 and tumor immunity of CRC is
largely unknown, and the mechanisms underlying it remain to
be intensively investigated.

This study analyzed SCG2 expression profiles and described
its potential prognostic value, multiple biological functions,
related signal pathways in CRC. This report’s findings revealed
the potential role SCG2 played in regulating tumor immunity and
provided a possible mechanism based on bioinformatic analysis.

MATERIALS AND METHODS

Specimen Collection
We obtained 61 pairs of CRC primary tumor tissues and
adjacent tissues from patients who underwent surgery at
Zhongnan Hospital of Wuhan University (Wuhan, China)
between June 2019 and September 2019. None of the
patients received any preoperative therapy such as adjuvant
chemotherapy or radiotherapy. Samples of the collected tissues
were preserved in RNAlater Stabilization solution (Invitrogen,
United States) and stored in the department of Biological
Repositories (Zhongnan Hospital of Wuhan University).
Our study was approved by Zhongnan Hospital Ethics
Committee (ethics code 2018025), and every patient signed
informed consent.

RNA Extraction and qRT-PCR
Total RNA was extracted using Trizol reagent (Invitrogen,
United States), and cDNA was reverse transcribed from 1ug of
purified RNA using PrimeScriptTM RT reagent kit (Toyobo,
Osaka). The quantification of mRNA was examined using
quantitative real-time polymerase chain reaction (qRT-PCR) on
Biorad CFX (Biorad, United States), and gene expression was
normalized by GAPDH. The primer sequences were obtained
from PrimerBank and synthesized by TSINGKE (Wuhan,
China) as follows: GAPDHF-5′CTGGGCTACACTGAGCACC3′,

R-5′AAGTGGTCGTTGAGGGCAATG3′, SCG2F-5′ACCAGACCTCA
GGTTGGAAAA3′, R-5′ACCAGACCTCAGGTTGGAAAA3′.Weused
the comparative CT (2-ΔΔCT) to calculate the gene mRNA
expression levels, and the experiment was repeated three times
with three biological replicates for each treatment.

Protein Extraction and Western Blotting
According to the reagent instructions, total protein in tissues was
extracted with RIPA lysis buffer (Boyotime, China), including a
protease inhibitor cocktail (Thermo Scientific, United States). We
performed western blot using standard methods with the specific
antibody, SCG2 (1:1,000, Absin, abs117155), GAPDH (1:10000,
Proteintech, 60004-1-Ig).

Immunofluorescence
Tumor samples were immediately fixed with 4%
Paraformaldehyde (PFA) for 1 h and dehydrated overnight at
4°C. We used the following primary antibodies for
immunofluorescence: mouse anti-SCG2 (1:100, Absin,
abs117155) and rat anti-CD68 (1:100, Novusbio, 100–683).
Fluorescent secondary antibodies CY3-conjugated anti-mouse
SCG2 (1:1,000) and FITC-conjugated anti-rat CD68 antibody
(1:1,000) were incubated for 30 min at 25°C. Nuclei were counter
stained with DAPI for 10 min. We randomly chose at least five
optical fields (20× or 40× magnification) per tumor section for
morphometric evaluation.

Data Acquisition
RNA-sequencing expression data and clinicopathological
information of 469 CRC patients were downloaded from
The Cancer Genome Atlas (TCGA) database. GSE39582
cohort containing microarray gene expression profiles and
clinical data was downloaded from the Gene Expression
Omnibus (GEO) database. The proteome data of CRC
patients was obtained from the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) Assay Portal (Whiteaker
et al., 2014).

SCG2 Expression Analysis
We identified SCG2 mRNA expression levels in multiple human
cancers from the Tumor Immune Estimation Resource (TIMER)
database (Li et al., 2017). In TCGA and GEO cohorts, the mRNA
expression profiles of SCG2 were visualized, respectively. In the
CPTAC cohort, the protein expression levels of SCG2 in 91 pairs
of tumor and adjacent tissues were examined. qRT-PCR and WB
were utilized to detect RNA and protein levels of SCG2. Finally,
immunofluorescence assay was used to detect the expression and
distribution of SCG2 protein in tumor and adjacent tissues of
CRC patients.

Survival Analysis and Significant Prognostic
Marker Analysis
Patients were divided into high-SCG2 expression group and low-
SCG2 expression group according to the median expression value
of SCG2. We used R packages “survival” and “survminer” to
analyze the correlation between SCG2 expression and overall
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survival (OS) time, disease-free survival (DFS) time. Besides,
univariate and multivariate survival analyses were applied to
examine the independent prognostic factors in CRC, using the
“coxph” function in the “survival” package.

SCG2 Related Genes and Functional
Enrichment Analysis
To further study the SCG2-related molecular mechanisms, we
performed differential expression genes (DEGs) analysis based
on the medium value of SCG2 expression using the package
“DESeq2.” Genes were ranked with positive correlation
coefficients with SCG2 (Log2FoldChange ≥ 1, p < 0.01).
Then Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis were
conducted using “enrichGo” and “enrichKEGG” functions
in the “clusterprofiler” package. We conducted a PPI
network based on DEGs by Cytoscape software, and its
plug-in “ClueGO” was applied for further function
enrichment analysis.

Gene Set Enrichment Analysis
We performed Gene Set Enrichment Analysis (GSEA) to further
understand the upregulated pathways in the high SCG2
expression group by GSEA 4.1 software. The number
permutations for each gene were set to 1,000, false discovery
rate (FDR) < 0.5 and normalized enrichment score (NES) > 1
were set at the cut-off criteria.

FIGURE 1 | Expression analysis of SCG2. (A) The SCG2 expression level in multiple cancer types from TCGA database. (B,C) SCG2 mRNA expression levels in
normal and tumor tissues of CRC from TCGA and GEO database. (D) SCG2 protein levels in 96 paired CRC tissues from CPTAC. (E) SCG2 mRNA expression level in
tumor and adjacent samples. (F) Quantification of SCG2 protein expression in tumor and adjacent samples. (A–C) Examined by Mann-Whitney U test; (D–F) Examined
by Wilcoxon signed rank test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Characterization of the TME
Tumor infiltrating immune cells (TIICs) in tumor samples and
normal samples of the TCGA cohort were calculated using the
CIBERSORT algorithm based on RNA-seq (Newman et al.,
2015). The signature TIICs matrix “LM22” was set to 1,000

permutations. Tumor immune single-cell analysis was
investigated with the “Dataset” module in Tumor Immune
Single Cell Hub (TISCH, http://tisch.comp-genomics.org),
which built a Single-cell RNA sequencing (scRNA-seq) atlas
of 76 high-quality tumor datasets across 27 cancer types from

FIGURE 2 | Immunofluorescence images of SCG2 (red) and DAPI (blue) in tumor and adjacent tissues of CRC patients. Seven pairs of tumors and adjacent tissues
were examined, six of the tumor tissues showed deceased SCG2 expression compared to adjacent normal tissues.

TABLE 1 | Univariate Cox regression of prognostic factors in CRC patients.

Parameters TCGA Univariate cox
regression

GSE39582 Univariate cox
regression

HR
(95%CI)

z-score p-value HR
(95%CI)

z-score p-value

Sex (female vs. male) 0.809 (0.469–1.395) -0.761 0.446 1.127 (0.823–1.542) 0.744 0.457
Age (≥60 vs. <60) 1.781 (0.918–3.456) 1.707 0.088 1.318 (0.9675–1.796) 1.751 0.080
TNM stage (III-IV vs. I-II) 2.739 (1.575–4.764) 3.568 3.6e-04 2.337 (1.871–2.918) 0.113 7e-14
Invasion depth (T3/T4 vs. T1/T2) 4.748 (1.152–19.57) 2.155 0.031 1.948 (1.478–2.567) 4.372 2.23e-06
Lymph node metastasis (N1/N2/N3 vs. N0) 2.308 (1.345–3.962) 3.036 0.002 1.479 (1.239–1.764) 4.339 1.43e-05
Distant metastasis (M1 vs. M0) 4.379 (2.462–7.788) 5.028 4.96e-07 7.779 (5.360–11.29) 10.79 2e-16
SCG2 expression (High vs. low) 2.111 (1.127–3.659) 2.661 0.008 1.510 (1.111–2.053) 2.629 0.009

HR: hazard ratio; CI: confidence interval.
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GEO and ArrayExpress (Sun et al., 2021). Thirteen kinds of
major lineage immune cells from GSE146771 cohort were
analyzed.

Correlation Analysis of SCG2 and TIICs
We applied the Estimation of STromal and Immune cells in
MAlignant Tumours using Expression data (ESTIMATE)
algorithm to calculate stromal and immune scores that
predicted the levels of infiltrating stromal and immune cells in
each patient (Yoshihara et al., 2013) and analyzed the correlations
between SCG2 expression and the two scores. We further
compared the proportions of twenty-two immune cell
phenotypes in SCG2 high or low expression group using
CIBERSORT algorithm. The correlations between SCG2 and

tumor-associated macrophages (TAMs), M2 gene markers
were analyzed to identify the relevance of SCG2 and
macrophage polarization. The correlations between SCG2
expression and gene markers of various immune cells
including CRC immune checkpoint genes were analyzed by
TIMER (Li et al., 2017).

Statistical Analysis
SPSS Statistics 26, GraphPad prism 8, R 4.0.2 were used for
statistical analyses. The measurement data were presented as
mean ± standard deviation. Statistical differences between two
groups were examined by Wilcoxon signed rank test or Mann-
Whitney U test. Statistical differences across three or more groups
were examined by Kruskal-Wallis H test. Correlations were

FIGURE 3 | High SCG2 expression is associated with worse survival and advanced clinical stage in CRC patients. (A,B) OS, DFS in the TCGA CRC cohort. (C–F)
SCG2 expression was higher in patients of advanced T, N, M, TNM stage in the TCGA CRC cohort. (G) Multivariate Cox analysis of patients in the TCGA CRC cohort
showing the HRs of different factors. (H,I)OS, DFS in the GSE39582 CRC cohort. (J–M) SCG2 expression was higher in patients of advanced T, N, M, TNM stage in the
GSE39582 CRC cohort. (N)Multivariate Cox analysis of patients in the GSE39582 CRC cohort showing the HRs of different factors. HRs, hazard ratios. (C–E,J–L)
Examined by Kruskal-Wallis H test; (F,M) Examined by Mann-Whitney U test; *p < 0.05, **p < 0.01, ***p < 0.001.
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examined with the Spearman rank correlation test (weakly
correlation when R > 0.1, moderate correlation when R > 0.3,
strong correlation when R > 0.5). Statistically significant
differences were considered when p < 0.05.

RESULTS

Expression Profiles of SCG2 in Human
Cancers
To evaluate SCG2 expression in various human cancers, we
analyzed TCGA RNA-seq using TIMER database. The SCG2
expression levels were higher in breast invasive carcinoma
(BRCA), cholangiocarcinoma (CHOL), head and neck cancer
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal

papillary cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung squamous cell carcinoma (LUSC) compared with
adjacent normal tissues. However, SCG2 expression was
significantly lower in colon adenocarcinoma (COAD), kidney
chromophobe (KICH), prostate adenocarcinoma (PRAD),
rectum adenocarcinoma (READ), stomach adenocarcinoma
(STAD), uterine corpus endometrial carcinoma (UCEC)
compared with adjacent normal tissues (Figure 1A). These
results suggested SCG2 expressed abnormally in various
tumor types.

We then assessed SCG2 mRNA expression levels in TCGA
and GEO cohorts and found significantly lower SCG2 expression
levels in cancer tissues than normal tissues (Figures 1B,C). SCG2
protein expression was also lower in cancer tissues than adjacent
tissues in CPTAC database (Figure 1D). To confirm the

FIGURE 4 | The proportions of TIICs in TME and enrichment analysis by GSEA. (A,B) Composition of 22 immune cells in the tumor and normal tissues of CRC
patients in TCGA cohort. (C,D) Components of TME at the single-cell resolution of CRC patients in GSE146771 cohort. (E) Enriched upregulated hallmark pathways in
different immune cells.
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expression profile data, we examined mRNA and protein levels in
tumor and normal tissues of CRC patients using qRT-PCR and
Western blot (Figures 1E,F).

The expression and distribution of SCG2 protein in tumor and
adjacent tissues were monitored by immunofluorescence
microscopy (Figure 2). In normal tissues, SCG2 was mainly

FIGURE 5 | Correlation between SCG2 expression and TIICs. (A) The correlation analysis between SCG2 expression and immune score, stromal score in TCGA
cohort. (B) The correlation analysis between SCG2 expression and immune score, stromal score in GSE39582 cohort. (C,D) Twenty-two kinds of tumor-infiltrating
immune cells are plotted according to the SCG2 expression level in TCGA and GSE39582 cohort. (A,B) Examined by Spearman’s correlation analysis; (C,D) Examined
by Mann-Whitney U test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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distributed in colonic glands, possibly related to intestinal fluid
secretion, whereas in tumor tissues, the intestinal mucosal tissues
were destroyed and SCG2 expression decreased.

Prognostic Significance of SCG2
Expression in CRC
Aunivariate Cox survival analysis based onTCGAdatabase indicated
that TNM stage (p � 3.6e-04), Invasion depth (p � 0.031), Lymph
node metastasis (p � 0.002), distant metastasis (p � 4.96e-07), and
SCG2 expression (p � 0.008) were significant risk factors for overall
survival (Table 1). Survival analysis using the Kaplan-Meier method
showed that higher SCG2 expressionwas significantly correlatedwith
shorter OS (p � 0.009) and DFS (p < 0.001) in TCGA cohorts
(Figures 3A,B). SCG2 mRNA expression was associated with
advanced TNM stage, T stage, and lymph invasion (Figures
3C–F). The forest plot based on multivariate Cox regression
analysis showed that age (p � 0.002), M stage (p � 2.07e-04), and
SCG2 expression (p � 0.016) were independent prognosis factors of
CRC patients (Figure 3G). The above results were verified in
independent cohort GSE39582 (Table 1; Figures 3H–N).
Besides, we used the patients from our hospital to analyze
the correlation between SCG2 expression and tumor
histological grading, there was no significant difference
(Supplementary Figure S1A). Overall, elevated SCG2 mRNA
expression was significantly associated with poor prognosis and
advanced clinicopathological parameters in CRC patients.

Analysis of SCG2 Co-expressed Genes
Genes in co-expression modules are always involved in same
biological pathways (Stuart et al., 2003) and have disease
predictive value (Yang et al., 2014). We performed genetic
difference analysis based on SCG2 medium expression level.
The heat map displayed differential expressed genes according
to the Pearson correlation (Supplementary Figure S1B). We
verified the correlations between SCG2 and MYH11, SYNPO2,
DDR2, FABP4, TNS1 in TIMER (all R > 0.5, p < 0.0001, shown in
Supplementary Figures S1C–G). Furthermore, high expressions
of FABP4, DDR2, and TNS1 were associated with worse overall
survival in CRC patients (Supplementary Figures S1H–J),
MYH11 and TNS1 were associated with advanced clinical
stage (Supplementary Figures S1K,L). It was possible that
abnormal expression of SCG2 and these genes involved in
CRC progression contributing to a worse prognosis.

To explore the potential molecular function of SCG2 in CRC,
we performed KEGG pathway enrichment and GO analyses with
the SCG2 co-expressed genes. KEGG enrichment analysis showed
that these genes were associated with many signaling pathways
(Supplementary Table S1), including known cancer-related
pathways such as the PI3K-Akt signaling pathway and ECM-
receptor interaction pathway. GO annotations further suggested
these genes were associated with many biological processes
(Supplementary Table S2)

We then performed PPI network analysis based on SCG2 co-
expressed genes in TCGA and GSE39582 cohort (Supplementary
Figure S2A). 56 seed and cluster genes in the network were

TABLE 2 | Correlation analysis between SCG2 and markers of immune cells.

Terms Markers None Purity

Cor p Cor p

T cell exhaustion PDCD1 (PD-1) 0.226 *** 0.244 ***
CTLA4 0.265 *** 0.277 ***
CD274 (PD-L1) 0.280 *** 0.289 ***
PDCD1LG2 (PD-L2) 0.379 *** 0.376 ***
HAVCR2 0.435 *** 0.36 ***
TIGIT 0.338 *** 0.351 ***
BTLA 0.253 *** 0.253 ***
CD244 0.091 0.052 0.104 0.036
CD96 0.245 *** 0.254 ***
IDO1 0.208 *** 0.221 ***
KDR 0.509 *** 0.521 ***
TGFBR1 0.554 *** 0.545 ***
GZMB 0.045 0.341 0.062 0.215
LAG3 0.206 *** 0.232 ***

Monocyte CD86 (B7-2) 0.438 *** 0.435 ***
CSF1R 0.426 *** 0.418 ***

TAM CCL2 0.510 *** 0.495 ***
CD68 0.340 *** 0.348 ***
IL10 0.295 *** 0.312 ***

M1 Macrophage IRF5 0.251 *** 0.258 ***
INOS (NOS2) 0.222 *** 0.189 **
COX2 (PTGS2) 0.176 ** 0.172 **

M2 Macrophage CD163 0.467 *** 0.465 ***
VSIG4 0.432 *** 0.419 ***
MS4A4A 0.415 *** 0.498 ***

CD8+T CD8A 0.227 *** 0.240 ***
CD8B 0.135 * 0.139 *

CD4+T CD4 0.398 *** 0.396 ***
CD40LG (CD40L) 0.147 * 0.154 *
CXCR4 0.432 *** 0.436 ***

T cell (general) CD3D 0.124 * 0.133 *
CD3E 0.230 *** 0.252 ***
CD2 0.219 *** 0.232 ***
CD28 0.350 *** 0.356 ***

Th1 TBX21 0.239 *** 0.270 ***
STAT4 0.228 *** 0.228 ***
STAT1 0.305 *** 0.325 ***
IFNG 0.074 0.114 0.082 0.100

Th2 STAT6 0.141 * 0.142 *
STAT5A 0.131 * 0.151 *

Th17 STAT3 0.278 *** 0.293 ***
IL17A 0.238 *** 0.239 ***

Treg FOXP3 0.311 *** 0.321 ***
STAT5B 0.341 *** 0.365 ***
TGFB1 0.473 *** 0.472 ***
CD25 (IL2RA) 0.289 *** 0.290 ***

B cell CD19 0.207 *** 0.221 ***
CD79A 0.272 *** 0.284 ***

Neutrophils CD66b (CEACAM8) −0.271 *** −0.283 ***
CD11b (ITGAM) 0.423 *** 0.427 ***
CCR7 0.243 *** 0.264 ***

Natural Killer cell CD16 (FCGR3A) 0.476 *** 0.473 ***
CD56 (NCAM1) 0.448 *** 0.447 ***
KIR2DL1 0.052 0.266 0.063 0.206
KIR2DL3 0.076 0.106 0.094 0.058
KIR2DL4 0.069 0.139 0.084 0.090
KIR3DL1 0.109 0.020 0.125 0.012
KIR3DL2 0.111 0.018 0.131 *

Dendritic cell HLA-DRA 0.267 *** 0.266 ***
HLA-DPA1 0.328 *** 0.324 ***
BOCA-1 (CD1C) 0.306 *** 0.298 ***
BOCA-4 (NRP1) 0.605 *** 0.612 ***
CD11c (ITGAX) 0.431 *** 0.438 ***

TAM, tumor-associated macrophage; Th, T helper cell; Treg, regulatory T cell.
None, correlation without adjustment; Purity, correlation adjusted by tumor purity.
Cor, R value of Spearman’s correlation. *p < 0.01, **p < 0.001, ***p < 0.0001.
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selected for further enrichment analysis (Supplementary Figure
S2B). The result indicated that SCG2 and its co-expressed genes
could directly or indirectly regulate various immune-related
processes, including macrophage polarization (Supplementary
Figure S2C).

GSEA Validates SCG2-Related Pathways
To further study the SCG2-associated signaling pathways in CRC,
GSEA was performed between samples in low and high SCG2
expression groups. GSEA identified a total of 20 considerably
upregulated hallmark pathways in the high SCG2 expression
group (Supplementary Table S3). The tumor related pathways
involved in tumorigenesis, tumor invasion, and metastasis
included “Kras signaling up,” “Hedgehog signaling,” “Notch
signaling,” “Wnt beta catenin signaling,” “TGF beta signaling,”
“Epithelial mesenchymal transition,” and “Angiogenesis.” The
inflammatory and immune related pathways included
“Complement,” “IL2 STAT5 signaling,” “Inflammatory response,”
“IL6 JAK STAT3 signaling,” and “Allograft rejection.”A summary of
the enrichment results is shown in Supplementary Figure S3.

Evaluation of TIICs in CRC
TIIC is an integral part of tumor immune microenvironment
(Deschoolmeester et al., 2010). In the current study, we estimated
the proportion of twenty-two immune cells in the tumor and normal
samples of TCGA using the CIBERSORT algorithm (Figures 4A,B).
The composition of immune cells in TME varied significantly
between both intragroup and intergroup. Additionally, the
components of TME at single-cell resolution were investigated
using TISCH database. TIICs of GSE146771 cohort and each
patient’s cell type proportion were displayed (Figures 4C,D).
GSEA showed the enriched upregulated hallmark pathways in
different cells (Figure 4E). Interestingly, the pathways enriched in
monocyte-macrophages, “Epithelial mesenchymal transition,”
“Angiogenesis,” “Complement,” “Inflammatory response” and
“IL6 JAK STAT3 signaling,” were also significantly enriched in
high SCG2 expression group (Supplementary Figure S3).

SCG2 Expression Significantly Correlate
With TIICs in CRC
We conducted ESTIMATE analysis to explore the relationship
between SCG2 and TME. The results suggested that high SCG2
expressionwas significantly associatedwith higher immune score and
stromal store in CRC (Figures 5A,B). CIBERSORT analysis showed
that the proportions of resting memory CD4 cells, monocytes,
activated dendritic cells, and activated mast cells were
downregulated in the high SCG2 expression group, whereas M0
macrophages, M2 macrophages, and resting mast cells were
significantly upregulated in the high SCG2 group (Figures 5C,D).
We further performed correlation analysis between SCG2 expression
and various TIICs gene markers (Table 2). Significant correlations
were observed between SCG2 expression and T cell exhaustion
(immune checkpoint genes), general T cells, CD8 + T cells, CD4
+ T cells, Th1, Tfh, Th17, Monocyte, M1 macrophages, M2
macrophages, natural killer (NK) cell, dendritic cells, neutrophils

in CRC. The results demonstrated that SCG2 expression was
correlated with TME and TIICs in CRC.

SCG2 Expression Associated With M2
Macrophage Polarization
The expressions of TAM and M2 macrophage marker genes were
higher in monocyte-macrophage cells from tumor samples than
from normal samples or peripheral blood mononuclear cell
(PBMC) (Supplementary Figure S4). It indicated that, in the
TME, macrophages tend to polarize towards M2 phenotype and
differentiate into TAMs thus performed pro-tumoral functions.
CIBERSORT analysis suggested the proportion of M2
macrophages increased in the SCG2 high expression group,
but the proportion of M1 macrophages not significantly
changed (Figures 5C,D). Additionally, clear correlations
existed between SCG2 expression and the marker genes of M2
macrophages and TAMs (Figures 6A–F). The aforementioned
results prompted us to hypothesize that SCG2 could promote the
polarization of M2 macrophages. To validate this conjecture, we
performed confocal immunofluorescence microscopy to confirm
the colocalization between SCG2 and macrophage. As shown in
Figure 7, SCG2 was colocalized with macrophages in tumor
tissues, whereas there was no apparent colocalization in normal
tissues. Altogether, the above results suggested that SCG2 might
promote tumor infiltrating macrophages polarization toward M2
phenotype and play a pro-tumoral role in CRC.

DISCUSSION

CRC is a common health problem and one of the leading causes
of cancer death worldwide (Ferlay et al., 2015). Despite
numerous studies effort to improve our surgical treatment,
radiotherapy, chemotherapy, and immunotherapy over the
years, the prognosis of patients with advanced CRC remains
poor (Seymour et al., 2007). In the present study, we explored
the role of SCG2 in colorectal cancer, revealed its prognostic
value, biological functions, associated pathways, and regulation
of tumor immunity by analyzing open-access databases
comprehensively.

SCG2 expression was remarkably decreased in tumor tissues
compared with normal tissues of CRC. In normal tissues, our
results showed that SCG2 was mainly distributed in colonic
glands, which possibly related to intestinal fluid secretion. In
contrast, in tumor tissues, the intestinal mucosal tissues were
destroyed and total SCG2 expression was decreased. Additionally,
SCG2 expression was associated with T, N, M, and TNM stages in
CRC patients. Higher expression of SCG2 was significantly
correlated to worse OS and DFS. Multivariate cox analysis also
showed that SCG2 expression level was an independent
prognostic marker in CRC.

To investigate the biological roles of SCG2, we carried out a
gene differential expression analysis based on SCG2 median
expression level. Then functional enrichment analyses were
performed using the genes positively correlated with SCG2.
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The results suggested that SCG2 was strongly correlated with
MYH11, SYNPO2, DDR2, FABP4, and TNS1, which were all
involved in tumorigenesis and inflammatory immune response
(Gan et al., 2019; Gao et al., 2020; Liu et al., 2020; Matrai et al.,
2020; Sun et al., 2020; Tian et al., 2020). Higher expression of
these genes might associate with worse survival and higher
clinical stage of CRC patients.

Functional enrichment analysis revealed that SCG2 was
correlated with several tumorigenesis related pathways such as
“PI3K-Akt,” “Wnt,” and “TGF-beta pathways” (Schatoff et al.,
2017; Koveitypour et al., 2019). A few pathways related to tumor
metastasis included “ECM-receptor interaction” and “focal
adhesion” (Gu et al., 2018; Machackova et al., 2020).
Furthermore, numerous genes were involved in immune-
related processes. “Regulation of actin cytoskeleton” plays a
vital role in immune response, tumor migration, and invasion
(Schmitz et al., 2000; C. Wickramarachchi et al., 2010); “B cell
receptor” is initiated via interaction between B cell receptor and
specific antigens and plays a crucial role in immune system (Li
et al., 2019); “leukocyte transendothelial migration” tightly
regulates inflammation and is associated with the transient
crossing of leukocytes through the blood vessel wall
(Schimmel et al., 2017). These results indicated that SCG2
might have regulatory roles in tumor progression and immune
moderation.

The result of GSEA suggested high SCG2 expression might
activate the IL6 JAK STAT3 signaling pathway and IL2–STAT5
signaling pathway in CRC patients. Previous studies have shown
that STAT3 was activated in TIICs, including TAMs, amplifying
immune suppression, and targeting IL-6 to regulate STAT3
signaling pathway was considered a potential immunotherapy
for CRC (Wang and Sun, 2014; Verdeil et al., 2019). STAT5 also

played a critical role in tumor immunity, regulated Treg cell’s
function and development. Consistent activation of STAT5 was
associated with suppressing antitumor immunity and increased
tumor proliferation and invasion (Rani and Murphy, 2016).
These findings indicated SCG2 might relate to the efficiency of
immunotherapy in CRC patients.

The TIICs in TME are critical players in tumor progression,
modulate tumor inflammation and metastasis variously
(Gonzalez et al., 2018). We quantified each CRC sample’s
immune and stromal cell infiltration levels using immune and
stromal scores evaluated by ESTIMATE algorithm, respectively.
Our results showed the two scores were significantly correlated
with SCG2 expression in CRC patients. Some studies have
demonstrated that both immune and stromal scores were
associated with poor prognosis in CRC patients (Liu et al.,
2020; Yuan et al., 2020).

CIBERSORT analysis showed that multiple immune cells had
significantly different proportions between SCG2 high and low
expression groups. Notably, the proportions of M0 and M2
macrophages in the SCG2 high expression group were
considerably higher than those in the SCG2 low expression
group, whereas M1 macrophages showed no significant
change. Besides, SCG2 expression was moderately or strongly
correlated with M2 macrophage marker genes and TAM marker
genes but was slightly correlated with M1 macrophage marker
genes. Similarly, confocal immunofluorescence microscopy
showed SCG2 had an apparent colocalization with
macrophages in tumor tissues. The previous study has
demonstrated that SN, SCG2 derived peptide, could induce
macrophage accumulation and angiogenesis (Liu et al., 2018).
These results indicated that high expression of SCG2 might
promote M0 macrophages polarize to M2 and eventually

FIGURE 6 |Correlation of SCG2 expression with macrophage polarization. (A–C)Correlation analysis between SCG2 expression and TAMmarkers genes (CCL2,
CD68, IL10). (D–F) Correlation analysis between SCG2 expression and M2 Macrophage markers genes (CD163, MS4A4A, VSIG4). Examined by Spearman’s
correlation analysis.
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differentiate into TAMs, enhancing tumor cell invasion,
metastasis, angiogenesis, and inhibiting the anti-tumoral
immune surveillance (Kim and Bae, 2016), predict a worse
prognosis of CRC patients (Waniczek et al., 2017).

We also found a positive correlation between SCG2 expression
and immune checkpoint markers PD-1, PD-L1/2, CTLA-4, TIM-
3, TIGIT in CRC patients. The binding of PD-L1/2 to the PD-1
receptor leads to T-cell function’s deactivation, allowing tumor
cells to evade immune attacks (Chen and Han, 2015).
Upregulation of PD-1 and Tim-3 was associated with the poor
prognosis of CRC patients in stage I-III (Kuai et al., 2020), and
high expression of TIGIT was associated with advanced TNM
stage and poor DFS in CRC patients with mismatch repair
deficiency (Zhou et al., 2020). The correlations between SCG2
expression and immune checkpoint genes indicated a potential
mechanism of SCG2 regulation on T cell exhaustion and
provided a new target for tumor immunotherapy.

However, our study had some limitations. First, we conducted
analysis mainly based on samples from TCGA and GEO cohorts,
it would be better to confirm the findings in a larger sample size.
Second, genetic difference analysis based on RNA-seq might not

be precise. Additionally, the mechanisms of SCG2 regulating the
infiltration of immune cells and macrophage polarization require
further experimental investigation, which would be a future
direction for our research.

In conclusion, our study revealed that overexpression of SCG2
predicted poor prognosis and advanced clinical stage in CRC
patients. SCG2 was associated with tumor immune cells
infiltration, promoted M2 macrophage polarization, and
correlated with immune checkpoint expression in CRC. In
summary, SCG2 played a critical role in the regulation of
tumor immunity and made it a potential biomarker and
therapeutic target in CRC.
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