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Introduction
Non-coplanar radiotherapy uses a number of fixed or 
rotating radiation beams that do not share the same 
geometric plane relative to the patient.1 This reduces the 
beam overlap away from the tumour. Conventional C-arm 
linear accelerators (linacs) achieve this by rotating the 
recumbent patient around the isocentre on a treatment 
couch to a different position for each beam orientation.1 
Non-coplanar radiotherapy is more common in intracra-
nial stereotactic radiotherapy, single-fraction radiosurgery 
(SRS, Table 1) and stereotactic body radiotherapy (SBRT).1 
These techniques often deliver higher fractional doses and 
require highly conformal, sharp dose gradients outside the 
planning target volume (PTV) to minimize dose to adjacent 
normal tissue.2 Non-coplanar beams are also used in accel-
erated partial breast irradiation (APBI) to spare the ipsi-
lateral breast,3 which may improve cosmetic outcomes.4 In 
head and neck cancer non-coplanar radiotherapy reduces 
the low and intermediate dose bath,5 which may decrease 
the incidence of neurocognitive side-effects and fatigue.6,7

The need for manual intervention to rotate the patient 
couch makes non-coplanar radiotherapy time-consuming 
when using C-arm linacs. The adoption of volumetric 
modulated arc therapy (VMAT), an efficient rotational 
intensity modulated radiotherapy (IMRT) delivery tech-
nique,8–11 also makes non-coplanar beam arrangements 

less appealing in practice. However, recently there has been 
renewed interest in non-coplanar radiotherapy, as modern 
linacs allow automated motion of multiple rotation axes.12

This review aims to give an overview of recent develop-
ments in non-coplanar radiotherapy. We aim to answer 
three questions: (1) Which modern non-coplanar radio-
therapy techniques have been developed (Table 2) and what 
sites might benefit from their use? (2) What technological 
and computational approaches are required for treatment 
planning and delivery? (3) What issues must be resolved 
prior to the clinical implementation of new non-coplanar 
radiotherapy techniques?

Recent developments in non-
coplanar IMRT
Non-coplanar IMRT for C-arm linacs
Non-coplanar IMRT (NC-IMRT) has been generally 
limited to a small number of beam orientations due to the 
increased delivery time required. However, with modern 
automated delivery, the use of NC-IMRT with 20 or more 
beams may now be practical.12 Research in this area is led 
by a group at the University of California, Los Angeles 
(UCLA).

The group’s initial work has focused on SBRT for liver13 
and lung14 tumours, where dose escalation is technically 
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Abstract

This paper gives an overview of recent developments in non-coplanar intensity modulated radiotherapy (IMRT) and 
volumetric modulated arc therapy (VMAT). Modern linear accelerators are capable of automating motion around 
multiple axes, allowing efficient delivery of highly non-coplanar radiotherapy techniques. Novel techniques developed 
for C-arm and non-standard linac geometries, methods of optimization, and clinical applications are reviewed. The 
additional degrees of freedom are shown to increase the therapeutic ratio, either through dose escalation to the target 
or dose reduction to functionally important organs at risk, by multiple research groups. Although significant work is still 
needed to translate these new non-coplanar radiotherapy techniques into the clinic, clinical implementation should be 
prioritized. Recent developments in non-coplanar radiotherapy demonstrate that it continues to have a place in modern 
cancer treatment.
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challenging due to the proximity of critical organs. In both cases, 
organ at risk (OAR) constraints prevent dose escalation for 
complex cases, or require compromises in tumour dose to avoid 
unacceptable risk of toxicity. For liver SBRT, 14- and 22-beam 
NC-IMRT plans are compared with coplanar VMAT and are 
found to reduce normal liver dose.13 For lung SBRT, 30-beam 
NC-IMRT is compared with VMAT and enables dose escalation 
to the tumour by an additional 20 Gy while conventional OAR 
dose constraints are still met.14 Alternatively, OAR doses can be 
reduced while delivering the conventional prescription dose to 
the tumour.

Subsequent work has investigated other sites where dose esca-
lation is thought likely to be beneficial or is technically feasible 
if OAR doses can be maintained.15,16 In glioblastoma, critical 
structures such as the brainstem often abut or overlap the PTV, 

which limits the prescription dose to 60 Gy. Nguyen et al investi-
gate the potential of dose escalation of the PTV, the GTV alone, 
and treating an expanded PTV using 30-beam NC-IMRT.15 
Although dose escalation up to 100 Gy is feasible, using such a 
high prescription in practice is questionable due to the increased 
risk of brain necrosis above 60 Gy.51 Dose escalation for SBRT in 
head and neck cancer patients by up to 20 Gy is also technically 
possible using 30-beam NC-IMRT.16 However, in practice, care 
is required when the tumour lies close to critical structures, in 
this case the carotid artery.

These studies provide the initial evidence that by employing a 
large number of beams, NC-IMRT produces highly conformal 
dose distributions that can further reduce OAR doses, dose-esca-
late the tumour while observing OAR dose constraints, or make 
treatment of challenging body sites practical. Additional treat-
ment planning studies by this group investigate NC-IMRT for 
cancers of the prostate,17,18 liver,19 and brain.20

NC-IMRT has been clinically implemented within a prospec-
tive Phase I trial for patients requiring retreatment of primary 
brain tumours.21 Patients who have been previously treated to 
59.4 or 60 Gy receive a further 25 or 30 Gy in 5 or 10 fractions. 
Plans using 13–20 beams (median = 16) are compared with static 
couch non-coplanar VMAT. Plans are judged on the basis of PTV 
coverage and OAR sparing, and the preferred plan is treated. Of 
the 10 patients in the study whose plans meet acceptable OAR 
tolerances, 9 have been treated with NC-IMRT and 1 patient 
has been treated with a VMAT plan of equivalent quality. The 
NC-IMRT beam orientation search space and the beam arrange-
ment for an example case are shown in Figure 1.

Optimization techniques for non-coplanar IMRT
Determining the optimal set of beam orientations for a clin-
ical case is challenging. As plan quality does not vary smoothly 
with changes in beam orientation, the solution space is likely 
to contain local optima.52 Many groups have investigated beam 
orientation optimization (BOO) for IMRT, and the literature has 

Table 1. A list of acronyms used throughout this review

Acronym Complete form
APBI Accelerated partial breast irradiation

BOO Beam orientation optimization

DWA Dynamic wave arc

IMRT Intensity modulated radiotherapy

NC-IMRT Non-coplanar intensity modulated radiotherapy

NC-VMAT Non-coplanar volumetric modulated arc therapy

OAR Organ at risk

PTV Planning target volume

SCNC-VMAT
Static couch non-coplanar volumetric modulated arc 
therapy

SRS Stereotactic radiosurgery

SBRT Stereotactic body radiotherapy

TSP Travelling salesman problem

VMAT Volumetric modulated arc therapy

Table 2. A summary of the non-coplanar radiotherapy techniques discussed in this review

Technique Linac geometry Non-coplanar geometry achieved by Key references
Non-coplanar intensity modulated 
radiotherapy

C-arm linac Multiple static beams defined by linac gantry rotation and 
patient couch rotation

13–22

Static couch non-coplanar 
volumetric modulated arc therapy

C-arm linac One or more arcs, some with a non-zero patient couch 
rotation

23–27

Coronal VMAT C-arm linac One or more arcs achieved with dynamic patient couch 
rotation but with fixed or limited linac gantry rotation. 
Trajectories may be manually defined, calculated or 
optimized.

28–31

Trajectory VMAT C-arm linac One or more arcs with dynamic patient couch rotation 
and dynamic linac gantry rotation. Trajectories may be 
manually defined, calculated or optimized.

32–44

CyberArc Robotic arm mounted linac One or more arcs defined by robotic arm orientation. 45,46

Dynamic Wave Arc O-ring linac One or more arcs with dynamic linac gantry rotation 
around the horizontal and vertical axes. Trajectories may 
be manually defined, calculated or optimized.

47–50

VMAT, volumetric arc therapy.
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been extensively reviewed previously.53,54 Only the application 
of these BOO methods to new non-coplanar radiotherapy tech-
niques is covered in this paper.

NC-IMRT work that has been reported by the UCLA group uses 
an iterative approach to BOO.13 Iterative BOO uses fluence opti-
mization to evaluate plan quality during BOO55 and has been 
applied to a wide range of clinical cases by the ERASMUS group 
in Rotterdam.56–64 Although fluence optimization does not 
account for the effects of practical machine delivery constraints 
present in a clinical treatment plan, the idealized dose distribu-
tion it produces can give a useful estimate of plan quality. New 
orientations are added to a beam arrangement until either the 
maximum permitted number of beams is reached, or the effect 
of adding another beam no longer significantly improves the 
optimization objective function. However, the scheme is slow to 
converge65 and can be trapped in a local minimum by the first 
beam chosen.56

In the UCLA implementation of iterative BOO, at each iteration 
the beam orientation that most reduces the objective function is 
added. The objective function improvement for each potential 
beam is estimated using a single iteration of fluence optimiza-
tion, which results in a more efficient search.13

Recent developments in non-coplanar 
VMAT
Non-coplanar VMAT for C-arm mounted linacs
Several papers have proposed methods of non-coplanar VMAT 
treatment delivery. These break down into three areas: (1) 
VMAT with multiple static couch rotations, (2) a coronal VMAT 

technique that combines dynamic couch rotation with fixed 
gantry positions, and (3) a trajectory VMAT technique that 
combines dynamic couch rotation with dynamic gantry rotation. 
Feasible orientations for non-coplanar VMAT, as well as a range 
of other techniques, are shown in Figure 2.

Static couch non-coplanar VMAT
The simplest application of non-coplanar radiotherapy to VMAT 
uses one or more arcs with static couch rotations. Although it has 
been investigated for sites such as sinus cancer,66 liver,22 and head 
and neck,32,63 it is commonly used for intracranial stereotactic 
radiotherapy and SRS.23,24

Four-arc static couch non-coplanar VMAT (SCNC-VMAT) 
improves conformity and reduces the volume of brain receiving 
intermediate doses in twelve single-lesion SRS cases, when 
compared with coplanar VMAT and nine-field NC-IMRT.23 
However, the best technique for sparing OARs close to the PTV 
depends on the patient’s specific geometry. An alternative SCNC-
VMAT technique, which combines three non-coplanar arcs and 
one coplanar arc, has been evaluated for up to nine lesions.24,25 
This class solution has since been incorporated into the Eclipse 
(Varian Medical Systems, Palo Alto, CA) treatment planning 
system as HyperArc.26

HyperArc combines SCNC-VMAT with standardized immobi-
lization devices, to prevent collisions, and automated transitions 
between each partial arc during treatment, to improve delivery 
efficiency. HyperArc reduces dose to normal brain tissue when 
compared against VMAT for 23 SRS cases, with up to 4 lesions 
each.27 However, beams are more complex and require more 

Figure 1. The geometry for non-coplanar intensity modulated radiotherapy demonstrating (a) the feasible non-collisional search 
space for non-coplanar beam orientation defined by gantry and couch rotation angles (°), and (b) the final optimized beam orien-
tations for a clinical patient plan. STD, source to target distance; IEC, International Electrotechnical Commission. Reprinted from 
Yu et al,21 with permission from Elsevier.
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monitor units due to increased modulation. Another study of 
15 SRS cases, with between 3 and 8 lesions each, does not find 
significant differences between HyperArc, CyberKnife (Accuray 
Inc, Sunnyvale, CA) and VMAT for most OAR criteria studied.26 
Differences in homogeneity and the volume of tissue receiving 
110% of the prescription dose are significant between HyperArc 

and CyberKnife but this may be due to different planning 
approaches across software.

Coronal VMAT
Dynamic couch rotation with fixed lateral gantry positions, 
to achieve a coronal VMAT technique, has been proposed for 

Figure 2. Available treatment geometries for coplanar and non-coplanar radiotherapy. An upper limit on treatment plan quality 
can be determined by distributing a large number of beams over the full (a) non-coplanar or (b) coplanar space. Other techniques 
shown are: (c) coplanar VMAT, (d) coplanar IMRT, (e) coplanar IMRT with optimized beam orientations, (f) non-coplanar IMRT 
with optimized beam orientations, (g) static couch non-coplanar VMAT, (h) non-coplanar trajectory VMAT tracing the great circles 
around the patient, and (i), non-coplanar trajectory VMAT visiting nine optimized beam orientations. BAO, beam angle optimized, 
equivalent to BOO in this review; IMRT, intensity modulated radiotherapy; SnS, step and shoot, a type of IMRT delivery; VMAT, vol-
umetric arc therapy. Reprinted from Wild et al32 with permission from John Wiley and Sons, © American Association of Physicists 
in Medicine.
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APBI.28 Treatment planning for this site aims to deliver a homo-
geneous dose to the partial breast PTV, while minimizing the 
dose to other OARs, including the heart, lungs, and contralat-
eral breast. When coronal VMAT is combined with up to 20◦ of 
manually defined gantry rotation, ipsilateral lung dose is reduced 
at the expense of increased ipsilateral breast dose in patients with 
inner and central tumours compared with coplanar VMAT.29

Coronal VMAT has been refined for prone patient orientations 
(Figure  3), using lateral couch translations to avoid collisions 
between the linac gantry and patient couch.30,31 This produces a 
discontinuous, non-isocentric beam trajectory. Coronal VMAT 
improves conformity and reduces the volume of the ipsilateral 
normal breast receiving high and intermediate doses, when 
compared with six-field NC-IMRT for 10 cases, although the 
volume of low dose (V20%) increases.31 However, patients 
with unfavourable PTV locations have been excluded from the 
study, suggesting that coronal VMAT has limitations for specific 
geometries.

Trajectory VMAT
Combining dynamic couch rotation with conventional gantry 
rotation to produce a trajectory VMAT technique may be more 
promising than coronal VMAT due to the additional degree 
of freedom. Originally proposed for brain and head and neck 
cancers,33,34 several groups have demonstrated the use of different 
patient-specific trajectory VMAT techniques for OAR sparing. 
These include: multiple partial arcs,35 trajectories approximated 
by SCNC-VMAT,36 multiple partial arc rotations of the gantry 
for a single continuous couch rotation,37 a single continuous 
rotation of the gantry with synchronised couch rotation,38,39 
or a single continuous rotation of the couch with synchronised 
gantry rotation.40

Due to the additional non-collisional space superiorly, compared 
with other treatment sites, brain cancer is commonly investigated. 
Trajectory VMAT shows significant OAR sparing compared to 
coplanar VMAT for multiple optimization techniques.35,36,38–42 
OAR sparing results depend on the inputs to the trajectory and 

Figure 3. A coronal VMAT technique demonstrating (a) a discontinuous non-isocentric trajectory, (b) the linac orientations cor-
responding to points on the trajectory, and (c) the three-dimensional view of the beam and treatment geometry. Reprinted from 
Fahimian et al,30 with permission from Elsevier. VMAT, volumetric arc therapy.
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plan optimization, however, it is possible to produce clinically 
significant sparing for structures such as the contralateral hippo-
campus and temporal lobe.39

Other sites that have been investigated include: head and neck,32 
lung,40,41 prostate,38,40 and liver.42 However, small numbers of 
cases are used to validate individual optimization algorithms. 
More extensive investigations are required to determine if any 
dosimetric improvements for these sites are present over patient 
populations and are clinically significant.

Optimization techniques for non-coplanar VMAT
Manual and algorithmic methods
Manual trajectory definition is used in the earliest work on 
non-coplanar arc techniques, where beam overlap within the 
patient from different arc sectors is minimized.33 At that time, 
linac modifications had been required to enable the continuous 
dynamic couch rotation, so it has not been widely used.37 This 
approach has been revisited recently, using a manually defined 
sinusoidal pattern with up to nine partial gantry rotations.37 
Although this form of trajectory VMAT improves conformity 
over simpler non-coplanar conformal arcs, it is dosimetrically 
equivalent to SCNC-VMAT.

Trajectory definition is also used for coronal VMAT, with an 
algorithm that maximises couch rotation while ensuring the 
PTV lies within the limits of the beam’s eye view.30,31 Collisions 
between linac components are avoided by a combination of 
modelling and lateral couch translations. Once the trajectory is 
determined, VMAT optimization is performed to define the final 
beam apertures.

The common factor for manual and algorithmic techniques 
is that there is no direct method of trajectory optimization. 
However, these relatively simple methods to avoid OARs or to 
smear out the low dose within the patient have been shown to 
improve dosimetry for specific applications.

Beam scoring methods
Beam scoring methods, which evaluate a quality metric for each 
feasible beam orientation, are frequently used for IMRT beam 
orientation optimization (BOO). Their advantage is speed, as 
scoring a single beam orientation is fast and the many separate 
evaluations needed can be performed in parallel.67 Most beam 
scoring techniques separate BOO from treatment plan optimi-
zation, which further reduces complexity. However, evaluating 
beams independently may not identify a beam arrangement that 
produces the optimal treatment plan.

Trajectory optimization employing beam scoring generally uses 
the patient’s geometry to determine individual beam scores, 
either projecting it onto the beam’s eye view plane35,36 or after 
ray tracing.38,39 Beam scoring has been refined to reflect the 
relative clinical importance of OARs,36,39 OAR position relative 
to the PTV,36,43 and to incorporate dosimetric information for 
individual voxels.67 After each feasible beam orientation has 
been scored, the trajectory is determined from high-quality 
orientations. Published techniques include: grouping promising 

orientations into partial arcs,35 reducing the path to a series of 
fixed couch positions,36 and determining a single connected 
trajectory.38–40,43 This last approach casts trajectory optimiza-
tion as a path-finding problem, which is solved using graph-
search techniques such as the Dijkstra38–40 or A*42,43 algorithms. 
However, the result also depends on the rules permitted for 
trajectory formation and this approach would not find any 
higher quality multiple partial-arc trajectories.

Fluence-based methods
Although beam scoring produces high quality treatment plans, 
the final trajectories may not be dosimetrically optimal as plan 
quality is not directly evaluated during trajectory optimization. 
An alternative approach incorporates fluence optimization into 
trajectory optimization, as a measure of plan quality.

Fluence-based BOO techniques have been applied to trajec-
tory optimization by initially solving a static field IMRT BOO 
problem and using the resulting beam orientations to define a 
limited number of angular positions that must be visited during 
delivery.32,41 To create the final optimized trajectory, these orien-
tations must be linked together in some way.

One method of connecting these orientations is to formulate a 
travelling salesman problem (TSP) to determine the most effi-
cient trajectory that visits all the selected beams. Although the 
IMRT beams chosen during BOO are of high quality, this may 
not be true of the linking sections. These could degrade plan 
quality by including a section of trajectory that disproportion-
ately irradiates OARs compared to the PTV. However, this may 
not be a significant factor in practice, as the MLC apertures and 
dose contribution are determined subsequently during plan 
optimization and would compensate for poor choices of trajec-
tory sections resulting from the TSP.32

To avoid this problem, an alternative approach replaces the treat-
ment efficiency metric in the TSP with a separate beam scoring 
approach. By using beam scores, the TSP can then be solved 
using an A* path-finding algorithm. High-quality connections 
between optimal beam orientations are then determined and 
infeasible sections of arc are also avoided.42

Alternative fluence-based techniques attempt to evaluate the 
quality of the whole trajectory during optimization, rather than 
basing the trajectory on a small number of optimized beam 
orientations. Dong et al investigate Monte Carlo Tree Search, 
which performs fluence optimization on selected trajectories and 
uses the results as feedback to guide the selection of promising 
trajectories in later iterations.44 Another approach alternates 
between BOO and trajectory formation until a final trajectory is 
found.40 Fluence-based VMAT optimization is performed using 
a technique that encourages a sparse solution of promising beam 
orientations. The results from this optimization then define the 
inputs for a trajectory optimization step, which is formulated as a 
graph-search problem using fluence information and solved with 
Dijkstra’s algorithm.

Dosimetric information can be incorporated into trajectory opti-
mization by perturbing an initial trajectory based on a fluence 
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optimization.39 This allows alternative solutions to be investi-
gated as changes to anchor points along an input trajectory are 
iteratively tested. The input trajectory can be either a coplanar 
arc or the output of another trajectory optimization algorithm.

Non-coplanar VMAT for O-ring mounted linacs
The VERO (Mitsubishi Heavy Industries, Tokyo, Japan and 
Brainlab AG, Feldkirchen, Germany) O-ring mounted linac can 
deliver a trajectory VMAT technique by rotating around the 
vertical axis.68 Dynamic Wave Arc (DWA) has been shown to 
produce equivalent or better OAR sparing compared to coplanar 
VMAT for a number of clinical sites47,48 and has been clini-
cally implemented in at least one centre.49 Published studies 
use manually defined trajectories for treatment plan optimiza-
tion within the iPlan (Brainlab AG, Feldkirchen, Germany) or 
RayStation (RaySearch, Stockholm) systems.49,50 However, as 
dynamic couch rotation for C-arm linacs and dynamic ring rota-
tion for O-ring mounted linacs are equivalent from the patient’s 
point of view, the optimization techniques described above can 
be adapted for the VERO system.

Recent developments for CyberKnife
The CyberKnife system is a robotic arm-mounted linac, which 
delivers multiple non-coplanar, non-isocentric beams from a set 
of pre-defined beam orientations.69–71 It is frequently used for 
intracranial stereotactic radiotherapy, SRS and SBRT, and for 
retreatments. However, treatment times can be up to 1 h in dura-
tion, including patient positioning and imaging.45

Delivery times can be significantly improved while main-
taining treatment plan quality by optimizing the selection of a 
limited number of beams from those available.72 Alternatively, 
an arc optimization scheme has been proposed for CyberKnife 
(CyberArc) that uses a similar approach to that employed in 
VMAT techniques. It has been developed for treatments using a 
variable Iris collimator45 and has been adapted for use with the 
CyberKnife multileaf collimator.46 As the CyberKnife treatment 
planning system can already produce high quality NC-IMRT 
plans, the arc optimization attempts to match the dose distribu-
tion from a clinically acceptable static beam plan but to produce 
a more efficient delivery. By allowing continuous radiation 
delivery between nodes in an optimized trajectory, estimated 
delivery times are between one-third and half of the original 
treatment plan.

Challenges and barriers to clinical 
implementation
Delivery efficiency
Delivery of non-coplanar treatment plans can be time 
consuming, which could limit the clinical implementation of 
novel techniques. For the nine patients that have been treated 
using NC-IMRT within a Phase I trial, the average delivery time 
is 34.1 min (range 19.9–64.5 min) for 16 (13-20) beams and 5 Gy 
(3–6 Gy) per fraction.21 However, motion of the machine axes 
between beams is the major component of the delivery times 
and this could be significantly reduced with fully automated 
machine transitions between beams. Coronal VMAT delivery 
is between 4.5 and 5 min for a 3.85 Gy fraction partial breast 

treatment.30,31 Trajectory VMAT is delivered in around 2 min 
for a 1.8 Gy fraction brain treatment73 and 3–8 min for 12–15 Gy 
SRS.37 Although these delivery investigations use a non-clinical 
research mode, the results demonstrate the potential efficiency 
gains with fully automated delivery.

Delivery accuracy
Coplanar VMAT requires accurate synchronization of MLC 
motion, gantry rotation, and dose rate.74 For NC-VMAT, addi-
tional synchronization of these components with patient couch 
rotation is required.75 The dosimetric accuracy of NC-VMAT 
has been investigated for coronal VMAT,30,31 as well as math-
ematically defined37 and geometrically optimized73 trajectory 
VMAT. For all techniques, absolute point dose measurements 
are within 3% and at least 90% of film pixels report a γ value <1 
for 3% and 3 mm criteria.30,31,37,43,73 These results suggest that, 
with a fine control point spacing for all motion axes, NC-VMAT 
is sufficiently accurate for clinical use.

Patient safety and compliance
Automated delivery of NC-IMRT or NC-VMAT risks colli-
sions between linac and patient support systems or with the 
patient themselves. The main concern is for patient safety during 
delivery, primarily in avoiding collisions of the linac with the 
patient. However, this is challenging as potential collisions are 
patient, treatment site and immobilization device-dependent. 
Identifying a collision when the patient is on the treatment couch 
is not sufficient, as creating a new plan with adjusted trajectories 
would have a significant impact on clinical resources and patient 
scheduling. Therefore, current machine interlocks such as touch-
guards or imaging-based collision detection, while still necessary, 
are insufficient on their own. Unless pre-defined trajectories and 
approved immobilization devices are used, such as for HyperArc, 
advanced patient modelling and collision prediction techniques 
must be incorporated into the planning process prior to trajec-
tory optimization.76 Perceptions of collision risk could also affect 
patient compliance, however compliance for NC-IMRT of brain 
tumour retreatment was found to be good.21

Intrafraction patient motion
Intrafraction patient motion for non-coplanar radiotherapy 
has two potential causes. Firstly, the change in position of the 
anatomy during the treatment fraction, which may increase 
with any extension of treatment duration for non-coplanar tech-
niques. Secondly, any change in position of the anatomy that is 
induced by the novel delivery techniques described above, e.g. 
during automated motion of the treatment couch. Intrafrac-
tion motion has been quantified within a trial of NC-IMRT for 
intracranial tumours and is within 1 mm for all but one case (1.5 
mm).21 However, intrafraction motion must be investigated for 
other body sites and the need for additional immobilization for 
dynamic couch techniques should also be determined.

Alternative linac configurations pose fewer problems for intra-
fraction motion. The O-ring mounted linac of the VERO 
machine avoids concerns around patient-linac collisions, addi-
tional immobilization or intrafraction motion with DWA. 
However, the achievable range of non-coplanar orientations is 
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restricted due to the potential for collisions between the couch 
and O-ring,50 which may limit its use for intracranial sites. Intra-
fraction motion for the CyberKnife is less problematic due to its 
imaging and tracking system.71 Applying similar monitoring and 
intrafraction motion prediction modelling may assist the intro-
duction of non-coplanar trajectories within the clinic.

Summary and conclusions
Recent developments in non-coplanar radiotherapy show that it 
continues to have a place in modern cancer treatment, particu-
larly for intracranial sites, stereotactic radiotherapy, or in cases 
of retreatment. A substantial body of work has investigated 
novel methods of delivering and optimizing non-coplanar radio-
therapy (Table 3). The potential of extra degrees of freedom to 
increase the therapeutic ratio, either through dose escalation to 
the target or dose reduction to functionally important organs 
at risk, has been demonstrated by multiple research groups. 

Although significant work is still needed to translate these new 
non-coplanar radiotherapy techniques into the clinic, particu-
larly to ensure patient safety, clinical implementation should be 
prioritised within the remit of a clinical trial.
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