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Multiple studies have demonstrated a critical role of Sirtuin-1 (SIRT1) deacetylase in

protecting kidney cells from cellular stresses. A protective role of SIRT1 has been

reported in both podocytes and renal tubular cells in multiple kidney disease settings,

including diabetic kidney disease (DKD). We and others have shown that SIRT1 exerts

renoprotective effects in DKD in part through the deacetylation of transcription factors

involved in the disease pathogenesis, such as p53, FOXO, RelA/p65NF-κB, STAT3,

and PGC1α/PPARγ. Recently we showed that the podocyte-specific overexpression of

SIRT1 attenuated proteinuria and kidney injury in an experimental model of DKD, further

confirming SIRT1 as a potential target to treat kidney disease. Known agonists of SIRT1

such as resveratrol diminished diabetic kidney injury in several animal models. Similarly,

we also showed that puerarin, a Chinese herbal medicine compound, activates SIRT1

to provide renoprotection in mouse models of DKD. However, as these are non-specific

SIRT1 agonists, we recently developed amore specific and potent SIRT1 agonist (BF175)

that significantly attenuated diabetic kidney injury in type 1 diabetic OVE26 mice. We also

previously reported that MS417, a bromodomain inhibitor that disrupts the interaction

between the acetyl-residues of NF-κB and bromodomain-containing protein 4 (BRD4)

also attenuates DKD. These results suggest that SIRT1 agonists and bromodomain

inhibitors could be potential new therapuetic treatments against DKD progression.
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INTRODUCTION

Sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, a homolog
of yeast Sir2 (silentmating type information regulation 2), has been shown to play an important role
in a variety of cellular functions. The mammalian Sir2 ortholog, Sirtuin-1 (SIRT1) is upregulated
by caloric restriction and mediates the longevity effect of calorie restriction by regulation of
glucose and lipid metabolism (1, 2). At the cellular level, SIRT1 regulates variety of processes
including autophagy (3), energetic homeostasis (2), mitochondrial biogenesis (4), and apoptosis
(5). A large body of evidence suggests that SIRT1 plays a major role in various kidney diseases by
providing protection against cellular stresses associated with kidney injury (6–8). Here, we provide
an overview of the role of SIRT1 in kidney cells in the context of diabetic kidney disease (DKD),
with a focus on its role on the regulation of transcription factor activation. The review also discusses
the potential new therapies by targeting SIRT1 pathway for DKD.
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ROLE OF SIRT1 IN REGULATION OF
TRANSCRIPTION FACTOR ACETYLATION

Recent evidence suggests that transcription factor activation
is regulated not only by protein phosphorylation, but also by
acetylation. SIRT1 exerts biological effects not only through
deacetylation of histones, but also deacetylation of various
transcription factors that include p53, FOXO, RelA/p65, STAT3,
PGC1α, and PPAR-γ (9), thereby leading to transcription
repression. SIRT1 regulates p53 activity through deacetylation
(10–13) and promotes cell survival through suppression of p53-
dependent apoptosis in response to DNA damage and oxidative
stress (5). SIRT1 was also shown to regulate the activities of
FOXO family of transcription factors through deacetylation (14).
Deacetylation of FOXO3 by SIRT1 enhances its ability to induce
cell cycle arrest and resistance to oxidative stress, while inhibiting
its ability to induce cell death (14, 15).We also showed that SIRT1
inhibits podocyte apoptosis through deacetylation of FOXO4
(16, 17). Several studies suggest that the transcriptional activity
of signal transducer and activator of transcription 3 (STAT3) is
also negatively regulated by SIRT1 (18–20). SIRT1 was found
to cause the deacetylation and inactivation of STAT3 during
caloric restriction (21). SIRT1 also exerts anti-inflammatory
effects through the inhibition of NF-κB pathway. It was shown
that the duration of nuclear NF-κB action is highly regulated
by reversible acetylation (22, 23), and that SIRT1 inhibits the
NF-κB signaling pathway through deacetylation of p65 (24).
In addition, SIRT1 modulates cellular response to hypoxia via
deacetylation of hypoxia-induced factor 1α (HIF-1α) (25–27). All
these highlight an important transcription modulatory function
by SIRT1 activity.

SIRT1 PROVIDES RENOPROTECTION
AGAINST DKD

Diabetic kidney disease (DKD) is the leading cause of chronic
kidney disease and end-stage renal failure in the US (28). Even
with optimal therapy, the incidence of DKD remains high, as
none of the currently available therapy can reverse or completely
forestall the progression of DKD. Therefore, development of
more effective treatment for DKD is urgently required. The
important role of SIRT1 in DKD has been demonstrated by
number of studies (Table 1). We have previous shown that
SIRT1 expression is significantly reduced in human kidney
with DKD and that its reduction is more pronounced in the
glomerular compartment than in the tubular compartment (17).
An association between single nucleotide polymorphisms within
SIRT1 gene and DKD was observed in Japanese subjects with
type 2 diabetes (40). However, the exact mechanism of regulation
of SIRT1 expression in DKD remains unclear. On the cellular
level, SIRT1 has been shown to regulate autophagy (41, 42) and
oxidative stress response in the diabetic kidneys (35). Resveratrol
was shown to attenuate DKD through activation of AMPK/SIRT1
pathway (29, 31) and by modulating angiogenesis (43). Studies
have demonstrated a clear role of SIRT1 in renal tubular cells in
the setting of acute kidney injury (6, 44). In diabetic kidneys, it
was shown that reduced proximal renal tubular SIRT1 expression

contributes to albuminuria by upregulation of the tight junction
protein Claudin-1 in podocytes (32). Interestingly, reduction in
Sirt1 expression in tubular cells induced hypomethylation of the
claudin-1 gene in podocytes to promote its expression, while
overexpression of Sirt1 in tubular cells induced hypermethylation
of claudin-1 and downregulated expression in podocytes,
indicating an important cross-talk between the two cell types and
epigenetic regulation of Claudin-1 expression by SIRT1. Work
from our laboratory also demonstrated a critical role of SIRT1
in podocyte injury in DKD. We showed that either knockdown
or knockout of Sirt1 specifically in podocytes aggravated DKD
injury in type 2 diabetic db/db mice (33) and in STZ-induced
diabetic mice (34). Importantly, our recent study demonstrated
that the podocyte-specific overexpression of SIRT1 was sufficient
to significantly attenuate podocyte injury and to impede DKD
progression in type1 diabetic OVE26 mice. Together, these
studies clearly demonstrate a protective role of SIRT1 against
DKD in experimental models of both type 1 and type 2 diabetes.

RENOPROTECTIVE MECHANISMS OF
SIRT1 IN DKD

As the cellular and molecular mechanisms of SIRT1 has been
recently reviewed (42, 45, 46), as well as the role and mechanism
of other sirtuins in kidney disease (47), this review is focused
primarily on its modulation of transcription factor through
deacetylation in the setting of DKD.

Effects of SIRT1 in Inflammation in
Diabetic Kidneys Through NF-κB and
STAT3 Deacetylation
Many studies suggest that SIRT1 regulates activity of several
transcription factors that regulate kidney cell homeostasis and
are involved in pathogenesis of DKD through deacetylation.
Systems biology analysis of microarray data suggests that JAK-
STAT and NF-κB are key inflammatory pathways activated
in diabetic kidneys (48, 49). Recently, we showed that the
acetylation of STAT3 and RelA/p65 is increased in kidneys from
diabetic patients and mouse models (33). More importantly, we
demonstrated that the podocyte-specific knockout of Sirt1 in
db/db mice led to higher levels of p65 and STAT3 acetylation
and resulted in greater degree of proteinuria and kidney injury
than in control db/db mice, implicating SIRT1 as a key inhibitor
of the NF-κB- and STAT3-induced inflammatory responses in
DKD (33). In addition, we found that expression of the key pro-
inflammatory factors mediated by NF-kB and Stat3 were also
increased in the kidney of Sirt1 knockout db/db mice, further
confirming a key role of Sirt1 in regulation of inflammation in
the diabetic kidney.

Effects of SIRT1 in Cell Death in Diabetic
Kidneys Through p53 and FOXO4
Deacetylation
Several lines of evidence indicate that p53 mediates apoptosis
of both podocytes and tubular epithelial cells in DKD (50–52).
SIRT1 has been shown to promote cell survival by suppressing
p53-dependent apoptosis in response to DNA damage and
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TABLE 1 | Summary of the in vivo studies of SIRT1 in DKD.

Approaches Animal models Tissue/Cell types Mechanisms regulated References

Dietary restriction Diabetic Wistar fatty (fa/fa) rats Whole kidney Inflammatory; autophagy (29)

Resveratrol db/db mice Whole kidney Oxidative stress (30)

Resveratrol db/db mice Whole kidney AMPK/PGC1a; Oxidative stress (31)

nicotinamide mononucleotide STZ-induced diabetic and db/db mice Tubule/podocyte crosstalk Epigenetics, Claudin-1 (32)

Sirt1 knockout Db/db mice Podocytes Inflammation; apoptosis (33)

Pyridoxamine

Sirt1 knockdown STZ-induced diabetic mice Podocytes Mitochondria; senescence (34)

hnRNP F db/db mice Tubular cells Oxidative stress (35)

Glycyrrhizic Acid db/db mice Whole kidney AMPK/PGC-1a (36)

Puerarin STZ-induced diabetic eNOS-null mice Podocytes Oxidative stress; inflammation (37)

Tangshen formula STZ-induced diabetic rats Whole kidney NF-kB/inflammation (38)

Sirt1 overexpression; agonists OVE26 mice Podocytes Mitochondrial function; apoptosis (39)

oxidative stress (5). The interplay of SIRT1-p53 pathway also
controls cellular senescence (53–55). We reported previously
that advanced glycation endproducts (AGEs) induce podocyte
apoptosis through FOXO4-mediated Bim expression and that
acetylation of FOXO4 is critical for mediating this effect
(17). Overexpression of SIRT1 inhibited AGE-induced FOXO4
acetylation and podocyte apoptosis.

Effects of SIRT1 in Mitochondrial
Dysfunction and Fibrosis in Diabetic
Kidneys Through of PGC-1α and Smad3
Deacetylation
SIRT1 has also been shown to regulate PGC-1α activity and to
play an important role for maintenance of mitochondrial
function in podocytes (56). The PGC-1α in regulation
of mitochondrial function has been well described for
neurodegenerative disorders (57). Both mitochondrial injury
and cellular senescence are key pathological processes mediating
kidney injury (58–60). Consistent with this, we have shown
recently SIRT1 deficiency in podocytes aggravates aging-
related kidney disease through enhanced cells senescence and
mitochondrial dysfunction (61). Although the effects of SIRT1
on Smad3 acetylation remain to be determined, resveratrol was
shown to affect acetylation but not phosphorylation of Smad3
to inhibit TGF-β1-induced up-regulation of collagen IV and
fibronectin mRNA levels in vitro and renal fibrosis in the model
of unilateral ureteral obstruction (UUO) in vivo (62). Therefore,
it is plausible that increased SIRT1 activity may also attenuate
renal fibrosis in DKD. Taken together, these studies suggest
that SIRT1, as a negative regulator of inflammation, cellular
senescence and mitochondrial dysfunction, is a key repressor of
DKD pathogenesis.

SIRT1 IS A POTENTIAL DRUG TARGET
FOR TREATMENT OF DKD

Given that SIRT1 is a key mediator in thwarting the progression
of DKD and other kidney diseases, development of therapeutic

FIGURE 1 | Role of SIRT1 in DKD pathogenesis. This schema summarizes

how Sirt1 mediates podocyte injury in DKD. The data suggest that Sirt1

expression is reduced in the diabetic glomeruli including podocytes. Reduced

SIRT1 expression leads to increased acetylation and activation of transcription

factors, such as NF-κB, STAT3, p53, and PGC1α, leading to exacerbated

inflammation, senescence/apoptosis, and mitochondrial dysfunction of kidney

cells such as podocytes (shown in blue arrows). All these processes interact

each other and contribute to the progression of DKD (shown in red arrows).

Therefore, SIRT1 agonists or inhibition of transcription factor acetylation

through use of bromodomain inhibitors will reverse these diseased processes

and could be developed to treat DKD. ( ): stimulation; ( ): inhibition;

( ): interaction.

strategies to specifically restore SIRT1 activity is warranted. In
support of this, we recently demonstrated that increased SIRT1
expression in podocytes attenuated albuminuria and glomerular
injury in OVE26 diabetic mice (39). As SIRT1 expression is
reduced in diseased kidneys, identifying the molecular basis
of its suppression in diabetic kidneys and to interfere in this
processmay be an avenue of therapeutic approach.We previously
showed that increased advanced glycation endproducts (AGEs)
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in in the diabetic milieu contribute to reduced SIRT1 expression
in podocytes (17). Inhibition of AGE formation by pyridoxamine
in vivo restored SIRT1 expression the glomeruli of db/db mice
and attenuated podocyte injury and progression of DKD (17).
Similar observations of SIRT1 reduction by AGEs were made in
mesangial cells in vitro (63).

Another approach would be to stimulate SIRT1 activity
through SIRT1 agonists. Resveratrol is a well-known SIRT1
agonist that has shown to improve DKD in several animal models
(30, 31). However, recent reports indicate that resveratrol may
not be a SIRT1-specific (64), nor are other purported SIRT1
agonists, such as SRT1720, SRT2183, and SRT1460 (65). We
also showed that puerarin, an extract from a Chinese herbal
medicine, attenuates diabetic kidney injury through activation
of SIRT1 and suppression of NOX4 expression in podocytes in
experimental diabetic mouse model (62). Other herbal medicines
or compounds have also been reported to improve DKD through
activation of SIRT1 (36, 38). Metformin is reported to improve
podocyte function by activating SIRT1 (66). However, SIRT1-
independent effects on podocytes or in DKD by non-specific
SIRT1 agonists or metformin cannot be ruled out. Recently,
we developed a new potent and selective SIRT1 agonist, BF175
(39). In cultured podocytes BF175 increased SIRT1-mediated
activation of PGC1-α and protected against high glucose-
mediated mitochondrial injury. In vivo, administration of BF175
for 6 weeks in type 1 diabetic OVE26 mice resulted in a
marked reduction in albuminuria and in glomerular injury in
a manner similar to podocyte-specific SIRT1 overexpression.
BT175 treatment also attenuated diabetes-induced podocyte loss
and reduced oxidative stress in glomeruli of OVE26 mice.
Therefore, BT175 and its analogs could be developed as novel
therapeutic strategy to treat DKD. However, these approaches
of targeting SIRT1 are not without limitations. As discussed
above, the specificity of the SIRT1 agonists remains a concern.
Given the heterogeneity of SIRT1 function, the ever expanding
list of its substrates, and the different effects of deacetylation
on its target protein functions, it’s possible that the beneficial
effects of SIRT1 are mixed with potentially pernicious side
effects.

As SIRT1 exerts its renoprotective effects through
deacetylation of key transcription factors (TFs) involved in
DKD, another therapeutic approach may be to directly regulate
the transcription factor acetylation through bromodomain
inhibitors (BrDi). Acetylated lysines of the key TFs involved in

DKD pathogenesis such as p65 NF-κB interact with proteins
containing bromodomains (67), and BrDi could suppress their
acetylation in a more specific manner. For instance, NF-κB
transcriptional activity is dependent upon its acetylation at lysine
310 (Lys310), and Lys310-acetylated p65 NF-κB recruits the BET
protein BRD4 in complex with positive transcription elongation
factor b (p-TEFb) and RNA polymerase II that together form
a productive transcriptional machinery complex (68). We
reported that a BET-specific BrDi MS417 suppresses TNF-α-
induced acetylation of p65 NF-κB and the expression of NF-κB
target genes in kidney cells in vitro and attenuates proteinuria
and glomerulosclerosis in a mouse model of HIV-associated
nephropathy in vivo. MS417 also inhibited AGE-induced
acetylation of p65 NF-κB in podocytes in vitro and mitigated
proteinuria in diabetic db/db mice. Therefore, MS417 or other
BrDi might be another class of potential drug candidates to treat
DKD patients.

In summary, SIRT1 has significant renoprotective effects
against podocyte injury in DKD (Figure 1), and SIRT1 agonists
and bromodomain inhibitors are promising candidates as
therapeutic approach in treatment of DKD patients.

Clinical Perspectives
Since a large amount of evidence suggest that Sirt1 is a
key molecule involving in the pathogenesis of DKD and the
expression of Sirt1 is suppressed in human diabetic kidney,
enhancing the SIRT1-induced transcription factor deacetylation
via SIRT1 agonists or bromodomain inhibitors may serve as
potential therapies for human DKD.
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