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ABSTRACT

SARS-CoV-2 is a betacoronavirus with a linear single-
stranded, positive-sense RNA genome, whose out-
break caused the ongoing COVID-19 pandemic. The
ability of coronaviruses to rapidly evolve, adapt,
and cross species barriers makes the development
of effective and durable therapeutic strategies a
challenging and urgent need. As for other RNA
viruses, genomic RNA structures are expected to
play crucial roles in several steps of the coron-
avirus replication cycle. Despite this, only a hand-
ful of functionally-conserved coronavirus structural
RNA elements have been identified to date. Here, we
performed RNA structure probing to obtain single-
base resolution secondary structure maps of the
full SARS-CoV-2 coronavirus genome both in vitro
and in living infected cells. Probing data recapitu-
late the previously described coronavirus RNA el-
ements (5′ UTR and s2m), and reveal new struc-
tures. Of these, ∼10.2% show significant covariation
among SARS-CoV-2 and other coronaviruses, hint-
ing at their functionally-conserved role. Secondary
structure-restrained 3D modeling of these segments
further allowed for the identification of putative drug-
gable pockets. In addition, we identify a set of single-
stranded segments in vivo, showing high sequence

conservation, suitable for the development of anti-
sense oligonucleotide therapeutics. Collectively, our
work lays the foundation for the development of in-
novative RNA-targeted therapeutic strategies to fight
SARS-related infections.

INTRODUCTION

RNA viruses encode the information needed to take con-
trol of the host cell on two levels (1). On one hand, the lin-
ear sequence of their RNA genomes encodes all the pro-
teins needed to take over the host cell machinery and to as-
semble new viral particles. On the other hand, their single-
stranded RNA genome folds back on itself to form intri-
cate secondary and tertiary structures that have been proven
essential for viral replication, protein synthesis, packaging,
immune system evasion and more. RNA viruses, that are
responsible for numerous deadly diseases (e.g. AIDS, Hep-
atitis C, SARS, Dengue and Ebola), are characterized by
higher mutation rates compared to DNA viruses, enabling
them to rapidly evolve and adapt (2). As a consequence of
their high mutation rates, RNA viruses can rapidly develop
resistance towards drugs and vaccines by slightly altering
their core proteins (3). In contrast, certain RNA structures
formed in the context of viral RNA genomes are well con-
served (1), in spite of changes in the underlying encoded
amino acid sequence, making them valuable therapeutic tar-
gets.
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Coronaviruses (CoV) are positive-sense, single-stranded
RNA viruses, members of the Coronaviridae family (4). This
family consists of four genera, of which two (alpha and
beta) can only infect mammals, while the other two (gamma
and delta) mostly infect birds, although some of them can
also infect mammals. These viruses were not anticipated
to be highly pathogenic in humans until the outbreak of
the severe acute respiratory syndrome coronavirus (SARS-
CoV) in 2002 (5). Since then, two other major outbreaks
of coronaviruses occurred, one by the Middle East respi-
ratory syndrome coronavirus (MERS-CoV) in 2012 and re-
cently by the new SARS-related coronavirus SARS-CoV-2
(also known as 2019-nCoV) at the end of 2019 (6). The lat-
ter, still ongoing at the time of writing this article, rapidly
resulted in a pandemic, with (to date, October 2020) >37
million people infected and over 1 million deaths across the
world. The ability to evolve inside different reservoirs and
to cross species barriers, infecting humans with high mor-
bidity and mortality, makes this genus a recurrent potential
threat for worldwide public health. Indeed, certain SARS-
CoV-like viruses from bats have been previously shown to
be able to infect human cells without the need for any prior
adaptation; thus, suggesting that SARS-related outbreaks
can potentially re-emerge at any time (5).

In light of these considerations, identifying new
therapeutically-relevant and durable druggable targets
for the treatment of coronavirus infections constitutes
a key and highly-timely need. In this perspective, RNA
structural elements represent attractive targets for drug
discovery. Indeed, inhibition of viral replication by RNA-
targeting small molecule drugs has already been proven
to be feasible for other RNA viruses, such as the human
immunodeficiency virus (HIV), hepatitis C virus (HCV),
SARS-CoV and influenza A virus (7) (IAV). Additionally,
the identification of highly-conserved weakly structured
regions within viral RNA genomes might aid the design of
oligonucleotide-bases antiviral therapeutics (8).

Coronaviruses bear the largest genomes among RNA
viruses, ranging from ∼26–32 kb. A handful of functional
cis-regulatory RNA structural elements have been previ-
ously identified by phylogenetic analyses and these include
structures in the 5′ and 3′ untranslated regions (UTRs)
and the ribosomal frameshifting element (9–11) (FSE). In
the 5′ UTR of most betacoronaviruses (Beta-CoV), sev-
eral stem-loops (SL1–5) involved in mediating viral repli-
cation have been identified. The ORF1a-ORF1b boundary
hosts the FSE (12). This pseudoknotted structure is pivotal
for the programmed ribosomal frameshifting, that allows
the translation of the ORF1ab polyprotein. A second puta-
tive pseudoknot has been proposed to be located in the 3′
UTR (13,14), that includes an extremely conserved octanu-
cleotide within the hypervariable region (15) (HVR), and
the stem-loop-like 2 motif (s2m) (16).

Sharing over 79.6% sequence identity to the genome of
SARS-CoV (6), SARS-CoV-2 has been predicted to harbor
these typical RNA structure elements (17). However, the
structural complexity of SARS-CoV-2 and other Beta-CoV
genomes has remained largely unexplored so far. Deep com-
prehension of the structural architecture of the SARS-CoV-
2 RNA genome is crucial to identify new key (un)structured

elements for the development of innovative therapeutic ap-
proaches.

To address this need, in this work we provide the first
experimental characterization of the full-length genome of
a coronavirus by SHAPE and DMS mutational profiling
(SHAPE-MaP and DMS-MaPseq) analyses (18,19), using
the novel SARS-CoV-2 virus as a model. After modeling
the secondary structure of the entire RNA genome under
both in vitro and in vivo conditions, we identified a sub-
set of regions showing a low propensity towards folding in
vivo, ideal for the design of antisense oligonucleotide (ASO)
therapeutics, as well as a set of stable RNA structures, co-
herently folded under both in vitro and in vivo conditions,
of which at least 10.2% are under selective pressure and
show significant covariation. By coupling secondary struc-
ture constraints and coarse-grained 3D modeling, we then
infer the 3D structure of these elements and identify the
most suitable pockets for accommodating the interaction
with small molecule drugs. Collectively, our work provides
the cornerstone for the development of RNA-targeted ther-
apeutic strategies to fight SARS-related infections.

MATERIALS AND METHODS

Synthesis of 2-methylnicotinic acid imidazolide (NAI)

NAI was synthesized as previously described (20). Briefly,
137.14 mg of 2-methylpyridine-3-carboxylic acid (Sigma
Aldrich, cat. 325228) were resuspended in 500 �l DMSO
anhydrous (Sigma Aldrich, cat. 276855). ∼162.15 mg of
1,1’-carbonyldiimidazole (Sigma Aldrich, cat. 115533) were
resuspended in 500 �l DMSO anhydrous and added drop-
wise to the 2-methylpyridine-3-carboxylic acid solution
while constantly stirring, over a period of 5 minutes. The
reaction mixture was then incubated at room temperature
with constant stirring for 2 h. This mixture (assumed to
represent a 1 M stock) was aliquoted in 50 �l aliquots and
stored at −80◦C.

Cell culture and SARS-CoV-2 infection

Vero E6 cells were cultured in T-175 flasks in Dulbecco’s
modified Eagle’s medium (DMEM; Lonza, cat. 12-604F),
supplemented with 8% fetal calf serum (FCS; Bodinco), 2
mM L-glutamine, 100 U/ml of penicillin, and 100 �g/ml
of streptomycin (Sigma Aldrich, cat. P4333-20ML) at 37◦C
in an atmosphere of 5% CO2 and 95–99% humidity. Cells
were infected at an MOI of 1.5 with SARS-CoV-2/Leiden-
0002 (GenBank accession: MT510999), a clinical isolate ob-
tained from a nasopharyngeal sample at LUMC, which was
passaged twice in Vero E6 cells before use. Infections were
performed in Eagle’s minimal essential medium (EMEM;
Lonza, cat. 12-611F) supplemented with 25 mM HEPES,
2% FCS, 2 mM L-glutamine, and antibiotics. At 16 h post-
infection, infected cells were harvested by trypsinization,
followed by resuspension in EMEM supplemented with 2%
FCS, and then washed with 50 ml 1× PBS.

All experiments with infectious SARS-CoV-2 were per-
formed in a biosafety level 3 facility at the LUMC.
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In vivo RNA probing

Infected Vero E6 cells were resuspended in 1× PBS, and
NAI from a 1 M stock (in DMSO) was added at a final con-
centration of 100 mM. A corresponding amount of DMSO
was added to the control sample. Samples were then incu-
bated at 37◦C with constant shaking for 15 min, followed
by quenching of NAI through the addition of DTT at a fi-
nal concentration of 0.5 M. Following centrifugation at 10
000 × g for 1 min, the supernatant was discarded and cell
pellets were resuspended in 2 mL ice-cold TriPure Isolation
Reagent (Sigma Aldrich, cat. 11667157001), then stored at
−80◦C until further use.

Total RNA extraction and in vitro folding

Approximately 5 × 106 of the harvested infected cells were
resuspended in 1 ml of TriPure Isolation Reagent and 200
�l of chloroform were added. The sample was vigorously
vortexed for 15 s and then incubated for 2 min at room
temperature, after which it was centrifuged for 15 min at
12 500 × g (4◦C). The upper aqueous phase was collected
in a clean 2 ml tube, supplemented with 1 mL (∼2 vol-
umes) of 100% ethanol, and then loaded on an RNA Clean
& Concentrator-25 column (Zymo Research, cat. R1017).
For in vitro folding, ∼2 �g of total RNA in a volume of
39 �l were denatured at 95◦C for 2 min, then transferred
immediately to ice and incubated for 1 min. 10 �l of ice-
cold 5× RNA Folding Buffer [500 mM HEPES pH 7.9;
500 mM NaCl] supplemented with 20 U of SUPERase•In™
RNase Inhibitor (ThermoFisher Scientific, cat. AM2696)
were added. RNA was then incubated for 10 min at 37◦C to
allow secondary structure formation. Subsequently, 1 �l of
500 mM MgCl2 (pre-warmed at 37◦C) was added and RNA
was further incubated for 20 min at 37◦C to allow tertiary
structure formation.

In vitro probing of RNA

For in vitro SHAPE probing of RNA, NAI was added to a
final concentration of 50 mM and samples were incubated
at 37◦C for 10 min. A negative control reaction was also
prepared, by adding an equal amount of DMSO. For DMS
probing, dimethyl sulfate (Sigma Aldrich, cat. D186309)
from a 1:6 dilution in 100% ethanol was added at a final con-
centration of 150 mM and samples were incubated at 37◦C
for 2 min. Reactions were then quenched by the addition of
1 volume DTT 1 M and then purified on an RNA Clean &
Concentrator-5 column (Zymo Research, cat. R1013).

Extraction of native deproteinized E. coli rRNAs

Deproteinized E. coli RNA was prepared essentially as pre-
viously described (21), with minor changes. Briefly, a single
colony of E. coli K-12 DH10B was picked and inoculated in
LB medium without antibiotics, then grown to exponential
phase (OD600 ∼ 0.5). 2 ml aliquots were collected by cen-
trifugation at 1000 × g (4◦C) for 5 min. Cell pellets were
resuspended in 1 ml of Resuspension Buffer [15 mM Tris–
HCl pH 8.0; 450 mM sucrose; 8 mM EDTA], and lysozyme
was added to a final concentration of 100 �g/ml. After incu-
bation at 22◦C for 5 min and on ice for 10 min, protoplasts

were collected by centrifugation at 5000 × g (4◦C) for 5 min.
Pellets were resuspended in 120 �l Protoplast Lysis Buffer
[50 mM HEPES pH 8.0; 200 mM NaCl; 5 mM MgCl2; 1.5%
SDS], supplemented with 0.2 �g/�l Proteinase K. Samples
were incubated for 5 min at 22◦C and for 5 min on ice. SDS
was removed by addition of 30 �l SDS Precipitation Buffer
[50 mM HEPES pH 8.0; 1 M potassium acetate; 5 mM
MgCl2], followed by centrifugation at 17 000 × g (4◦C) for
5 min. Supernatant was then extracted 2 times with phe-
nol:chloroform:isoamyl alcohol (25:24:1, pre-equilibrated
three times with a buffer containing [50 mM HEPES pH
8.0; 200 mM NaCl; 5 mM MgCl2]), and once with chlo-
roform. 20 U SUPERase•In™ RNase Inhibitor were then
added and RNA was equilibrated at 37◦C for 20 min prior
to probing.

Ex vivo probing of E. coli rRNAs

180 �l of deproteinized E. coli rRNAs, pre-equilibrated at
37◦C for 20 min, were mixed with 20 �l of NAI. RNA was
then allowed to react at 37◦C for 15 min, with moderate
shaking, after which 200 �l of 1 M DTT were added, to
quench the reaction. Samples were then vortexed briefly and
1 ml of ice-cold QIAzol added to each sample, followed by
extensive vortexing. RNA extraction was carried out as al-
ready described above for SARS-CoV-2-infected cells.

Multiplex SHAPE-MaP/DMS-MaPseq of in vitro refolded
SARS-CoV-2 RNA

For the SHAPE-MaP/DMS-MaPseq analysis of the in
vitro refolded SARS-CoV-2 genome, 70 oligonucleotide
pairs, tiling the entire length of the genome (29 903
nt), were automatically designed using Primer3 (22)
and the following parameters: amplicon size between
480 and 520 bp, maximum poly(N) length between
2 and 3, minimum/optimal/maximum oligonucleotide
size of 20/25/30, minimum/optimal/maximum Tm of
56/60/62 degrees, minimum/optimal/maximum GC con-
tent of 30/50/65%. Also, pairs were designed in such a way
that the target amplicon would include the target region of
the reverse primer from the previous set and of the forward
primer of the following set. Primers were then searched
against the GENCODE v33 human transcriptome, keeping
only those with <60% predicted base-pairing or >60% pre-
dicted base-pairing and more than two mismatched bases
at the 3′ end. For reverse transcription, all reverse primers
were equimolarly pooled to yield a 100 �M RT primer mix.
An additional anchored oligo-dT primer (TTTTTTTTTT
TTTTTTTTTTVN) was added to the mix. For SHAPE-
treated samples, two 20 �l reverse transcription reactions
were carried out. 3 �g of total RNA were mixed with 0.5 �l
RT primer mix and 1 �l dNTPs (10 mM each), incubated at
70◦C for 5 min and then transferred immediately to ice for
1 min. Reactions were then supplemented with 4 �l 5× RT
Buffer [250 mM Tris–HCl pH 8.3; 375 mM KCl], 2 �l DTT
0.1 M, 1 �l MnCl2 120 mM, 20 U SUPERase•In™ RNase
Inhibitor, and 200 U SuperScript II RT (ThermoFisher Sci-
entific, cat. 18064014). Reactions were incubated at 42◦C for
2 h and then RT was heat-inactivated at 75◦C for 15 min.
RNA was then degraded by the addition of 5 U RNase H
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(New England Biolabs, cat. M0297S) and cDNA from ev-
ery two reactions was purified on a single RNA Clean &
Concentrator-5 column and eluted in 36 �l NF H2O. For
DMS-treated samples, two 20 �l reverse transcription reac-
tions were carried out. 3 �g of total RNA were mixed with
0.5 �l RT primer mix and 2 �l dNTPs (10 mM each), incu-
bated at 70◦C for 5 min and then transferred immediately
to ice for 1 min. Reactions were then supplemented with 4
�l 5× RT Buffer [250 mM Tris–HCl pH 8.3; 375 mM KCl;
15 mM MgCl2], 1 �l DTT 0.1 M, 20 U SUPERase•In™
RNase Inhibitor, and 200 U TGIRT™-III Enzyme (InGex,
cat. TGIRT50). Reactions were incubated at 42◦C for 5 min,
then at 57◦C for 2 h. To break the RT-RNA–cDNA com-
plex, 1 �l 5 M NaOH was added, and samples were boiled
at 95◦C for 3 min. cDNA from every two reactions was pu-
rified on a single RNA Clean & Concentrator-5 column and
eluted in 36 �l NF H2O.

For targeted amplification, primer pairs were split into 2
non-overlapping sets, odd and even. For each of these sets,
pairs were pooled in smaller sets of 3–4 pairs, as follows: 1–
19–37–55, 2–20–38–56, 3–21-39–57, 4–22-40–58, 5–23-41–
59, 6–24-42–60, 7–25–43–61, 8–26-44–62, 9–27-45–63, 10–
28–46–64, 11–29–47–65, 12–30–48–66, 13–31-49–67, 14–
32–50–68, 15–33–51–69, 16–34–52–70, 17–35–53, 18–36–
54. The complete primer list can be found in Supplementary
Table S1. PCR reactions were carried out in 50 �l, using 2
�l of eluted cDNA, 0.3 mM final each dNTP, 0.1 �M fi-
nal each primer in the set and 2.5 U TaKaRa Taq™ DNA
Polymerase (TaKaRa, cat. R001A). Cycling was performed
using a touch-down approach. Briefly, for the first 10 cycles,
the annealing temperature was lowered by 0.5◦C per cycle,
starting at 58◦C. Then, 20 additional cycles were performed
at the lowest temperature. PCR products were purified us-
ing 1 volume of NucleoMag NGS Clean-up and Size Se-
lect beads (Macherey Nagel, cat. 744970), checked on a 2%
agarose gel. Each primer set gave a single specific band of
the expected size. PCR products were equimolarly pooled to
yield the final odd and even sets. 500 ng of each set were frag-
mented in a final volume of 20 �l, using 2 �l of NEBNext
dsDNA Fragmentase (New England Biolabs, cat. M0348),
supplemented with 1 �l 200 mM MgCl2, by incubating at
37◦C for 25 min. This yielded fragments in the range of
∼50–200 bp. Reactions were purified using 1 volume of Nu-
cleoMag NGS Clean-up and Size Select beads. 5 ng of frag-
mented DNA were then used as input for the NEBNext®
Ultra™ II DNA Library Prep Kit for Illumina® (New Eng-
land Biolabs, cat. E7645L), as per manufacturer instruc-
tions.

SHAPE-MaP of E. coli rRNAs and in vivo probed SARS-
CoV-2

Total RNA from infected and probed Vero E6 cells was first
depleted of ribosomal RNAs using the RiboMinus™ Eu-
karyote System v2 (ThermoFisher Scientific, cat. A15026),
following manufacturer instructions. Total RNA from E.
coli or ribo- RNA from infected and probed Vero E6 cells
was fragmented to a median size of 150 nt by incubation
at 94◦C for 8 min in RNA Fragmentation Buffer [65 mM
Tris–HCl pH 8.0; 95 mM KCl; 4 mM MgCl2], then puri-
fied with NucleoMag NGS Clean-up and Size Select beads

(Macherey Nagel, cat. 744970), supplemented with 10 U
SUPERase•In™ RNase Inhibitor, and eluted in 8 �l NF
H2O. Eluted RNA was supplemented with 1 �l 50 �M ran-
dom hexamers and 1 �l dNTPs (10 mM each), then incu-
bated at 70◦C for 5 min and immediately transferred to ice
for 1 min. Reverse transcription reactions were conducted
in a final volume of 20 �l. Reactions were supplemented
with 4 �l 5– RT Buffer [250 mM Tris–HCl pH 8.3; 375
mM KCl], 2 �l DTT 0.1 M, 1 �l MnCl2 120 mM, 20 U
SUPERase•In™ RNase Inhibitor and 200 U SuperScript II
RT. Reactions were incubated at 25◦C for 10 min to allow
partial primer extension, followed by 2 h at 42◦C. SSII was
heat-inactivated by incubating at 75◦C for 15 min. 6 mM
final EDTA was added to chelate Mn2+ ions, followed by
5 min incubation at room temperature and addition of 6
mM final MgCl2. Reverse transcription reactions were then
used as input for the NEBNext® Ultra II Non-Directional
RNA Second Strand Synthesis Module (New England Bio-
labs, cat. E6111L). Second strand synthesis was performed
by incubating 1 h at 16◦C, as per manufacturer instructions.
DsDNA was purified using NucleoMag NGS Clean-up and
Size Select beads, and used as input for the NEBNext® Ul-
tra™ II DNA Library Prep Kit for Illumina, following man-
ufacturer instructions.

SHAPE-MaP/DMS-MaPseq data analysis

Analysis of SHAPE-MaP data has been conducted us-
ing RNA Framework v2.6.9 (23) (https://github.com/
dincarnato/RNAFramework). Reads pre-processing and
mapping was performed using the rf-map module (parame-
ters: -ctn -cmn 0 -cqo -cq5 20 -b2 -mp ‘–very-sensitive-local’).
Reads were trimmed of terminal Ns and low-quality bases
(Phred < 20). Reads with internal Ns were discarded. Map-
ping was performed using the ‘very-sensitive-local’ preset
of Bowtie2 (24). The SHAPE mutational signal was then
derived using the rf-count module (parameters: -m -rd), en-
abling the right re-alignment of deletions. For DMS, an ad-
ditional restraint on the maximum deletion size was im-
posed (parameter: -md 3). When processing in vitro SARS-
CoV-2 data, a mask file containing the sequences of primer
pairing regions was passed along (through the -mf parame-
ter). For the in vitro samples, generated RC files, from both
the even and odd sets, containing per base mutation counts
and coverage, were then combined in a single RC file using
the rf-rctools module (mode: merge). Data normalization
was performed using the rf-norm module (parameters: -sm
<3 (NAI) or 4 (DMS)> -nm 3 -n 500 -mm 1), by using the
Siegfried et al. scoring scheme (18) and box-plot normal-
ization of base reactivities. For the normalization of DMS
samples, only A and C bases were considered (parameter:
-rb AC).

Experimentally-informed SARS-CoV-2 RNA secondary
structure modeling

To model the secondary structure of the SARS-
CoV-2 genome, we first sought to determine optimal
slope/intercept parameters by grid search, using the rf-
jackknife module (parameters: -rp ‘-md 600 -nlp’ -x) and
ViennaRNA package v2.4.14 (25), with E. coli SHAPE-
MaP data and reference E. coli 16S/23S rRNA structures

https://github.com/dincarnato/RNAFramework
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(26). Isolated base-pairs were disallowed, the maximum
base-pairing distance was set to 600 nt and the relaxed
structure comparison mode (27) was enabled (a base pair
i/j was considered to be correctly predicted if any of the
following pairs exist in the reference structure: i/j; i–1/j;
i+1/j; i/j–1; i/j+1). Optimal slope and intercept parameters
were respectively determined to be 0.8 and −0.2 (extremely
close to previously determined parameters (28) 1.1 and 0).
For DMS, we used the previously determined slope of 2.6
and intercept of −1 (21).

As folding the full SARS-CoV-2 genome as a single entity
would be an extremely challenging, and currently unfeasi-
ble, computational task, folding was performed using the rf-
fold module and a windowed approach previously used by
us and other groups (18,21) to model viral RNA genomes
(parameters: -sl <slope> -in <intercept> -w -fw 3000 -fo 300
-wt 200 -pw 1500 -po 250 -dp -sh -nlp -md 600). At all stages,
SHAPE/DMS data was incorporated in the form of soft
constraints. Briefly, in the first stage partition function fold-
ing was performed by sliding a window of 1500 nt along the
genome, with an offset of 250 nt. For each window, the first
and last 100 nt were ignored, to avoid terminal biases. Two
additional foldings were computed at both the 5′ and 3′ ends
to increase structure sampling (window sizes: 1400 and 1450
nt). Base-pairing probabilities from all windows were then
averaged and base-pairs with a probability ≥0.99 were kept
and used as a constraint for the next stage. At this stage,
base-pairing probabilities were also used to calculate per-
base Shannon entropies. In the second stage, the maximum
expected accuracy (MEA) structure was predicted by slid-
ing a window of 3000 nt, with an offset of 300 nt along the
genome. Four additional foldings were computed at both
the 5′ and 3′ ends to increase structure sampling (window
sizes: 2900, 2950, 3050 and 3100 nt). Base-pairs appearing
in >50% of the windows were then retained to yield the
final secondary structure pseudoknot-free model. Pseudo-
knots were instead introduced during the modeling of the
3D structure.

Identification of candidate RNA structures

For the identification of candidate RNA structures, median
Shannon entropies and SHAPE reactivities were first cal-
culated in sliding, centered, 50 nt windows. Then, a win-
dow of 50 nt was slid along the genome. Windows in which
>75% of the bases were below both the global Shannon
and SHAPE median (calculated on the full SARS-CoV-2
genome) were picked and windows residing <10 nt apart
were merged. The same procedure was repeated for both the
SHAPE-treated in vitro and in vivo samples. In addition, for
the in vitro sample, only regions having low Shannon (and
showing coherent folding) also in the DMS-treated sam-
ple were retained. To only select segments likely to repre-
sent well-defined locally-stable RNA structures, we further
predicted three additional structures by using the in vitro
SHAPE data as a constraint, and by increasing the fold-
ing and partition function window sizes to 3000, 5000 or
10000 nt, and removing any restraint on the maximum base-
pairing distance. Windows were then slid in 10% increments.
Structures showing coherent folding in all three predictions,
as well as between in vitro and in vivo structure models, were

selected. Coherence between structures was calculated as
the geometric mean of PPV and sensitivity, with a stringent
cutoff of 0.8. Only structure elements having >50% of the
segment they spanned falling within a low Shannon – low
SHAPE region were kept for downstream analyses.

Identification of low Shannon––high SHAPE regions

For the identification of low Shannon––high SHAPE re-
gions, instead, a window of 25 nt was slid along the genome.
Windows in which >75% of the bases were below the global
Shannon median and above the global SHAPE median (cal-
culated on the full SARS-CoV-2 genome) and >50% of
the bases were predicted to be single-stranded in the MEA
structure, were picked and windows residing less than 10 nt
apart were merged.

Identification of conserved RNA structure elements

To identify conserved low Shannon––low SHAPE RNA
structure elements, we implemented an automated pipeline
(cm-builder; https://github.com/dincarnato/labtools) built
on top of Infernal 1.1.3 (29). Briefly, we first built a covari-
ance model (CM) from a Stockholm file containing only
the SARS-CoV-2 sequence and the structure of the selected
elements, using the cmbuild module. After calibrating the
CM using the cmcalibrate module, it was used to search
for RNA homologs in a database composed of all the non-
redundant coronavirus complete genome sequences from
the ViPR database (30) (https://www.viprbrc.org/brc/home.
spg?decorator = corona), as well as a set of representative
coronavirus genomes from NCBI database, using the cm-
search module. Only matches from the sense strand were
kept and a very relaxed E-value threshold of 10 was used at
this stage to select potential homologs. Three additional fil-
tering criteria were used. First, we took advantage of the ex-
tremely conserved architecture of coronavirus genomes (31)
and restricted the selection to matches falling at the same
relative position within their genome, with a tolerance of
3.5% (roughly corresponding to a maximum allowed shift
of 1050 nt in a 30 kb genome). Through this more ‘conserva-
tive’ selection, we only kept matches likely to represent true
structural homologs, although at the cost of probably los-
ing some true matches. Second, we filtered out matches re-
taining <55% of the canonical base-pairs from the original
structure elements. Third, truncated hits covering <50% of
the structure were discarded. The resulting set of homologs
was then aligned to the original CM using the cmalign mod-
ule and the resulting alignment was used to build a new CM.
The whole process was repeated for a total of three times.
The alignment was then refactored, removing gap-only po-
sitions and including only bases spanning the first to the
last base-paired residue. The alignment file was then an-
alyzed using R-scape 1.4.0 (32) and APC-corrected G-test
statistics to identify motifs showing significantly covarying
base-pairs. Only structures with at least 1 covarying pair at
E-value <0.05, or two covarying pairs at E-value <0.1 were
retained. Stockholm files for these structures were then used
to build the final CMs and to re-search the entire database
with the default stringent E-value cutoff of 0.01.

https://github.com/dincarnato/labtools
https://www.viprbrc.org/brc/home.spg?decorator%20=%20corona


Nucleic Acids Research, 2020, Vol. 48, No. 22 12441

Determination of low Shannon––high SHAPE regions’ con-
servation

To assess the sequence conservation of the identified low
Shannon––high SHAPE regions, we computed four mul-
tiple sequence alignments using MAFFT v7.429 (33) (pa-
rameters: –maxiterate 100 –auto), the reference SARS-CoV-
2 sequence and one of the following datasets: (i) SARS-
CoV (243 sequences); (ii) MERS-CoV (281 sequences);
(iii) other Beta-CoV (excluding SARS-CoV/SARS-CoV-
2/MERS-CoV, 681 sequences); (iv) other CoV (excluding
Beta-CoV, 1657 sequences). Sequences were obtained from
the ViPR database and 100% identical sequences were col-
lapsed. Region conservation was calculated as the average
of the conservation of each nucleotide in that region (using
SARS-CoV-2 as the reference).

RNA 3D structure modeling

3D structures were predicted for the aforementioned seg-
ments using SimRNA (34), a method for simulations of
RNA folding, which uses a coarse-grained representation,
relies on the Monte Carlo method for sampling the confor-
mational space, and employs a statistical potential to ap-
proximate the energy of the studied RNA molecule (34,35).
The patterns of base-pairs inferred to be common to in
vitro and in vivo conditions were used as soft restraints. It
is important to emphasize that SimRNA interprets the sec-
ondary restraints only in a positive sense (i.e. it attempts to
pair the restrained residues, while other residues are allowed
to sample different conformations). As a result, residues
not restrained to be paired, may be eventually found to be
paired (canonically or non-canonically) in the resulting low-
energy models.

By default, for each RNA segment analyzed, we car-
ried out eight independent simulations with SimRNA, each
comprising 10 replicas, with 16 million Monte Carlo steps
in each run. Each simulation resulted in a trajectory, com-
prising up to 10 000 conformations (hence 80 000 con-
formations total), broadly representing local energy min-
ima in the whole conformational space sampled by Sim-
RNA for a given molecule. For each segment, the 1000 best-
scored (according to SimRNA energy criterion) conforma-
tions in a coarse-grained SimRNA representation were se-
lected to represent the low-energy regions of the conforma-
tional landscape and approximate the distribution of most
common conformations existing in solution. These 1000
conformations were clustered at the RMSD threshold equal
to 0.1 times the length of the sequence (a default parameter
used in SimRNA), yielding ensembles of similar conforma-
tions (up to 10 clusters for a given RNA). A single lowest-
energy representative of each cluster was retained to rep-
resent a given ensemble of structurally similar low-energy
conformations.

For the 1000 best-scored conformations for each seg-
ment, all-atom models were generated and their confor-
mational details were refined by running 5000 steps of a
steepest-descent minimization with QRNAS (36) which is
an extension of the AMBER simulation method (37) with
additional restraints. For each of the 1000 models, the sec-
ondary structure was extracted by running ClaRNA (38)

and the set of 1000 secondary structures was used to gener-
ate the consensus structure for each segment, to aid in the
data visualization and for comparison with the secondary
structure used as restraints.

Prediction of potential ligand binding sites in RNA 3D struc-
tures (druggable pockets)

To identify potential ligand-binding pockets in RNA 3D
structures, we used Fpocket (39), originally developed for
the identification of ligand-binding pockets in proteins.

We conducted a benchmarking study on a small subset of
known viral RNA structures bound to their small molecule
or peptide ligands (PDB codes: 1ETG [Rev response el-
ement with Rev peptide], 1LVJ [HIV-1 TAR with PMZ],
1UTS [HIV-1 TAR with P13], 2KMJ [HIV-2 TAR with
a pyrimidinylpeptide], 2KTZ [HCV IRES with ISH], and
2L94 [HIV-1 FSE with the frameshifting inhibitor DB213]).
These RNAs were folded using SimRNA (one simulation
with 10 replicas and 16 million Monte Carlo steps). For
each RNA, 1000 decoys with the lowest SimRNA energy
were identified, their all-atom conformations were gener-
ated, and analyzed with Fpocket. In each analyzed model,
a ribonucleotide residue with at least two atoms within
the pocket was considered as a potential ligand-contacting
residue. For each residue in each RNA, a normalized score
was assigned based on the total number of contacts pre-
dicted in the 1000 low-energy conformations. The normal-
ized score, Si for a residue i in an RNA sequence of length
L was calculated as follows:

Si = si

〈S〉
where si is the number of contacts for residue i, and <S> is
the average number of contacts, calculated as:

〈S〉 =
∑L

i = 1 si

L

To aid in the visualization of the 3D models, the B-
factor field in the PDB files was changed to the relative
ligand-binding score S from the F-pocket analysis, using
the programs we previously developed for the RNAProbe
web server (40). The residues with score S of 1.2 or above
were selected and extended by one residue on either side to
include the neighbors at the sequence level. After the ex-
tension, the stretches with six nucleotides or more were re-
tained. The shorter stretches were added, if any of their con-
stituent residues were paired with the longer ones, based
on the consensus secondary structure derived from 1000
lowest-energy decoys. Additional residues forming Watson–
Crick base pairs with the nucleotides in these stretches were
also included. The resulting set of residues was considered
a candidate pocket, reflecting the structural features of all
1000 models per RNA analyzed.

To retrieve the potentially druggable pockets in complex
3D motifs from the SARS-CoV-2 models, we applied the
same procedure to the sets of 1000 best-scored models gen-
erated for conserved and stably structured regions of the vi-
ral RNA described above. The pockets were evaluated visu-
ally in the context of the secondary structure as well as in
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3D models (representatives of largest clusters), and in some
cases, larger pockets were subdivided.

RESULTS

In vitro and in vivo mapping of the SARS-CoV-2 genome
RNA structure

To characterize the secondary structure landscape of
SARS-CoV-2, we performed both SHAPE and dimethyl
sulfate (DMS) mutational profiling (SHAPE-MaP and
DMS-MaPseq) analyses of the entire viral genome (∼30 kb)
following in vitro refolding, as well as SHAPE-MaP analysis
in living infected Vero E6 cells following 2-methylnicotinic
acid imidazolide (NAI) probing. For in vitro experiments,
total RNA from Vero E6 cells infected with SARS-CoV-2
was refolded and probed with NAI, or with DMS to pro-
vide orthogonal validation. This approach has a consider-
able advantage, compared to in vitro transcription, of al-
lowing the analysis of high amounts of full-length SARS-
CoV-2 RNA, bearing post-transcriptional RNA modifica-
tions that could occur in vivo during natural infection, and
that might affect local RNA folding. For all conditions,
we obtained two independent replicates. Mutational signa-
tures showed high correlations for all experiments (in vitro
SHAPE R2 = 0.984; in vitro DMS R2 = 0.987; in vivo
SHAPE R2 = 0.876; Figure 1A), hence replicates were com-
bined for downstream analyses.

We observed good agreement between known Beta-CoV
secondary structure elements (5′ UTR and 3′ stem-loop II-
like motif) and reactivities measured both in vitro and in vivo
(Figure 1B and Supplementary Figure S1), with on average
∼91.3% of highly reactive bases (≥0.7) not being involved
in canonical base-pairing, or residing adjacent to helices
termini or bulges/loops (in vitro SHAPE: 88.5%; in vitro
DMS: 96.1%; in vivo SHAPE: 89.3%). Comparison between
in vitro and in vivo SHAPE reactivities showed unexpectedly
high correlation (R2 = 0.552; Figure 2A), as compared, for
example, to a previous study conducted in Influenza A virus
(21), suggesting that, at least in part, sequence and thermo-
dynamics alone are able to drive SARS-CoV-2 RNA fold-
ing. Nonetheless, as previously described for other RNAs
(21,41,42), significant differences exist when looking at re-
activity distributions, with the in vivo structure being skewed
towards higher reactivity values, suggesting a slightly lower
degree of structuring as compared to the in vitro structure
(median SHAPE in vivo: 0.25; median SHAPE in vitro: 0.20;
P < 2.2e–16, Wilcoxon rank sum test; Figure 2B). This can
be, at least partly, a consequence of the ribosome-mediated
unfolding of the SARS-CoV-2 genome during translation
(43). In agreement with this hypothesis, the Pearson corre-
lation calculated only over the first and last 500 nt of the
SARS-CoV-2 genome, roughly corresponding to the UTR
regions, showed a markedly higher correlation (R2 = 0.8).
Nonetheless, we cannot rule out the possibility that the ob-
served structural differences might arise from the presence
of multiple alternative conformations within high Shannon
entropy regions. Accordingly, the distribution of Gini in-
dexes, a measure of the evenness of a distribution (41,42,44),
calculated in 50 nucleotide sliding windows, showed sig-
nificantly higher Gini index values for the SARS-CoV-2
genome in vitro (median Gini in vivo: 0.55; median Gini in

vitro: 0.63; P < 2.2e–16, Wilcoxon rank sum test; Figure
2C), indicating an overall higher degree of structuring as
compared to the genome in vivo.

Next, we used SHAPE-derived constraints to model the
secondary structure of the SARS-CoV-2 genome (see Meth-
ods). This approach has been extensively validated and
previously applied by us and other groups to successfully
map viral RNA structures (18,21). To convert NAI reac-
tivities into pseudo-free energy contributions, a comple-
mentary SHAPE-MaP dataset was produced by probing E.
coli rRNAs with NAI under ex vivo deproteinized condi-
tions and determined optimal slope and intercept to be 0.8
and −0.2 by grid search, respectively (Supplementary Fig-
ure S2). For DMS, previously determined parameters were
used (21). By incorporating these parameters into our RNA
Framework algorithm for probing-directed RNA structure
prediction (23), we performed the experimentally-guided
modeling of the SARS-CoV-2 RNA genome secondary
structure, under both in vitro (Figure 3) and in vivo (Fig-
ure 4) conditions. Previously described RNA structure ele-
ments typical of Sarbecoviruses and other Beta-CoV (11),
such as 5′ UTR helices S1 to S7 and the 3′ UTR stem-loop
II-like motif (s2m) were successfully modeled in the context
of the full genome, without the need to impose any hard
constraints, supporting the high accuracy and reliability of
our analysis. Interestingly, the recently proposed stem-loops
SL8 to SL10 (17) (position: ∼400–450 nt) are not supported
by our data. Instead, the region spanning these three short
hairpins appears to be involved in the formation of a large
stem-loop-like structure, spanning nucleotides 407–478 (pu-
tative stem–loop 8, pSL8; Figure 1).

To only select high confidence RNA structure elements,
to be used for the development of new RNA-targeted
therapeutic strategies, we implemented a number of fil-
tering steps. First, we identified regions having both low
SHAPE and low Shannon entropy in all structure mod-
els. The Shannon entropy provides an estimate of the like-
lihood of a given RNA region to fold into multiple alter-
native conformations (18). We therefore selected regions
showing low Shannon entropies both in vitro and in vivo.
Starting from the in vitro SHAPE-guided model, we then
selected only structures falling within low SHAPE––low
Shannon regions, and that were predicted to fold coherently
in all the analyzed datasets. This filtering aimed at select-
ing only highly thermodynamically-favorable RNA struc-
ture elements, folding into a single well-defined, and unam-
biguously modeled, conformation. To further rule out the
possibility that some of these elements have been predicted
only as a consequence of the chosen analysis parameters,
such as folding and partition function window size and off-
set, we further selected only those structures coherently pre-
dicted with increasingly larger window sizes (3000, 5000 and
10 000 nucleotides) in the absence of any constraint on the
maximum base-pair distance. Notably, most of the identi-
fied structures passed this filtering step, indicating that they
represent bona fide locally-stable RNA structure elements.
This workflow resulted in the selection of 87 highly struc-
tured regions. Additionally, we compared the folding free
energy of these structures to that of 1000 shuffled sequences,
obtained by keeping either the same nucleotide or dinu-
cleotide content (Supplementary Figure S3). Independently
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Figure 1. Genome-wide SHAPE-MaP analysis of SARS-CoV-2. (A) Heat scatter plot of normalized reactivities across two biological replicates for the in
vitro SHAPE (left) and DMS (center) datasets, and the in vivo SHAPE dataset (right). (B) Normalized in vivo SHAPE reactivities superimposed on the 5′
UTR structure. Highly (red) and moderately (yellow) reactive residues from in vitro SHAPE (circles) and DMS (triangles) experiments are also indicated.
A novel putative stem-loop 8 (pSL8), coherently predicted in all our datasets is also reported.

of the shuffling strategy employed, the majority of these ele-
ments showed folding free energies significantly lower than
it would be expected by chance (84/87, 96.6%) for simple
nucleotide shuffling; 81/87 (93.1%) for dinucleotide shuf-
fling; Z-test, P < 0.05). Overall, these regions encompassed
∼18.9% of the SARS-CoV-2 genome (5653 bases), and in-
cluded the 5′ UTR. Due to the high stringency of our anal-
ysis, this subset of structures represents a conservative esti-
mate.

The FSE and the 3′ UTR show unexpected folds in vivo

While, as previously stated, the 5′ UTR region folded as ex-
pected under both in vitro and in vivo conditions, the entire
3′ UTR region did not pass our stringent filtering, possi-
bly because of the higher reactivity observed at the level of
the HVR in vivo (data not shown), suggesting that part of
this structure might be unfolded inside the cell. Nonetheless,
the upper portion of the 3′ UTR region (position: 29 695–
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Figure 2. Comparison between in vitro and in vivo structure of the SARS-CoV-2 genome. (A) Heat scatter plot of normalized SHAPE reactivities for the in
vitro refolded SARS-CoV-2 genome versus the in vivo-probed one. (B) Distribution of SHAPE reactivities for the in vitro refolded SARS-CoV-2 genome,
versus the in vivo-probed one. (C) Violin plot depicting the distribution of Gini indexes calculated in 50 nt windows slid along the SARS-CoV-2 genome
for the in vitro refolded sample versus the in vivo-probed one (sliding offset: 25 nt).

29 809), consisting of a four-way junction encompassing the
s2m and the conserved octanucleotide, showed reactivities
in agreement with the phylogenetically-determined struc-
ture in all of the analyzed samples. Hence, we decided to
manually include the full 3′ UTR (position: 29 622–29 867)
in our analyses (in addition to the originally selected 87 frag-
ments).

Furthermore, our analysis did not identify the SARS-
CoV-2 FSE as having a low SHAPE signal and low Shan-
non entropy. While this element may be structured under in
vitro conditions, as found by other studies, and as demon-
strated by structure determination by cryo-EM (45), we
found that the cryo-EM-derived model of the FSE struc-
ture (PDB: 6XRZ) is not fully consistent with the observed
SHAPE reactivities in vivo. In particular, mapping of in vivo
SHAPE reactivities onto that model, corresponding to an
in vitro folded local structure (Supplementary Figure S4),
revealed high reactivities of some residues expected to be
base-paired, suggesting that this functional element might
be partially unfolded in vivo, and that its conformation may
significantly change in the context of the full SARS-CoV-2
genome.

A subset of structures shows significant conservation across
coronaviruses

To further prioritize the structured segments of SARS-
CoV-2 RNA more likely to represent functional elements,
we devised an automatic strategy for the identification of
segments showing significant base-pair covariation across
coronaviruses (see Materials and Methods). By building a
first covariance model (CM) using Infernal (29) and the
sole SARS-CoV-2 sequence, together with the secondary
structure inferred from probing data, we searched (with
a relaxed E-value cutoff) for homologous sequences in a
non-redundant CoV database, discarding those matches in
which <55% of the canonical base-pairs from the SARS-
CoV-2 structure were supported. Furthermore, by taking
advantage of the extremely conserved architecture of CoV

genomes (31), we further discarded those matches whose
relative position in the genome changed by >3.5% with re-
spect to that of SARS-CoV-2. The resulting alignment was
then used to refine the CM and the whole procedure was
repeated three times.

This analysis identified a total of nine RNA elements (out
of the originally selected 87 structures plus the 3′ UTR,
10.2%) for which at least two base-pairs showed significant
covariation (average significant base-pairs, 16.1% at E-value
< 0.05, 17.7% at E-value < 0.1; Figure 5), as determined by
the R-scape software (32). Among these, our pipeline suc-
cessfully recovered both the Sarbecovirus 5′ UTR SL5 (seg-
ment 150–294) and the 3′ UTR (segment 29 622–29 867;
Supplementary Figure S5). Identified RNA structures show
variable degrees of conservation across different CoV gen-
era, with 6 out of 9 (66.7%) being conserved also in Alpha-
CoV, 7 out of 9 (77.8%) in Gamma-CoV, and 5 out of 9
(55.6%) in Delta-CoV (Supplementary Figure S6). These
nine conserved segments folding into stable structures are
likely to be involved in the mechanistic and structural as-
pects of the viral RNA function.

Secondary structure-guided 3D structure modeling identifies
druggable pockets within conserved structure elements

Previous analyses have shown that complex structured
RNA molecules often exhibit pockets with physical proper-
ties suitable for small molecule binding, which can be identi-
fied in RNA 3D structure models (46). Thus, the discovery
of multiple structured segments in SARS-CoV-2 genomic
RNA offered an opportunity to test their potential to be
targeted by small molecules.

Towards this goal, we modeled the 3D folding of the
structured segments, by using the SimRNA method we pre-
viously developed (34). As the 3D structure for an RNA
molecule may be flexible even under the constraints of a par-
ticular secondary structure, our goal was not to predict just
a single 3D conformation for each segment, but to sample
the conformational space in search of local and global en-
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Figure 3. Structure map of the full SARS-CoV-2 genome in vitro. Map of the SARS-CoV-2 genome depicting (top to bottom): median SHAPE reactivity
(in 50 nt centered windows, with respect to the median reactivity across the whole genome), median DMS reactivity (in 50 nt centered widows, with respect
to the median reactivity across the whole genome), Shannon entropy and base-pairing probabilities for both the SHAPE (up) and DMS (down) samples,
set of low SHAPE – low Shannon helices coherently predicted in both datasets. Regions with both low Shannon and low SHAPE, likely identifying RNA
segments with well-defined foldings, are marked in grey. Two regions of low sequencing coverage are marked in red.
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Figure 5. Structure of conserved elements in SARS-CoV-2 RNA. Structure models for segments 7924–8128 (A), 22 826–22 913 (B) and 23 970–24 098 (C).
All three segments consist of conserved three-way junction structures. Structure models have been generated using the R2R software. Base-pairs showing
significant covariation (as determined by R-scape) are boxed in green (E-value < 0.05) and violet (E-value < 0.1) respectively. Alongside, the structure
of each segment in SARS-CoV-2 (as inferred from in vitro SHAPE-MaP data) with superimposed in vitro SHAPE-MaP (left) or DMS-MaPseq (center)
reactivities, or in vivo SHAPE-MaP reactivities (right) is shown, together with the putative conserved structure in other CoV as derived from the alignment
(manually optimized with the ViennaRNA package).

ergy minima, that are most populated by the folded struc-
tures.

We used secondary structure information derived from
the SHAPE-MaP/DMS-MaPseq experiments to restrain
the folding trajectories that sampled the 3D conformational
space. Soft restraints were used to allow conformational
flexibility while maximizing the sampling of the conforma-

tional space in the vicinity of the inferred secondary struc-
ture.

For each 3D-folded segment, we generated 1000 lowest-
energy models to represent the most energetically favorable
3D conformations (according to the statistical potential of
SimRNA). Then, as in the standard SimRNA protocol (47),
we clustered these structures to identify lowest-energy rep-
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resentatives of the most frequently sampled 3D conforma-
tions (i.e. corresponding to the main local energy minima).
As expected, while the patterns of base pairs agreed very
well with those inferred from experimental probing, the 3D
structures exhibited significant overall conformational vari-
ability. Nonetheless, the 3D modeling revealed a number
of persistent complex spatial motifs recurring in structures
from many spatial clusters, often comprising junctions and
structured bulges and loops.

Next, we used the Fpocket software (39) to score the pu-
tative druggable sites in 1000 lowest-energy models for each
RNA segment, based on the criteria we established on a
set of experimentally determined 3D structures of small vi-
ral RNAs complexed with small molecule ligands (Supple-
mentary Figure S7; see Methods). We mapped the predicted
druggable pockets on the RNA sequence to identify groups
of adjacent residues that formed potential ligand-binding
sites in the largest fraction of best-energy models (Figure 6
and Supplementary Figures S8-S13).

A variety of potentially druggable pockets were found
within the nine analyzed segments. Segment 150–294 (Sup-
plementary Figure S8) has two druggable pockets, one in-
volving a four-way junction (4WJ) and three of its constitut-
ing helices, and the other one lying within a bulged duplex
region. Segment 3462–3616 (Supplementary Figure S9) has
one pocket involving a three-way junction (3WJ), as well as
two of the helices that constitute it, containing 2-nt bulges
in the vicinity of the junction. Segment 7924–8128 (Figure
6A) has two pockets, the first one corresponds to a 3WJ,
while the second one is formed through tertiary contacts be-
tween a bulge and a distal duplex. Segment 18 071–18 329
(Supplementary Figure S10) has two pockets, one encom-
passing a 4WJ and another one comprising a bulged helical
structure. Segment 20 241–20 411 (Supplementary Figure
S11) has two pockets, one encompassing a 3WJ, and an-
other one encompassing a bulged helix. Segment 22 826–
22 913 (Figure 6B) has a pocket encompassing a 3WJ as
well as the three helices constituting it. Segment 23 970–
24 098 (Figure 6C) has a pocket comprising a 3WJ along
with two of its constituting helices, one of them contain-
ing several bulges. Segment 28 065–28 118 (Supplementary
Figure S12) has a structurally simpler pocket if compared to
multiway junctions, which comprises a helix with a single-
residue bulge. Segment 29 622–29 867 (Supplementary Fig-
ure S13) has three pockets: two of them comprise 4WJs,
while the third one corresponds to a bulged helical region.
This last segment includes the 3′ stem–loop II-like motif,
a highly conserved motif found at the 3′-UTRs of astro-
virus, coronavirus, and equine rhinovirus genomes (48) and
has been proposed to affect host translation by either in-
teracting with ribosomal proteins or by getting processed
into a mature microRNA (16,49 ). Overall, the majority of
targetable pockets were found in high-information-content
structures such as multiway junctions (50) (Figure 6), al-
though they were also very often found in asymmetrical
bulges. On the other hand, terminal loops and symmetri-
cal bulges were rarely identified as druggable sites in SARS-
CoV-2 RNA segments.

In addition to analyzing the conserved, structurally sta-
ble segments, we carried out an additional analysis for the
FSE element (segment 13 458–13 545), which is known

to be functionally important, and which we found to be
structurally variable (and therefore excluded from the se-
lected set of candidate RNA structures). As restraints we
used secondary structure derived from in vivo SHAPE prob-
ing, which partially agrees with only one of the helices in
the cryo-EM-derived structure (45), and leaves unpaired
a large part of the FSE sequence (Supplementary Figure
S14A). Interestingly, despite these differences, simulations
with SimRNA have led to models in which the pseudoknot
was largely recapitulated. Models representing the largest
clusters from SimRNA simulation show similar architec-
ture to the one observed in the cryo-EM-derived model,
even though the global RMSD values are moderate (∼17.7
Å). By analyzing 1000 low-energy conformations gener-
ated by SimRNA, we found two tentative druggable pock-
ets in the FSE (Supplementary Figure S14B). The larger
pocket is found in the pseudoknotted region. Importantly,
this pocket successfully recapitulates a previously reported
ligand-binding region for the SARS-CoV FSE (51) (Sup-
plementary Figure S14C). The analysis of FSE simula-
tions provided additional validation of the methodology
for prediction of druggable pockets described in this work,
and suggests that it may be applicable not only to RNAs
with well-defined 3D structure, but also to shape-shifting
molecules.

Mapping of persistently single-stranded regions in vivo iden-
tifies potential targets for antisense oligonucleotide therapeu-
tics

To further aid the development of antisense oligonucleotide
(ASO) therapeutics, segments were also identified that
showed both low structural variability (low Shannon) and
paucity of pairing (high SHAPE) in vivo. Such segments are
likely to persistently expose long stretches of Watson–Crick
edges of multiple residues available for base-pairing with a
complementary sequence, thus representing preferred tar-
gets for ASOs. Our analysis (see Materials and Methods)
identified 80 such segments, at least 25 nucleotides long,
spanning a total of 3756 bases (∼12.6% of the SARS-CoV-
2 genome) matching these criteria (Supplementary Figure
S15 and Table S2). We next evaluated the sequence con-
servation of these segments, by multiple sequencing align-
ment with different sets of coronavirus sequences (Sup-
plementary Figure S16), specifically: (i) SARS-CoV; (ii)
MERS-CoV; (iii) other Beta-CoV; (iv) all other CoV (alpha,
gamma, and delta). Notably, ∼7.5% of these segments, ac-
counting for roughly 361 bases (∼1.2% of the SARS-CoV-2
genome), showed over 78% conservation in SARS-CoV (av-
erage ∼86.2%) and over 60% conservation in the other three
datasets (average MERS-CoV: ∼75.6%; average other Beta-
CoV: ∼71.9%; average all other CoV: ∼64.6%). The excep-
tional conservation of these segments suggests that some es-
sential regulatory RNA elements might reside here and be
under strong selection.

DISCUSSION

In this study, we describe for the first time the RNA struc-
tural landscape of the entire SARS-CoV-2 virus genome. By
using SHAPE and DMS mutational profiling (MaP) anal-
yses in living infected host cells, as well as on the in vitro
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Figure 6. 3D modeling of SARS-CoV-2 RNA structured segments and identification of druggable pockets. 3D structure of the most abundant cluster for
segments 7924–8128 (A), 22826–22913 (B) and 23970–24098 (C), as derived from the 1000 lowest energy 3D structure structures modeled by SimRNA
(using the consensus MEA secondary structure, inferred from in vitro and in vivo SHAPE-MaP analyses, as a restraint). Residues composing the identified
druggable pockets are shaded.
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refolded SARS-CoV-2 RNA, we obtained a single-base res-
olution map of base reactivities that allowed us to model the
secondary structure of 87 well-defined structure elements
throughout the entire SARS-CoV-2 genome.

Our approach has two main limitations. From an exper-
imental point of view, it cannot discriminate between the
probing signal coming from the genomic RNA and the
subgenomic mRNAs (sgRNAs). Nonetheless, the identifi-
cation of low SHAPE––low Shannon regions, correspond-
ing to highly-structured elements having a high-probability
of folding into a single well-defined conformation (18,21),
identifies locally-stable RNA structure elements that are co-
herently present in both the gRNA and the sgRNAs. From a
computational point of view, modeling the secondary struc-
ture of the full-length SARS-CoV-2 virus RNA (∼30 kb) is
not feasible, and the use of a windowed approach hampers
our ability to predict long-range interactions. This limita-
tion can only be addressed by using alternative experimental
strategies, such as those based on in vivo RNA crosslinking
coupled to proximity ligation (28,52–56).

Despite the aforementioned limitations, our analysis en-
abled us to identify a set of RNA structure elements, sup-
ported by multiple sources of evidence. Firstly, the folding
free energies of these structures are significantly lower than
those of random sequences of matching nucleotide (or dinu-
cleotide) composition. Secondly, these structures show co-
herent folding under both in vivo and in vitro conditions.
Thirdly, at least 10% of these structures show significant
covariation support. Altogether, these observations suggest
that a strong selective pressure acts on the selected ele-
ments, such that sequence and thermodynamics alone are
able to drive the proper folding of these structures. While
the presence of covariation can support the presence of
functional RNA structures, the lack of covariation is not
evidence for the lack of function. Therefore, although we
did not find sufficient significant covariation support for
many of the identified structures (possibly also due to the
stringency of our filtering criteria), they can anyway rep-
resent either recently evolved RNA structures or RNA cis-
regulatory elements residing within regions whose sequence
is constrained by the underlying amino-acid sequence.

Unexpectedly, the presence of previously described struc-
ture elements is not fully supported by our data. For in-
stance, the proposed three-stem pseudoknotted structure of
the FSE (17,45) does not appear to be the prominent con-
formation in vivo (nor in vitro). Moreover, although the 3′
UTR region folds into the expected conformation in vitro,
it shows high SHAPE reactivity at the level of the HVR in
vivo. Two main possibilities can explain the observed differ-
ences. Firstly, prior structural studies have been mostly con-
ducted on isolated RNA elements, outside of the context of
the full-length genomic RNA. Secondly, these regions might
exhibit high structural dynamicity in vivo, possibly folding
into multiple mutually-exclusive conformations. This is in
agreement with a recent report suggesting that the FSE can
switch between two conformations, none of which compat-
ible with the previously described pseudoknotted structure
(57).

The identification of thermodynamically-favored, con-
served RNA structure elements in the SARS-CoV-2
genome, constitutes a unique opportunity for the devel-

opment of RNA-targeted small molecule drugs. To this
end, we sampled the 3D conformational space of conserved
SARS-CoV-2 RNA structure elements and produced 3D
models that allowed us to identify putative druggable pock-
ets in these structures. Many of these structures presented
high-information-content geometries (50), such as multi-
way junctions, that represent attractive RNA 3D targets for
further analyses.

Additionally, our analysis identified conserved sites of
persistent single-strandedness in the SARS-CoV-2 genome
in vivo. These regions might represent ideal targets for the
design of antisense oligonucleotide therapeutics (ASO), al-
ready proven to represent a promising approach for the
treatment of infections by other RNA viruses (58–61).

Overall, our analyses reveal structures of the SARS-
CoV-2 virus RNA that may turn out to be its weak spots.
Not only our data will provide a fundamental resource for
the development of innovative RNA-targeted therapeutic
strategies, but also it will help elucidating still unknown as-
pects of the life cycle of coronaviruses once the functional
role of the structured elements in the coronavirus RNA
genome here identified will be characterized.

DATA AVAILABILITY

SHAPE-MaP data has been deposited to the Gene Ex-
pression Omnibus (GEO) database, under the accession
GSE151327. RNA Count (RC) files for use with RNA
Framework, as well as XML files with normalized SHAPE-
MaP reactivities are provided, together with the full sec-
ondary structure in dot-bracket notation and the se-
lected low Shannon - low SHAPE structures. Stockholm
alignment files and the derived covariance models (CMs)
for the structure elements, showing significant covaria-
tion support, are also provided. For each structured seg-
ment in the SARS-CoV-2 genome, we further provide
the representative 3D structure models for up to 10 of
the largest clusters, illustrating the most typical confor-
mational classes, as well as the 1000 best-energy mod-
els used to predict ligand-binding modes. In all mod-
els, the B-factor field presents the relative ligand-binding
score obtained from the Fpocket analysis. These addi-
tional processed files (RNA Framework RC and XML
files, dot-bracket structures, CMs, Stockholm alignments,
3D models of SARS-CoV-2 segments and druggable pock-
ets) are available at http://www.incarnatolab.com/datasets/
SARS Manfredonia 2020.php and on Mendeley at http:
//dx.doi.org/10.17632/8gj97c4kgv.1.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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