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ABSTRACT: The optimization of organic reaction conditions to
obtain the target product in high yield is crucial to avoid expensive
and time-consuming chemical experiments. Advancements in artificial
intelligence have enabled various data-driven approaches to predict
suitable chemical reaction conditions. However, for many novel
syntheses, the process to determine good reaction conditions is
inevitable. Bayesian optimization (BO), an iterative optimization
algorithm, demonstrates exceptional performance to identify reagents
compared to synthesis experts. However, BO requires several initial
randomly selected experimental results (yields) to train a surrogate
model (approximately 10 experimental trials). Parts of this process,
such as the cold-start problem in recommender systems, are
inefficient. Here, we present an efficient optimization algorithm to
determine suitable conditions based on BO that is guided by a graph neural network (GNN) trained on a million organic synthesis
experiment data. The proposed method determined 8.0 and 8.7% faster high-yield reaction conditions than state-of-the-art
algorithms and 50 human experts, respectively. In 22 additional optimization tests, the proposed method needed 4.7 trials on average
to find conditions higher than the yield of the conditions recommended by five synthesis experts. The proposed method is
considered in a situation of having a reaction dataset for training GNN.

■ INTRODUCTION
Substantial effort has been dedicated over the past few years to
develop various technologies for optimizing chemical reaction
conditions. Traditionally, depending on the particular scientific
or engineering discipline, optimization was accomplished
against a variety of criteria, for example, finding the lowest-
energy state of a chemical structure, identifying the factors that
most closely relate the molecular shape with the properties, or
searching for the optimal set of conditions to increase the
efficiency of experimental procedures.1−3 The optimization
algorithms capable of efficiently finding local optima are
gradient-based algorithms, such as gradient descent,4 conjugate
gradient,5 or the more sophisticated Broyden−Fletcher−
Goldfarb−Shanno algorithm (BFGS).6 Many optimization
technologies have been specifically developed for chemistry.
For example, chemical reaction conditions can be optimized
using systematic methods such as the design of experiments
(DOE).7 Recent optimization procedures based on computa-
tional methods were designed to assist chemists to identify
chemical derivatives of known drugs to best treat a given
disease,8 pinpoint candidates for organic photovoltaics, predict
organic reaction paths, and conduct automated experimenta-
tion9−16 without human intervention.

Often, these applications are subject to multiple local optima
and involve costly evaluations of the proposed conditions in
terms of the required experimentation or extensive computa-

tion. Bayesian optimization (BO) approaches have emerged as
popular optimization solutions to search for the efficient global
optimum.17−22 BO schemes consist of two major steps: First,
an approximation (surrogate model) to the objective function
of the conditions is constructed. Second, based on this
surrogate, a new set of conditions is proposed for the next
evaluation to identify the global optimum. As such, BO
predicts the experimental outcome using all previously
conducted experiments and verifies its speculations by
requesting the evaluation of a new set of conditions. Several
different models have been suggested for approximating the
objective function areas, ranging from random forests23 (RF),
over Gaussian processes20,21 (GP), to active learning models.24

However, these models require numerous evaluations
(depending on the predefined search space) of data generated
in the form of laboratory experiments or computations, and are
thus not well suited for solving optimization problems in
chemistry. This is because evaluations of the objective are

Received: August 11, 2022
Accepted: November 18, 2022
Published: December 2, 2022

Articlehttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

44939
https://doi.org/10.1021/acsomega.2c05165

ACS Omega 2022, 7, 44939−44950

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Youngchun+Kwon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dongseon+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin+Woo+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Youn-Suk+Choi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sun+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c05165&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/49?ref=pdf
https://pubs.acs.org/toc/acsodf/7/49?ref=pdf
https://pubs.acs.org/toc/acsodf/7/49?ref=pdf
https://pubs.acs.org/toc/acsodf/7/49?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c05165?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


often costly, and material synthesis is another major barrier in
material development because it is still carried out laboriously
by human researchers.

Lately, data-driven approaches have been employed to
recommend conditions for specific types of reactions. The
application of powerful machine-learning techniques to large
datasets of organic reactions, such as the Reaxys database,25

has led to major advances both in searching for possible
retrosynthetic pathways26−37 and in evaluating the feasibility of
the proposed reactions38−45 and synthetic environments.
Unfortunately, the disadvantage of data-driven methods is
their limited predictive performance based on data that
completely deviate from the training data distribution. In
particular, the data extracted from most successful studies
involving chemical experiments are likely to have been biased
to one side (a lack of negative data).

In this study, our attempts to overcome the limited ability of
advanced approaches to determine the optimal reaction
conditions led us to propose the hybrid-type dynamic reaction
optimization (HDO) method, which complements the
previous two methodologies as data-driven approaches in
that it is based on a graph neural network (GNN) with BO.
This approach enables us to efficiently explore the optimal
combination of conditions compared with previous studies.
Modern advances in high-throughput experimentation
(HTE)13,43 enabled the construction of three named datasets
(‘Suzuki−Miyaura reaction’, ‘Buchwald−Hartwig reaction’,
and ‘Arylation reaction’) that contain different types of
chemical reaction data. These data include all of the
capabilities of a collection consisting of a few thousand data
points under a limited set of conditions in datasets from
Shields’s study.46 In addition, we validated the proposed
algorithm using additional reaction experiment (‘Ullmann
reaction’ and ‘Chan−Lam reaction’) with five synthetic experts
using our own HTE facilities, details of which are provided in
Table 1.

■ PERFORMANCE BENCHMARKING RESULTS
The ultimate goal of this study is to rapidly determine suitable
conditions, given reactions with predefined search space.
Optimizing reaction conditions is the process of exploring
various types of reaction parameters, such as reagent, solvent,

base, catalyst, concentration, and temperature. The number of
their combinations could vary depending on the required
parameter ranges. Owing to enormous cost and time, it is
impossible to conduct all experiments for a combination of
possible conditions. Therefore, an optimization process to
define a reasonable scope of reaction conditions and to verify
models that are rapidly navigable within that space is essential.
In Shields’s study,46 the authors provide experimental yield
results on all possible combinations of conditions in seven
different reaction search spaces of three types of named
reactions (Suzuki−Miyaura reaction, Buchwald−Hartwig
reaction, and Arylation reaction). Thanks to reasonable search
scope with experimental yield results from through HTE, our
proposed method was verified through that optimization
dataset (Task 1). Moreover, 22 additional experiments were
conducted using our HTE equipment to check how rapidly the
proposed algorithm finds optimal conditions compared with
organic synthetic experts (Task 2). The details of task and
search spaces for Tasks 1 and 2 are as follows:

Task 1: Entire optimization dataset including search spaces
with yield results of reactions are from Shields’s study. In
addition, methods are also used as a baseline for verifying with
previous works. Previous studies conducted high-throughput
experiments on the class of Suzuki−Miyaura cross-coupling
reactions. Twelve couplings of three electrophiles (Reactant 1)
and four nucleophiles (Reactant 2) across the combinations of
11 ligands, seven bases, and four solvents were considered,
thereby resulting in combinations for a total of 3696 reactions
with a product. Buchwald−Hartwig reaction (2a−2e): They
conducted high-throughput experiments on the class of Pd-
catalyzed Buchwald−Hartwig C−N cross-coupling reactions.
They experimented with combinations of three aryl halides,
four catalysts, three bases, and 22 additives for a total of 792
reactions per target product, of which there were five reactions.
Arylation (3a): They studied the arylation of imidazoles, a key
step in the commercial synthesis of the JAK2 inhibitor BMS-
911543.47,48 They selected a subspace consisting of 1,728
reactions including 12 ligands, four bases, four solvents, three
temperatures, and three concentrations as a tractable set of
experiments to be used as the ground truth. The data for the
arylation reaction (3a) included results contributed by 50
expert chemists and engineers from academia and industry,

Table 1. Details of the Two Performance Benchmarking Tasks

summary of task sets with definition of search space

task 1 (vs baselines, 50 humans) task 2 (vs only 5 humans)

target conditions/reaction type

Suzuki−
Miyaura
(1a)

Buchwald−
Hartwig (2a−

2e)
Arylation

(3a)

Suzuki−
Miyaura
(4a−4j)

Buchwald−
Hartwig (5a−

5h)

Ullmann
Reaction (6a,

6b)

Chan−lam
Reaction (7a,

7b)

no. target
conditions

reactant 1 3
reactant 2 4 3
additive 22
catalyst 4 9 9 7 7
base 7 3 4 8 9 13 3
solvent 4 4 4 5 5 4
ligand 11 12 12 12 9
concentration 3
temperature 3

search space 3696 792 1728 3456 4860 4095 84
>95 (yields) 1.92% 0.48% 0.58%
no. target products 1 5 1 10 8 2 2
no. reactions to train GNN models 1,227,756 8541 49,625 158,605 17,705 10,518 2694
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who played the reaction optimization game. All of the reaction
data and expert information in reaction 3a used in Task 1 are
accessible from https://github.com/b-shields/edbo/.

Task 2: Because HDO provides more general evaluations
compared with skilled synthetic experts, a total of 22
experiments were conducted on four named reactions. In
this task, HDO was evaluated by comparing the yield results of
the reaction conditions proposed by five experts in organic
synthesis. A search space for each of the Suzuki−Miyaura (4a−
4j), Buchwald−Hartwig (5a−5h), Ullmann (6a, 6b), and
Chan−Lam reactions (7a, 7b) was defined by the experts, and
details thereof are provided in Table 1. Further details of
search scope with reaction structures are described in
Supporting Information 1 and 2.

Task 1: Optimization of Reaction Conditions to
Benchmark the Performance. We targeted a number of
experimental trials (NT) to achieve the top 1, 5, and 10%
yields in the entire search space of reaction conditions as a
performance measurement.

=
=

iAIR 1/
(ANT NT )

ANT
c

i

k
i
c

1

RS

RS
(1)

We calculated the average improvement rate (AIR) over a
‘random search’ of NTRS as the performance indicator to allow
for comparison with other baselines (eq 1). Here, i is the
number of iterations required for the overall optimization
process, and we used 1000 iterations for all of the models. In
each optimization model, NTic is the NT in the c category of
baseline models (Random Forest (RF),49 BO,46 humans,46 and
message passing neural network (MPNN),50 and HDO). In
Table 2, ANTRS represents the average of NT results from i
iterations of random search, and we determined k to be 1000
in this task. AIRc represents the average improvement in the
performance of baseline models (RF, BO, MPNN, and
Human) and the proposed model (HDO) over the naiv̈e

approach ANTRS. AIR 0 indicates the same average number of
trials as the random selection approaches. When AIR has a
negative value, the number of trials to determine the
combination of conditions with a target yield is more
attempted than ANTRS. Table 2 shows the top 1, 5, and
10% target yields in the entire search space and the AIR for the
RF and BO models as reported by Shields et al. In message
passing neural network (MPNN), the GNN-type-condition
prediction models are trained separately for each condition
type (e.g., solvent, catalyst, etc.), and the highest-rank
conditions inferred for each condition type were combined
and chosen as first combination for an experiment.
Furthermore, the yield results were not reflected, and the
following conditions were selected considering only the
inferred priority using MPNN models.

The results in Table 2 indicate that HDO significantly
outperformed the base models across the categories for the top
1, 5, and 10% optimization tasks. HDO exhibited a stable
optimization for the suitable combination of conditions in the
case of the Suzuki−Miyaura reaction, which had abundant
training data, including the Buchwalt−Hartwig reaction, which
had a small reaction dataset for training models. The basic
strategy of HDO is designed to be efficiently explored by
conducting experiments of conditional combinations initially
recommended by the MPNN but quickly modifying the weight
of the conditional combination chosen by BO if the yield
results are not better than those expected. In the optimization
task of Suzuki−Miyaura reaction 1(a), both HDO and MPNN
trained approximately 1.2 million reaction data, finding optimal
conditions very rapidly compared with others. However, in the
case of Buchwald−Hartwig reaction 2(a−e), because of few
training data, MPNN exhibited even less AIR than random
search in a method recommended only by a combination of
highly inferred conditions without optimization techniques. In
case 2(a), BO achieved good performance and the distribution
of yield values of all reactions within the search space was

Table 2. Comparison of Reaction Optimization Performance with the Baselines on Task 1a

ANTRS average improvement rate over ANTRS (AIRc)

reaction type target top-k target yield random search RF BO MPNN human (50 experts) HDO (ours)

Suzuki−Miyaura 1(a) 1 96.20 98.15 0.1844 0.5885 0.6589 0.6685
5 92.52 19.55 0.0925 0.3750 0.4740 0.4740

10 88.19 9.51 0.2460 0.4440 0.6900 0.6900
Buchwald−Hartwig 2(a) 1 52.67 99.15 0.2244 0.7585 −0.1985 0.6642

5 47.94 18.54 0.1175 0.4245 −0.1725 0.3945
10 44.65 8.99 0.1060 0.4850 0.3850 0.4420

2(b) 1 83.09 97.54 0.2046 0.5846 0.5149 0.6885
5 79.06 19.54 0.0745 0.4395 0.3220 0.5505

10 73.58 9.15 0.1850 0.4550 0.3850 0.5850
2(c) 1 94.34 98.01 0.2844 0.5545 −0.0846 0.5585

5 86.76 19.44 0.0675 0.3725 −0.0670 0.3425
10 81.27 8.95 0.1890 0.5420 −0.2510 0.3850

2(d) 1 65.46 98.18 0.2549 0.6185 −0.1785 0.6745
5 52.56 19.24 0.2175 0.1940 0.1440 0.2210

10 49.15 8.97 0.2850 0.5010 0.3500 0.5850
2(e) 1 97.56 99.54 0.3085 0.6785 −0.2485 0.6986

5 91.05 19.54 0.2245 0.3945 0.1245 0.4125
10 86.25 8.98 0.1850 0.3850 0.1200 0.4850

Arylation 3(a) 1 91.21 98.66 0.1846 0.7485 0.4785 0.6382 0.7285
5 76.54 19.81 0.2420 0.4210 0.3345 0.4225 0.4560

10 59.11 9.43 0.4440 0.5850 0.4210 0.6750 0.6950
aBold numbers indicate the highest-performing model for each reaction target.
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relatively lower than others (see the HTE Results section in
the Supporting Information and Figure 2). Reaxys database,
which we used for training MPNN models, tends to be biased
because the data are extracted from relatively successful
research papers (without negative data). Therefore, MPNN
models trained using the corresponding data do not yield good
results for the optimization task with low yield distributions.
These scores indicate the limitations of an optimization
approach based only on exploitation. Similarly, the HDO
model also performed well in the Suzuki−Miyaura reaction
over BO, which has a cold-start problem. Likewise, for the top
5 and 10% yield searching cases in Arylation reaction 3(a), the
AIR of HDO was higher than those of the human experts and
BO although BO is the best for the top 1%. Overall, the
proposed model HDO determined the best combination of
conditions for a high yield compared to other optimization
algorithms and human experts. It is necessary to determine a
strategy that stably and efficiently searches for the conditions
via repeated optimization experiments. Figure 1 shows the
results of AIRc, which were repeated 100 times, with a box-and-
whisker plot to determine a condition combination with a yield
value or more corresponding to the top 5% of the total search
area. HDO stably determined suitable conditions in various
optimization tests. In Suzuki−Miyaura reaction optimization
test, where training data were abundant, the variance appears
to be relatively small because the HDO rapidly determined the
optimal conditions predicted by the MPNN initially embedded

in the HDO. This was additionally verified to efficiently
determine the optimal conditions in the case of a relatively
large number of training data in Task 2. In the Buchwalt−
Hartwig case, which has little training reaction data, HDO
stably exhibited best AIRc results for the three reaction types
(2b, c, and e) of the five reactions. The BO including the initial
10 random selections could be lucky to find the best conditions
rapidly, but it occurs less frequently and has a high variance
value. The HDO is designed for stable and efficient
optimization by immediately increasing the priority weight of
BO in HDO when unsatisfactory yields appear in initial
experiments chosen by the MPNN (the weight conversion
process is discussed in detail in the Methods Section).

Furthermore, HDO is designed to solve the cold-start
problem of BO. Figure 2 shows the cumulative maximum
observed (CMO) yield according to the number of experiment
trials compared with BO and 50 experts in the Arylation
reaction. The proposed HDO discovered high-yield conditions
in the early stages compared to state-of-the-art algorithms and
50 synthetic experts (details of human information are
described in Shields’s study46). However, the CMO of HDO
appears to have stagnated search performance in approximately
42 experiment trials, where conditional combinations with
yields of nearly 98% or more were found.

Task 2: Validation of the HDO Compared to Five
Human Chemists. In Task 2, the performance of the
proposed HDO was compared with five organic synthetic

Figure 1. Box-and-whisker plot for comparison of performance (top 5%). The proposed HDO exhibited good performance in terms of median
values excluding 2(a, c). In particular, in the Suzuki−Miyaura reaction, because the number of training data of the MPNN prediction model used
for HDO was approximately 143 times more than Buchwalt−Hartwig reaction, the prediction performance is relatively high, and the optimal
conditions are found rapidly in the beginning steps where the variance is small. Owing to the random selection of BO’s initial 10 experiments, the
variance appears higher than that for the HDO for exploration.
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chemists in 22 additional optimization experiments. The
purpose of this task was to determine the number of trials
required for the HDO to determine the condition combination
recommended by a group of five chemists. The five experts for
Task 2 had doctorates with more than 10 years of experience
in organic synthesis.

The reaction experiments in Task 2 were 22 different named
reactions of four types (the Suzuki−Miyaura, Buchwald−
Hartwig, Chan−Lam, and Ullmann reactions). As described in
Table 1, we prepared 20 reactions to optimize around reagents,
with a combination of 3456−4860 conditions, and two
experiments of Chan−Lam reaction with only 84 search
spaces were also tested. All of the experiments were conducted
using our own HTE system including autonomous robots for
synthesizing and calculating conversion yield values using
liquid chromatography equipment. First, five chemists were
given a search space with reactants and product structures and
the combination of conditions expected to have the highest
yield was recommended. We conducted experiments using the
proposed combinations of conditions and averaged the yield
values of each result. The average yield for the 22 reactions
calculated by the five chemists was 64.48, as described in
Figure 3. Likewise, given reactants and product structures,
HDO recommended the six highest-priority conditional
combinations in the search space for the initial experiment.
When the experimental results are output, the yield value is
reflected in the HDO objective function and the next optimal
condition combination is recommended. We conducted up to
70 experiments per reaction and stopped the experiment early

when conditions with a yield value of 95% or more were found.
The average cumulative maximum observed yields of HDO are
shown in Figure 3 with the yield recommended by the five
chemists. On average, HDO determined the suitable
conditions with the yield value of condition combinations
recommended by the five experts in 4.7 experiments.

The performance varied for each of the four aforementioned
named reactions. Because the Reaxys database contains
158,605 training data for the Suzuki−Miyaura reaction, the
HDO based on the MPNN quickly identified the reaction
conditions that delivered the yield of the combination of
reaction conditions recommended by experts in an average of
4.22 trials for 10 reactions. However, as is evident from the
cumulative number of experiments, synthesis with the Suzuki−
Miyaura reaction is easier than with the other named reactions.
Therefore, the experts also tended to swiftly determine an
effective combination of conditions for this reaction. In the
eight experiments based on the Buchwald−Hartwig reaction,
both HDO and the experts experienced difficulties in
identifying reaction conditions with a high yield. Except for
the reaction shown in Figure 5b, all of the reactions yielded
poor results, yet, even in these difficult situations, HDO found
expert-level yields after 1.9 trials on average. For the Ullmann
and Chan−Lam reactions, HDO required an average of 7.15
and 3.84 attempts, respectively, to identify the combination of
conditions proposed by the experts. The corresponding details
are provided in Figure 4.

Finally, Figure 5 shows the examples of each named
reaction. In the Suzuki−Miyaura reaction (4(a) in Figure 5),

Figure 2. Performance comparison of the BO, 50 expert chemists, and HDO for the Arylation reaction. The results of 50 experiments with HDO
and BO are represented by a dotted line, and the solid line represents their average values. Likewise, the different optimization results with 50
humans are represented by dotted lines, and their average values are represented by black solid lines.
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Figure 3. Average cumulative maximum observed yields using the HDO (blue curve) and the average yield of the combination of conditions
proposed by five experts (black dotted line). HDO required an average of 4.7 experiments to determine the conditions with the same average yield
obtained with the combination of conditions proposed by the five experts for the 22 reactions.

Figure 4. Performance of HDO for the four named reactions. Comparison of the yield results of HDO with the conditions proposed by the experts
for the Suzuki−Miyaura, Buchwald−Hartwig, Chan−Lam, and Ullmann reactions. On average, HDO identified suitable conditions after only 4.22,
1.90, 3.84, and 7.15 experimental trials for these four reactions, respectively.
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HDO determined the same combination of conditions with
the same yield value as the experts and required a single
experimental trial. In examples 5(b) and 7(a) in Figure 5 for
the Buchwald−Hartwig and Ullmann reactions, respectively,
HDO obtained higher yield results than the experts with
different combinations of reaction conditions and required two
experimental trials in both cases. These are the examples of the
optimal condition combinations determined using the MPNN
models for the initial five experiments. In these cases, similar
experiments were included in the training data, which are well-
predicted examples. In marked contrast, the Chan−Lam
coupling reaction in 6(b) required 20 experimental trials to
identify the reaction conditions with a conversion yield similar
to that of the reference. Nevertheless, the proposed HDO
algorithm demonstrated optimization performance comparable
to that of the experts and demonstrated reliable and efficient
navigation capabilities for a variety of combinations of reaction
conditions.

■ METHODS
Overview of HDO. For efficient exploration, HDO consists

of an MPNN, which was trained using approximately 1 million
experimental reaction data to predict suitable conditions, and a
BO model, which explores conditions based on ongoing
experimental results. We designed the optimization direction
to be dynamically modified for experimental results by
adjusting the weights of the above two models based on the

obtained yield results. The overall condition optimization
process is described below.

Considering that all of the reaction conditions are not
efficient and could be unnecessarily costly, HDO narrows the
search space using MPNN models that are able to predict the
chemical context most suitable for any particular organic
reaction. Combinations of conditions, selected from the
narrowed area of candidates and expected to deliver the target
yield, should be chosen for the experiment. When sampling the
initial conditions, in the narrowed search space, our aim is to
maintain a balance between exploitation and exploration.
Therefore, we adapted the candidate conditions predicted by
the MPNN as exploitation and selected the Maximin−Latin
Hypercube sampling method51 to ensure effective distribution
of exploration (Figure 6b). Moreover, we experimented with
initial conditions and trained the surrogate model of BO by
obtaining the yield result (Figure 6c). For the acquisition
function of BO, we adopted upper-confidence bounds (UCBs),
which ranked the priority of the next combination of
conditions (Figure 6d), as detailed in a separate subsection.
Finally, HDO calculates the priority of the next candidates in
the form of an ensemble by considering the historical results,
MPNN, and BO (Figure 6e). Depending on the outcome, the
search space could be expanded to include additional reaction
conditions (Figure 6f). For maximum efficiency, HDO was
designed to perform comprehensive judgments using not only
the results predicted by the MPNN but also the experimental

Figure 5. Examples of the list of conditions recommended by five experts for four different types of named reactions proposed by the HDO in task
2. 4(a) is an example of the Suzuki−Miyaura coupling reaction. The HDO found the same conditions as five experts in two trials. 5(b) showed that
in just one experiment, finding better lists of conditions than 5 experts in Buchwald−Hartwig amination reaction. In 6(c), similar performance
condition lists to those of experts were found in 17 trials in the Chan−Lam reaction that lacked reaction data for the training model. On the other
hand, in the 7(d) experiment of the Ullmann reaction, HDO found a combination of high-yield conditions compared to experts in three trials.
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results, frequency of past experiments, and uncertainties in the
objective function of the predictive model.

The data preprocessing and model formulation steps are
detailed in subsequent subsections. HDO proceeds iteratively
until it determines the global optimal combination of
conditions that produce the desired target yield, and it updates
the objective functions whenever the complete results of each
experiment are known. The proposed approach offers a
platform on which fully automated organic synthesis experi-
ments can be conducted using robots and management
software.

Dataset and Graph-Type Representation for Training
MPNN. The dataset for all of the reactions with their
conditions for training the MPNN was extracted from the
Reaxys reaction database consisting of 53 million reaction

records. The data include structural expressions of the
reactants, products, and conditions. We used the structural
expressions of the reactants and each single product, the
Reaxys chemical ID, and simplified molecular-input line-entry
system (SMILES) notation (if available) or the name of the
reaction. Each chemical reaction is labeled with the reagents
that participate in the reaction. Each instance is represented as
(R, P, c), where R = {Gr1, Gr2}i and P = {Gp}i represent the set i
of the two reactants with the product structures in the reaction,
respectively, and c is the one-hot vector of the reaction
conditions such as catalysts, bases, solvents, and ligands. Owing
to the different circumstances of each synthesis experiment, we
did not include the reaction-condition datasets from the
Reaxys database based on a predefined list of reagents in the
experiments. In addition, the number of reaction sets i and

Figure 6. Process of reaction optimization using HDO. (a) Given a reaction representation, HDO specifies a search space using the best
combination of conditions predicted by MPNN. (b) Initial experimental conditions are selected by adopting balanced methods that consider the
trade-off between exploration and exploitation. (c) Reaction yields acquired via HTE to experiment with a selected combination of initial
conditions. (d) Surrogate model ( fϕGP) of BO trained using the initial experimental results (yield) that calculates the acquisition function
(AFGP_UCB) of BO. (e) The priority is calculated (AFHDO), and the method determines whether to continue experimenting or to expand the search
space. (f) If the number of experiments exceeds 20 and the maximum yield is less than 10, the initially narrowed range is expanded step by step
(details in the text).
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classes of conditions can be different for each type of condition
and optimization task, respectively. Furthermore, we restricted
our scope to include single-product and single-step reactions to
ensure a closer alignment with the application to computer-
aided synthesis planning. We also noted the ambiguous
labeling of certain catalysts, solvents, and reagents in the
Reaxys, in which many catalysts are recorded as reagents,
causing the data to be sparser for catalysts and increasing the
number of distinct reagents. This issue can hardly be
completely eliminated because a strict separation between
reagents and catalysts is difficult to achieve.

Message Passing Neural Networks for Predicting
Suitable Reagents. A chemical reaction consisting of two
reactants was set as R1,2 and a single product as P. This
chemical reaction is labeled with its reaction conditions c,
denoted by fθMPNN(c| R1,2, P). A graph is a data structure that
presents a powerful non-Euclidean method for establishing the
extent to which features (nodes) are connected to their
relationships (edges). We defined each molecule in R1,2 and P
as an undirected graph G = (V, E), where V and E represent
the sets of nodes and edges vectors, respectively. The node
feature vector vj ∈ V and edge feature vectors ej,k ∈ E were
assumed to consist of heavy atoms (e.g., C, N, O, and F) and
their bonds (e.g., single, double, triple, and aromatic),
respectively. Hydrogen atoms were not considered. The
node feature vj is a vector indicating the atom type, formal
charge, degree, hybridization, number of hydrogen atoms,
valency, chirality, whether it accepts or donates electrons,
whether it is aromatic, whether it is in a ring, and associated
ring sizes. For the bond between atoms j and k, ej,k is a vector
indicating the bond type, stereochemistry, whether it is in a
ring, and whether it is conjugated. The MPNN is designed to
accept G = (V, E) as the input and to return the graph
representation vector q as output as follows

=q M G( ) (2)

The MPNN uses six message passing steps with an edge
network as the message function and a gated recurrent unit
(GRU) network as the update function to produce node-
representation vectors, whose dimensionality was set to 64.
Then, a set2set model, which uses six processing steps, is
employed as the readout function for global pooling over the
node-representation vectors to obtain graph-level embedding,
which is invariant to the order of the nodes, as described in
Figure 7. The embedding is further processed by a fully
connected layer of 512 ReLUs,52 resulting in the graph
representation vector q. The use of the MPNN ensures that the
representation is invariant to graph isomorphism.

We summate the respective graph representation vectors
regarding R = {Gr1, Gr2} and P = {Gp}. In this manner, the
representation becomes invariant to the order of reactants and
products. The two summated vectors of reactants are
concatenated to produce a reaction representation vector h
(3), as follows
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Here, m is the number of reactants. The reaction graph
embedding vector h is further processed by a feed-forward
neural network (FNN) having four fully connected layers, each
of which contains 512 ReLUs is represented as pϕ(h). The
output functions of the FNN are equal to the length of the
one-hot vectors by each condition type (c). The predictive
model MPNN is trained as an independent model according to
the type of reaction conditions and the predicted catalyst,
ligand, base, and solvent as ccategory, respectively. Once trained,
the prediction model fθMPNN is used for predicting the
conditions of new chemical reactions. Given a query reaction
(R*, P*), we predict conditions vector c as csolvent, ccatalyst, cbase,
and cetc (the area category of condition types is dependent on
the reaction task). Then, the value of the priority is calculated
by generating all possible combinations of conditions using the
weight value of the one-hot vector c predicted by the model for
each of the conditions. Therefore, the priority of condition
combination I is defined as

= ·
=

I N f R P( ( , ))
k

t

0

MPNN

(4)

The types of conditions vary for different experiments and
have different ranges. In eq 4, t represents the type of
condition. Each condition prediction model fθMPNN is
normalized for reducing gab of weight values. Finally, the
priority of combination of predicted conditions is represented
by I. Moreover, the priority is represented as I = N·Clig + N·
Cbas + N·Csol, where N is the normalization to reflect the
equivalent weights for each category of conditions. Figure 7
illustrates the training process for the condition prediction
models. The details of the performances of MPNN models are
described in “Supporting Information S. Note 5: Top-k
accuracy of the MPNNs for predicting conditions.”

Bayesian Optimization in HDO. The BO method is used
to reduce the number of objective evaluations that need to be
performed to solve an optimization problem. To achieve this,
they iteratively suggest, in a careful and intelligent manner, an

Figure 7. Illustration of the process of MPNN models to predict suitable reaction conditions given graph-type reaction representations G (⊕
denotes the summation of qR vectors, and ⊗ represents the calculation of combinations among weights of one-hot vectors under different
conditions c).
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input location in which the objective that is being optimized
should be evaluated for each experiment. At each iteration N =
1, 2, 3 ··· of the optimization process, the BO method fits a
probabilistic model, a Gaussian process surrogate model (GP)
in our case, to the collected observations of the objective. The
uncertainty in the potential values of the objective is provided
by the predictive distribution of the GP. We modeled chemical
reaction outcomes; GP is defined in Shield’s study,46 and the
Mateŕn52 kernel was used and represented as fϕGP. For each
reaction, a numerical encoding was generated by concatenating
descriptor vectors for each condition category and continuous
variable. For example, the Suzuki−Miyaura reaction in Task 2
involved four categories: catalysts, bases, solvents, and ligands.
The i npu t d e s c r i p t i on i s d e s c r i b ed a s d i =
dcatalyst⊕dbase⊕dsolvent⊕dligand (where ⊕ denotes concatena-
tion). Here, i is the number of all possible combinations of
conditions, that is, the search space. The target was the yield.
The target of BO objective function is the experimental yield
results. In Gaussian process regression, the surrogate model
determines the general shape of its function distribution. The
trained parameters for the length scale set the relative variation
per dimension, the amplitude calibrates the magnitude of the
changes, and the noise captures the variation in measurements.
In the acquisition function, upper-confidence-bound (UCB)53

algorithm was adopted to calculate the priority of the next best
combination of conditions as (5). Uncertainty was used to
generate an acquisition function AFGP_UCB, whose value at each
input location indicates the expected utility of evaluating fϕGP at
this location. The upper-confidence-bound (UCB)53 algorithm
was adopted to calculate the priority of the next best
combinations of conditions as

= + ·_ x x xAF ( ; ) ( ) ( )k k kGP UCB (5)

With UCB, the exploitation vs exploration trade-off is
straightforward and easy to tune via the parameter λ.
Concretely, UCB is a weighted sum of the expected
performance captured by μ(xk) of the Mateŕn52 kernels and
of the uncertainty σ(xk), captured by the standard deviation of
the fϕGP. The next point xk at which fϕGP is evaluated is the one
that maximizes AFGP_UCB. After collecting this observation, the
process is repeated. When sufficient data are collected, the GP
predictive mean value fϕGP can be optimized to find the solution
of the problem. Considering that the acquisition function
AFGP_UCB is calculated using only the results currently being
experimented with, it is possible to correct the process of
navigating in the wrong direction due to the inaccurate
prediction results of the MPNN model.

Acquisition Function for HDO and Rules for
Expanding the Search Space. In this section, we present
our technique, named the learning to acquisition function, for
efficient reaction optimization. To determine the next iterate xk
based on the belief about fMPNN and AFGP_UCB, given the
history Hk, a sampling strategy is defined as follows

=
·{ }

+ ·{ }_x
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x
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GP UCB
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In eq 6, AFHDO was designed for efficient optimization
combining the current experiment-driven priority model
AFGP_UCB with the priority of fθMPNN, obtained using a vast
number of experimental documents for training. The normal-
ization N is intended to prevent bias to one side by the values

of the two acquisition functions and is calculated as (7) using
min−max feature scaling.

=N
X X

X X
min

max min (7)

Under the influence of the weight of AFGP_UCB, AFHDO is
induced to increase with the number of trials t to more closely
reflect the results of the current experiments H. To
dynamically expand the search space that was initially
narrowed by MPNN models, if t exceeds 20 experimental
trials and the accumulated maximum conversion yield is less
than 10%, the search space is expanded by 10% after every five
experiments.

The MPNN model was implemented using PyTorch in
Python. The BO module was facilitated by “scikit-optimize
python library”, and we used the “skopt.gp_minimize” function
for AFGP_UCB. The results of the experimental investigations are
reported and discussed in the following section.

■ RESULTS AND DISCUSSION
Searching for optimal high-yield reaction conditions requires a
lot of resources and is time-consuming. In this paper, we
proposed a method for efficiently exploring suitable synthetic
reaction conditions, given reaction structures (reactants and
target a product) with a condition search space. As a baseline,
BO is a progressive solution to determine suitable conditions,
but initial experimental results are inevitably required for
training surrogate models to infer conditions. This causes a
cold-start problem. Moreover, data-driven approaches such as
GNNs can determine optimal combinations of conditions in
the early stages of the optimization if they have sufficient
chemical reaction data, such as that of the Suzuki−Miyaura
reaction. However, due to the lack of training data and novel
reactions, the predictive performance of the GNN model can
be poor.

Therefore, we designed the hybrid-type dynamic optimiza-
tion (HDO) method to compensate for the above-mentioned
shortcomings while utilizing the advantages of the two
approaches. Given reaction structures, GNN models based
on MPNN predict appropriate reaction conditions. We utilized
priorities of combinations of predictive conditions using a
GNN for initial experiments. The experimental results (yield)
were used for BO surrogate model training to select the next
combination of conditions, and the optimization direction was
dynamically modified based on the number of trials and
observed yields. This approach enables an intuitive sampling
policy to efficiently accomplish global optimization.

As a result, in experimental simulations, HDO could
determine the optimal conditions that satisfied the target
yield faster than other baselines. To further investigate the
performance of HDO, we additionally prepared condition
optimization tasks for synthesizing 22 target products and
confirmed the number of experiments for HDO to attain the
level of five specialists in organic synthesis. The HDO
approach also met the target yield by swiftly identifying a
combination of reaction conditions that were either the same
or similar to those proposed by the synthesis experts (requiring
approximately 5−10 times less time) for four named reactions.
Ultimately, we expect this method to serve as an enabling tool
for searching promising chemical species and optimizing the
structures of materials for various applications in the field of
materials discovery.
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(18) Mocǩus, J.On Bayesian Methods for Seeking the Extremum. In
Optimization Techniques IFIP Technical Conference; Springer, 1975; pp
400−404.
(19) Mockus, J. B.; Mockus, L. J. Bayesian Approach to Global

Optimization and Application to Multiobjective and Constrained
Problems. J. Optim. Theory Appl. 1991, 70, 157−172.
(20) Snoek, J.; Swersky, K.; Zemel, R. S.; Adams, R. P. Input

Warping for Bayesian Optimization of Non-Stationary Functions,
2014. arXiv:1402.0929. arXiv.org e-Print archive. https://arxiv.org/
abs/1402.0929.
(21) Snoek, J.; Larochelle, H.; Adams, R. P.Practical Bayesian

Optimization of Machine Learning Algorithms, 2012.
arXiv:1206.2944. arXiv.org e-Print archive. https://arxiv.org/abs/
1206.2944.
(22) Srinivas, N.; Krause, A.; Kakade, S. M.; Seeger, M. W.

Information-Theoretic Regret Bounds for Gaussian Process Opti-
mization in the Bandit Setting. IEEE Trans. Inf. Theory 2012, 58,
3250−3265.
(23) Hutter, F.; Hoos, H. H.; Leyton-Brown, K.Sequential Model-

Based Optimization for General Algorithm Configuration. In Learning
and Intelligent Optimization; Springer, 2011; pp 507−523.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c05165
ACS Omega 2022, 7, 44939−44950

44949

https://github.com/b-shields/edbo
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c05165/suppl_file/ao2c05165_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.2c05165/suppl_file/ao2c05165_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Youn-Suk+Choi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7119-8788
https://orcid.org/0000-0001-7119-8788
mailto:ysuk.choi@samsung.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Youngchun+Kwon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7911-3670
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dongseon+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin+Woo+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sun+Kim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c05165?ref=pdf
https://doi.org/10.1016/j.compchemeng.2003.11.003
https://doi.org/10.1016/j.coche.2021.100726
https://doi.org/10.1016/j.coche.2021.100726
https://doi.org/10.1016/j.coche.2021.100728
https://doi.org/10.1016/j.coche.2021.100728
https://doi.org/10.6028/jres.049.044
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1038/137252a0
https://doi.org/10.1287/ijoc.1100.0417
https://doi.org/10.1287/ijoc.1100.0417
https://doi.org/10.1021/nn503347a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nn503347a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.oprd.5b00313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.oprd.5b00313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.oprd.5b00313?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/npjcompumats.2016.31
https://doi.org/10.1038/npjcompumats.2016.31
https://doi.org/10.1002/anie.201705721
https://doi.org/10.1002/anie.201705721
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1038/s41467-022-28736-4
https://doi.org/10.1038/s41467-022-28736-4
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-019-0204-1
https://doi.org/10.1038/s41524-019-0204-1
https://doi.org/10.1115/1.3653121
https://doi.org/10.1115/1.3653121
https://doi.org/10.1007/BF00940509
https://doi.org/10.1007/BF00940509
https://doi.org/10.1007/BF00940509
https://doi.org/10.1109/TIT.2011.2182033
https://doi.org/10.1109/TIT.2011.2182033
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c05165?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(24) Settles, B.Synthesis Lectures on Artificial Intelligence and
Machine Learning. In Active Learning; Springer, 2012; Vol. 6, pp 1−
114.
(25) Goodman, J. Computer Software Review: Reaxys. J. Chem. Inf.
Model. 2009, 49, 2897−2898.
(26) Szymkuc,́ S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald,

P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Computer-Assisted
Synthetic Planning: The End of the Beginning. Angew. Chem., Int. Ed.
2016, 55, 5904−5937.
(27) Segler, M. H. S.; Preuss, M.; Waller, M. P.Learning to Plan

Chemical Syntheses, 2017. arXiv:1708.04202. arXiv.org e-Print
archive. https://arxiv.org/abs/1708.04202.
(28) Law, J.; Zsoldos, Z.; Simon, A.; Reid, D.; Liu, Y.; Khew, S. Y.;

Johnson, A. P.; Major, S.; Wade, R. A.; Ando, H. Y. Route Designer: A
Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic
Rule Generation. J. Chem. Inf. Model. 2009, 49, 593−602.
(29) Liu, B.; Ramsundar, B.; Kawthekar, P.; Shi, J.; Gomes, J.;

Nguyen, Q. L.; Ho, S.; Sloane, J.; Wender, P.; Pande, V.
Retrosynthetic Reaction Prediction Using Neural Sequence-to-
Sequence Models. ACS Cent. Sci. 2017, 3, 1103−1113.
(30) Bøgevig, A.; Federsel, H.-J.; Huerta, F.; Hutchings, M. G.;

Kraut, H.; Langer, T.; Löw, P.; Oppawsky, C.; Rein, T.; Saller, H.
Route Design in the 21st Century: The IC SYNTH Software Tool as
an Idea Generator for Synthesis Prediction. Org. Process Res. Dev.
2015, 19, 357−368.
(31) Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F.

Computer-Assisted Retrosynthesis Based on Molecular Similarity.
ACS Cent. Sci. 2017, 3, 1237−1245.
(32) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical

Syntheses with Deep Neural Networks and Symbolic AI. Nature 2018,
555, 604−610.
(33) Kim, E.; Lee, D.; Kwon, Y.; Park, M. S.; Choi, Y.-S. Valid,

Plausible, and Diverse Retrosynthesis Using Tied Two-Way Trans-
formers with Latent Variables. J. Chem. Inf. Model. 2021, 61, 123−133.
(34) Tetko, I. V.; Karpov, P.; Van Deursen, R.; Godin, G. State-of-

the-Art Augmented NLP Transformer Models for Direct and Single-
Step Retrosynthesis. Nat. Commun. 2020, 11, No. 5575.
(35) Ucak, U. V.; Ashyrmamatov, I.; Ko, J.; Lee, J. Retrosynthetic

Reaction Pathway Prediction through Neural Machine Translation of
Atomic Environments. Nat. Commun. 2022, 13, No. 1186.
(36) Mo, Y.; Guan, Y.; Verma, P.; Guo, J.; Fortunato, M. E.; Lu, Z.;

Coley, C. W.; Jensen, K. F. Evaluating and Clustering Retrosynthesis
Pathways with Learned Strategy. Chem. Sci. 2021, 12, 1469−1478.
(37) Wang, X.; Qian, Y.; Gao, H.; Coley, C. W.; Mo, Y.; Barzilay, R.;

Jensen, K. F. Towards Efficient Discovery of Green Synthetic
Pathways with Monte Carlo Tree Search and Reinforcement
Learning. Chem. Sci. 2020, 11, 10959−10972.
(38) Kayala, M. A.; Azencott, C.-A.; Chen, J. H.; Baldi, P. Learning

to Predict Chemical Reactions. J. Chem. Inf. Model. 2011, 51, 2209−
2222.
(39) Kayala, M. A.; Baldi, P. ReactionPredictor: Prediction of

Complex Chemical Reactions at the Mechanistic Level Using
Machine Learning. J. Chem. Inf. Model. 2012, 52, 2526−2540.
(40) Jin, W.; Coley, C. W.; Barzilay, R.; Jaakkola, T.Predicting

Organic Reaction Outcomes with Weisfeiler-Lehman Network, 2017.
arXiv:1709.04555. arXiv.org e-Print archive. https://arxiv.org/abs/
1709.04555.
(41) Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.;

Jensen, K. F. Prediction of Organic Reaction Outcomes Using
Machine Learning. ACS Cent. Sci. 2017, 3, 434−443.
(42) Maser, M. R.; Cui, A. Y.; Ryou, S.; DeLano, T. J.; Yue, Y.;

Reisman, S. E. Multilabel Classification Models for the Prediction of
Cross-Coupling Reaction Conditions. J. Chem. Inf. Model. 2021, 61,
156−166.
(43) Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.;

Jensen, K. F. Using Machine Learning To Predict Suitable Conditions
for Organic Reactions. ACS Cent. Sci. 2018, 4, 1465−1476.

(44) Kwon, Y.; Lee, D.; Choi, Y.-S.; Kang, S. Uncertainty-Aware
Prediction of Chemical Reaction Yields with Graph Neural Networks.
J. Cheminform. 2022, 14, No. 2.
(45) Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.;

Green, W. H.; Barzilay, R.; Jensen, K. F. A Graph-Convolutional
Neural Network Model for the Prediction of Chemical Reactivity.
Chem. Sci. 2019, 10, 370−377.
(46) Shields, B. J.; Stevens, J.; Li, J.; Parasram, M.; Damani, F.;

Alvarado, J. I. M.; Janey, J. M.; Adams, R. P.; Doyle, A. G. Bayesian
Reaction Optimization as a Tool for Chemical Synthesis. Nature
2021, 590, 89−96.
(47) Fox, R. J.; Cuniere, N. L.; Bakrania, L.; Wei, C.; Strotman, N.

A.; Hay, M.; Fanfair, D.; Regens, C.; Beutner, G. L.; Lawler, M.;
Lobben, P.; Soumeillant, M. C.; Cohen, B.; Zhu, K.; Skliar, D.;
Rosner, T.; Markwalter, C. E.; Hsiao, Y.; Tran, K.; Eastgate, M. D. C−
H Arylation in the Formation of a Complex Pyrrolopyridine, the
Commercial Synthesis of the Potent JAK2 Inhibitor, BMS-911543. J.
Org. Chem. 2019, 84, 4661−4669.
(48) Ji, Y.; Plata, R. E.; Regens, C. S.; Hay, M.; Schmidt, M.; Razler,

T.; Qiu, Y.; Geng, P.; Hsiao, Y.; Rosner, T.; Eastgate, M. D.;
Blackmond, D. G. Mono-Oxidation of Bidentate Bis-Phosphines in
Catalyst Activation: Kinetic and Mechanistic Studies of a Pd/
Xantphos-Catalyzed C−H Functionalization. J. Am. Chem. Soc. 2015,
137, 13272−13281.
(49) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;

Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe,
G.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos,
A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. Scikit-
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