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1. Introduction
Spiramycin, a macrolide antibiotic, is commonly used in veterinary medicine for the control and treatment of several 
mycoplasmal and bacterial infections in poultry. Incorrect use of this drug can result in the appearance of its residues in 
poultry products and may cause different disorders and diseases in consumers, such as the appearance of allergic reactions 
and the induction of resistant bacteria [1]. Moreover, the previous pharmacokinetic studies [2,3] of veterinary drugs in eggs 
showed that the risk of spiramycin residue in the egg is quite excessive. Therefore, accurate, simple, and precise analytical 
methods need to be developed for the determination of spiramycin in poultry products.

Methods used for the extraction of spiramycin from chicken tissues and eggs have already been clearly described in the 
literature. Most of them follow the solid phase extraction technique to clean-up the extract [4–6]. The liquid-liquid extraction 
process [7] and the ultrafiltration technique [8] were also proposed for this purpose. Alternatively, a very useful, relatively 
simple, and fast extraction technique to extract some antibiotics was described by Wang et al. [9]. The ultrasound-assisted 
extraction of 64 antibiotic residues from nine classes including spiramycin was performed with acceptable recovery values 
between 70.8% and 116.1% in the study published. Chicken egg samples were simply extracted with a mixture of acetonitrile-
water (90:10, v/v) and 0.1 M Na2EDTA, and the method demonstrated significant efficiencies in eliminating matrix effects.

Liquid chromatographic techniques by UV [10–14], DAD [8,15,16], fluorimetric [17], and mass spectrometric [18–
22] detection were usually followed to determine spiramycin. Furthermore, analytical methods regarding spiramycin 
determination based on spectrophotometry [23,24] and capillary electrophoresis coupled with voltammetric detection [25] 
have already been reported elsewhere.

Electroanalytical techniques are quite popular in analytical applications due to their relatively low-cost instrumentation 
compared to many other methods. From the electrochemical point of view, there are only a few voltammetric techniques 
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by using different working electrodes that have been published based on the detection of spiramycin in the literature [26–
28]. Two microsized graphite sensors were also described for the potentiometric determination of spiramycin [29]. Herein, 
a modified glassy carbon electrode (GCE) was fabricated as voltammetric working electrode for the electrochemical 
determination of spiramycin.

Due to their numerous benefits over sensors in terms of specificity and sensitivity, nanomaterial-based electrochemical 
sensors are often preferred by the researchers in analytical applications [30–33]. One of the most frequently used 
nanomaterials for this purpose is multiwalled carbon nanotubes (MWCNTs). The properties such as relatively low 
production cost, large surface area, high mechanical strength, high chemical stability and low electrical resistance make 
MWCNTs ideal working electrode modification materials in electrochemical sensor applications [34,35]. However, the 
very low solubility of MWCNTs makes it difficult to take advantage of their superior features mentioned [36]. In this 
case, the most effective method used commonly is the oxidation of commercially purchased MWCNTs with nitric acid to 
produce carboxylic groups [37,38] in the chemical structure which contribute to the solubilization [39].

Because of the importance of spiramycin quantification, a glassy carbon electrode modified with carboxylic MWCNTs 
(MWCNTs-COOH) was proposed as a spiramycin sensor in present study. The electroanalytical technique was carried out 
by using adsorptive stripping linear sweep voltammetry (Ad-SLSV) due to the open-circuit accumulation of spiramycin 
onto the decorated MWCNTs-COOH/GCE surface. The described sensing platform was proven to be a useful method in 
determining spiramycin by increasing the sensitivity of the bare GCE as a result of the adsorption affinity of spiramycin 
onto the modified surface prepared. The platform was depicted in Scheme. The analytical validation of the method was 
carried out and the applicability of the proposed technique was demonstrated by determining spiramycin contents of 
spiked chicken egg samples. Consequently, the proposed electrochemical sensing platform was proven to be a quite 
accurate, sensitive, simple, and rapid method to determine spiramycin and was shown to be an effective alternate to the 
available analytical methods.

2. Experimental
All the experiments were carried out at room temperature (20 ± 2 °C).
2.1. Reagents
Spiramycin, MWCNTs (110-170 nm, 5-9 µm), gold(III) chloride hydrate, chloroplatinic acid hexahydrate, Eriochrome 
Black T (EBT), ethylenediaminetetraacetic acid disodium salt, acetonitrile, and methanol were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Sodium hydroxide, N,N-dimethylformamide, and nitric acid were obtained from Merck 
(Darmstadt, Germany). o-Phosphoric acid was obtained from J.T.Baker (St. Louis, MO, USA).
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Millipore Elix 5 Water Purification System (Burlington, MA, USA) was used to obtain ultrapure water. A stock solution 
of spiramycin at 800 mg L–1 was prepared in methanol. Standard solutions were prepared by diluting the stock solution 
with ultrapure water.
2.2. Instrumentation
Voltammetric measurements were performed by using an Ivium Compactstat analyzer (Eindhoven, the Netherlands) with 
triple electrode system involves an Ag/AgCl (sat. KCl) reference electrode, a bare GCE (3 mm in diameter), and a platinum 
wire. Measurement with cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were carried out between 500 and 
1500 mV. The scan rate was 100 mV s–1.

The ultrasound bath was Daihan (Seoul, Korea), WUC-D10H. A Heidolph Hei-Vap (Schwabach, Germany) rotary 
evaporator was used in the extraction step. Millipore Elix 5 Water Purification System was used to produce ultrapure water.
2.3. Pretreatment of MWCNTs-COOH
Initially, an adequate amount of commercial MWCNTs were boiled in nitric acid to produce carboxylic groups in the 
chemical structure by oxidation. Subsequently, the oxidized MWCNTs (MWCNTs-COOH) were rinsed multiple times by 
ultrapure water and were dried at 40 °C overnight. Finally, ready-to-use suspension was prepared by dispersing 5 mg of the 
MWCNTs-COOH in 5 mL of dimethylformamide [40].
2.4. Fabrication of MWCNTs-COOH/GCE and the other electrodes decorated with extra modifications on MWCNTs-
COOH/GCE
Initially, GCE was polished with alumina slurry on an alumina polishing pad. Ten microliters of the prepared carboxylic 
MWCNTs suspension was dropped on the GCE surface and dried under infrared lamp to obtain MWCNTs-COOH/GCE. 
The poly Eriochrome Black T (EBT)/MWCNTs-COOH/GCE was fabricated by electropolymerization of EBT monomers 
(5.0 mM in 0.1 M NaOH) on the MWCNTs-COOH/GCE by using CV in a potential range of –0.4 V and 1.5 V at 100 mV 
s–1 for 10 cycles [41–43]. After the electropolymerization process, the fabricated electrode was rinsed by ultrapure water to 
remove excess EBT that could be physically adsorbed on the electrode surface. Au and Pt nanoparticles (NPs) were doped 
on the MWCNTs-COOH/GCE by CV at 100 mVs–1 for 10 cycles between 1.0 V and –1.5 V in 1 mM HAuCl4 solution and 
0.2 V to –1.0 V in 1 mM H2PtCl6 solution to fabricate AuNPs/MWCNTs-COOH/GCE and PtNPs/ MWCNTs-COOH/
GCE, respectively [44].
2.5. Surface area of the electrode
The electro-active surface areas of the electrodes were calculated via the Randles–Sevcik Eq. (1) by CV technique at 
different scan rates using 10–3 M K3Fe(CN)6 in 0.1 M KCl solution. Peak current (Ip) is as follows for a reversible process 
at 298 K [40]:

 ( ) *
0

2/12/1
0

2/351069.2 CDAnI p n´=  (1)

where n is the number of electrons transferred, D0 is the diffusion coefficient (7.6 × 10–6 cm2 s–1), υ is the scan rate, A is the 
surface area of the electrode, and C0* is the concentration of K3Fe(CN)6.
2.6. Extraction method
The method previously proposed by Wang et al. [9] was slightly modified and was followed to extract spiramycin from 
chicken eggs. Spiramycin blank chicken egg samples were homogenized to combine yolk and albumen at room temperature. 
Two grams of homogenized egg sample was spiked with proper quantities of spiramycin standard. The spiked sample was 
kept at room temperature for 2 h. Afterwards, 0.5 mL of 0.1 M EDTA and 7.5 mL of ACN-H2O (90:10, v/v) solutions were 
added to the sample and it was extracted in an ultrasonic bath for 15 min, and centrifuged at 3000 rpm at 4 °C for 10 min. 
Five milliliters of the supernatant was evaporated by using a rotary evaporator at 45 °C. The residue was redissolved in 1 
mL of methanol and was filtered through a 0.45 μm PTFE filters before analysis.

3. Results and discussion
3.1. Electrode mechanism of spiramycin
The electrochemical behavior of spiramycin on MWCNTs-COOH/GCE was examined by CV. The CVs of 5 × 10–5 M 
spiramycin in 0.2 M HNO3 obtained after completion of the open-circuit accumulation process of spiramycin onto 
the MWCNTs-COOH/GCE were displayed in Figure 1. A well-defined oxidation peak was detected at 1230 mV, but 
no corresponding cathodic peak was observed on the reverse scan. Therefore, the electrode reaction of spiramycin was 
determined to be irreversible. Subsequent sweeps, without stirring, resulted in significant decreases in the oxidation peak 
current of spiramycin, showing that spiramycin was strongly adsorbed onto the modified electrode surface. After the third 
scan, the subsequent peak currents remained almost unchanged.
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The electrode process of midecamycin, another macrolide with similar molecular structure, was discussed previously 
[45–47] and it was attributed to the oxidation of aldehyde group on the macrocycle in the molecule. Similarly, it was 
estimated that the anodic peak observed for spiramycin was obtained by the oxidation of the aldehyde group on the 
molecule to a carboxylic acid by losing two electrons.

The CVs of 5 × 10–5 M spiramycin in different electrolyte solutions and a chart representing the influence of different 
electrolyte solutions on the anodic peak current of spiramycin were shown in Figures 2 and 3, respectively. In cases where 
the pH was greater than 1, spiramycin showed irreversible two-step one electron oxidation reaction in CVs (see Figure 
2, pH = 8 and 10 data were not shown). As the pH decreased, the second oxidation peak began to disappear. At pH = 1, 
the second anodic wave appeared as a shoulder peak just next to the main oxidation peak. Finally, the oxidation reaction 
of spiramycin occurred rapidly in one step in 0.2 M and higher concentration of HNO3 solution. In addition, 0.2 M 
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Figure 1. Cyclic voltammograms of 5 × 10-5 M spiramycin on 
MWCNTs-COOH/GCE.
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HNO3 solution provided higher anodic peak current (see Figure 3). Therefore, the electrolyte solution was 0.2 M HNO3 
in subsequent studies.

The influence of pH on the anodic peak potential of spiramycin was also investigated. As pH decreased from 10 to 1, 
the anodic peak potential shifted linearly to more positive potential, implying that proton transfer should be accompanied 
in the oxidation process. Linear chart was inset in Figure 2. The equation was E (mV) = –60.712 pH (mV/pH) + 1117. The 
Nernst equation slope of –60.7 mV/pH indicates that the ratio of the participated protons to the transferred electrons was 
1:1. Consequently, the possible numbers of electron and proton involved in the oxidation of spiramycin were estimated to 
be two.
3.2. The voltammetric behavior of spiramycin and influence of stirring on accumulation
The effects of the accumulation time and stirring the electrolyte on the oxidation peak current of spiramycin are indicated 
in Figure 4A. Firstly, the variation in the oxidation peak current of 5 × 10–5 M spiramycin versus accumulation time was 
examined on both the bare and the MWCNTs-COOH/GCE by using CV in 0.2 M HNO3. The anodic current of spiramycin 
increased as a function of accumulation time on the modified electrode. However, no important variation was observed 
in the anodic current obtained on the bare GCE. This result was attributed to the preconcentration of the spiramycin on 
the fabricated MWCNTs-COOH/GCE surface by open-circuit accumulation. Furthermore, the influence of introducing 
stirring the electrolyte solution on the oxidation peak current of spiramycin was also observed. It was clear from the results 
that stirring the electrolyte solution during preconcentration of spiramycin on the fabricated electrode surface provided 
both an important increase in the oxidation peak current and a shorter period to reach the maximum anodic current of 
spiramycin. Stirring times greater than 60 s were not preferred as they resulted in the desorption of spiramycin gradually 
from the surface. Therefore, the accumulation time with stirring was selected as 60 s.

The CVs of 5 × 10–5 M spiramycin on bare GCE and the modified electrode were presented comparatively in Figure 4B. 
As can be seen from the figure, the proposed modification of the electrode surface significantly increased the sensitivity 
of GCE for spiramycin determination. Compared with the bare GCE, the anodic peak current of spiramycin increased 
approximately 2 × 104 times on MWCNTs-COOH/GCE after completion of the accumulation process of spiramycin onto 
the modified surface. The adsorption affinity of spiramycin on the fabricated electrode surface allowed the described 
methodology to be used as a quite sensitive spiramycin sensor. 

On the other hand, the effect of stirring rate between 100 and 500 rpm on the anodic peak current of spiramycin was 
also investigated. The results were depicted in Figure 5. The analytical signal obtained increased up to a stirring rate of 300 
rpm. However, stirring rates over 300 rpm reduced the measured anodic peak current of spiramycin. According to the 
results, the optimum stirring rate was found to be 300 rpm.

As stated in the Randles–Sevcik equation, the surface areas of the bare GCE and MWCNTs-COOH/GCE were 
calculated to be 0.0334 ± 0.0025 and 0.2281 ± 0.0107 cm2 from the slope of the plot of Ip versus υ1/2, respectively. The 
results presented that the modification of the surface increased the electro-active area of the electrode up to approximately 
seven times.

00

20

40

60

80

100

0.5 M
NAS

0.2 M
NAS

0.1 M
NAS

pH=2
PBS

pH=4
PBS

pH=6
PBS

pH=8
PBS

pH=10
PBS

pH=12
PBS

Pe
rc

en
ta

ge
 o

f t
he

 m
ax

.  
pe

ak
 c

ur
re

nt

Electrolyte solution

Figure 3. Percentages of the maximum anodic peak current of 5 × 10–5 M 
spiramycin obtained by cyclic voltammetry in different electrolyte solutions 
on MWCNTs-COOH/GCE with stirring the electrolyte solution at 300 rpm 
for 60 s. NAS, nitric acid solution; PBS, phosphate buffer solution.



CİTTAN / Turk J Chem

468

3.3. Effect of scan rate
The relationship between sweep rate (v) and peak current (Ip) was examined on MWCNTs-COOH/GCE and the oxidation 
peak currents of spiramycin were determined to be proportional to sweep rates between 25 and 500 mV s–1 (Fig 6A). In 
addition, slopes of log Ip vs. log v was found to be approximately 0.90 which was quite greater than the expected value of 
0.53 for a purely diffusion-controlled process (Figure 6B). Both results obtained were in agreement and supported that the 
oxidation reaction of spiramycin on the modified electrode was adsorption-controlled process.
3.4. The influence of additional modifications on MWCNTs-COOH/GCE
It has been shown in many studies that metal nanoparticles and conductive thin film polymer modifications on GCE 
provide improvement in sensitivity by increasing the catalytic effect for numerous analytes. To this end, several additional 
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modifications such as conducting polymer film (poly-EBT) and metal nanoparticles (Au and PtNPs) on MWCNTs-
COOH/GCE were also performed to observe the influence of the newly prepared modified electrodes on the anodic 
peak current of spiramycin. A bar chart indicating the percentage of the anodic response of spiramycin to the highest 
current value obtained on MWCNTs-COOH/GCE, poly(EBT)/MWCNTs-COOH/GCE, AuNPs/MWCNTs-COOH/GCE, 
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and PtNPs/MWCNTs-COOH/GCE was given in Figure 7. The best signal obtained on MWCNTs-COOH/GCE proved 
that the adsorption interaction between spiramycin and MWCNTs-COOH was reduced in the presence of the additional 
modifiers on MWCNTs-COOH/GCE.
3.5. Linearity and sensitivity
Quantitative analysis of spiramycin on fabricated MWCNTs-COOH/GCE was carried out using the LSV technique. The 
anodic peak currents of a series of standard spiramycin solutions obtained with the technique described were plotted 
versus concentration to evaluate the linearity of the described electrochemical sensing platform. The oxidation peaks 
were displayed in Figure 8A. The proposed sensor showed a good linearity between 0.100 and 40.0 µM of spiramycin 
concentration with a correlation coefficient of 0.9993 (Figure 8B).

The limit of detection (LOD) and the limit of quantification (LOQ) of the sensing platform were calculated to be 0.028 
and 0.094 µM, respectively, by using the formulas LOD = 3.3SD/b and LOQ = 10SD/b, where SD is the standard deviation 
of ten reagent blank determinations and b is the slope of the calibration curve [48].

The linear working ranges and the sensitivity properties of the proposed technique and the existing electrochemical 
methods for the determination of spiramycin were comparatively given in Table 1. The results clearly indicated that the 
described sensing platform would be the most sensitive electrochemical technique ever proposed for spiramycin detection.
3.6. Repeatability
The calibration standards of three different concentrations of 0.500, 5.00, and 40.0 µM were used to examine the intraday 
and interday repeatability of the described methodology. In all cases RSD values were less than 8% (Table 2). Thus, the 
proposed platform was proven to be highly repeatable in spiramycin analysis. In addition, the stability of the proposed 
sensing platform was evaluated by measuring the anodic response of 5 × 10–5 M spiramycin on MWCNTs-COOH/GCE 
after the fabricated electrode was stored at room temperature for 7 days. The sensor retained 96% and 79% of the initial 
response of spiramycin on days 3 and 7, respectively.
3.7. Real sample analysis and extraction recovery
The applicability of the proposed methodology was examined by determining the amount of spiramycin spiked in chicken 
egg samples at two different levels. For this purpose, 2 g of spiramycin blank chicken egg samples (albumen and yolk 
combined) were spiked with 13.57 (low level) and 271.40 µg (high level) of spiramycin standards and then the described 
extraction procedure was followed (n = 3). The spiked samples were analyzed (the representative LSVs and standard 
addition calibration were given in Figure 9) and the amounts of analyte recovered were calculated. According to the results, 
the technique followed had good recovery values with 85.3 ± 4.0% and 93.4 ± 1.9% in spiramycin extraction for low and 
high concentration levels. Finally, the analytical features of the described methodology are summarized in Table 3.
3.8. Interference
Possible interferences of some amino acids and vitamins found in chicken eggs such as glycine, L-cystine, L-lysine, 
L-arginine, L-glutamic acid, vitamin B1, and vitamin D3 were investigated besides many cations and anions. Some of these 
cations are also found in different amounts in chicken eggs. In addition, amoxicillin, another antibiotic commonly used in 
poultry, was also evaluated in this context. A hundred times higher than spiramycin concentration for glycine, L-cystine, 
L-lysine, L-arginine, L-glutamic acid, vitamin B1, vitamin D3, K+, Na+, Fe2+, Fe3+, Mg2+, Cd2+, Ca2+, Cu2+, Ni2+, Zn2+, Co2+, 
Ba2+, Pb2+, Cr3+, Al3+, NO3

-, Cl-, SO4
2-, PO4

3- and ten times higher than spiramycin concentration for amoxicillin did not 
interfere to the proposed analytical methodology, in the case of 0.500 µM spiramycin.
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Table 1. Comparison of the electroanalytical methods in the literature for spiramycin analysis. 

Technique Electrode Linear range (µM) LOD (µM) Ref.

DPV - 0.080–600 0.074 [27]
DPP HMDE 23.6–94.9 10.1 [28]
SWP HMDE 0.949–94.9 0.546 [28]
Potentiometric MGE 10–10000 5.9 [29]
Ad-SLSV MWCNTs-COOH/GCE 0.100–40.0 0.028 This work

DPV, differential pulse voltammetry; DPP, differential pulse polarography; SWP, square wave polarography; Ad-SLSV, 
adsorptive stripping linear sweep voltammetry; HMDE, hanging mercury drop electrode; MGE, microsized graphite 
electrode; MWCNTs-COOH, carboxylic multiwalled carbon nanotubes; GCE, glassy carbon electrode.
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Table 2. Repeatability of the proposed methodology.

Concentration (µM)
RSD (%) BIAS (%)

Intraday (n = 3) Interday (n = 9) Intraday (n = 3) Interday (n = 9)

0.500 7.4 7.6 7.3 7.8
5.00 4.2 4.7 3.3 5.4
40.0 0.5 0.9 1.0 1.2

RSD, relative standard deviation.
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Table 3. Analytical parameters of the proposed technique.

Parameter

Peak potential (mV) 1230

Linearity range (µM) 0.100–40.0

R-squared 0.9993

Slope (µA µM–1) 0.9363

Intercept (µA) 1.1773

Standard error of slope 0.011

Standard error of intercept 0.197

LOD (µM) 0.028

LOQ (µM) 0.094

Intraday repeatability (RSD%) ≤7.4

Interday repeatability (RSD) ≤7.6

Extraction recovery (%) ≥85.3

4. Conclusion
Spiramycin is a macrolide antibiotic frequently used to treat several infections in poultry. Therefore, it is important to 
analyze this drug in poultry products before human consumption. In this study, electrochemical behavior of spiramycin 
were investigated by CV and an accurate, sensitive, simple, and rapid analysis method was proposed for the drug on a 
MWCNTs-COOH/GCE by Ad-SLSV.

Initially, the electrode mechanism of spiramycin was predicted and the possible irreversible oxidation reaction was 
indicated using the results obtained from the CV analysis. Then, the validation of the Ad-SLSV technique proposed 
as a result of the open-circuit accumulation of spiramycin onto the modified surface was performed and the optimum 
conditions for the analysis were determined. Consequently, the validated electrochemical sensing platform was proven 
to be an effective method for quantitative spiramycin determination by improving the sensitivity of GCE. The technique 
would be the most sensitive electrochemical method ever proposed for spiramycin analysis.
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