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Abstract: Bridge deformation consists of cross-section rotation and deflection, which are crucial
parameters for bridge capacity evaluation and damage detection. The maximum value of deflection
usually happens at mid-span while for rotation it happens at two-ends. Therefore, compared with
deflection, rotation is more convenient for in-situ measurement since the bridge pier can be the
reference point. In this study, a high-precision inclinometer for bridge rotation measurement was
conceptualized, designed, and validated. The proposed inclinometer converted the small rotation of
bridge section into the deformation of an elastomer. Strain gauges were then utilized to measure the
elastomer deformation and thus the bridge rotation can be obtained. The dimensions and modulus
of the elastomer were designed and chosen based on the theoretical analysis. Characteristics of the
inclinometer were calibrated in lab and in-situ experiments at an in-service bridge were conducted
to validate its feasibility and robustness. Test results showed that the proposed inclinometer had
excellent performance in resolution and accuracy, which indicate its great potential for future bridge
health monitoring.

Keywords: inclinometer; bridge rotation; elastomer; health monitoring; ultrasensitive measurement

1. Introduction

Load effects such as strain, deflection, rotation, and acceleration are commonly used
for bridge capacity evaluation and damage detection [1–8]. Deflection reflects the overall de-
formation of a bridge structure. Current methods for bridge deflection monitoring usually
measure the distance between the bridge and a fixed reference point. Based on the location
of the reference point, different sensors/equipment can be used: linear variable differential
transformer (LVDT) [9], total station [10], machine vision [11], laser vibrometer [12,13],
radar [14], and global navigation satellite system (GNSS) [15,16]. LVDT-based monitoring
is a contact method with high accuracy for dynamic measurement. Machine vision, laser
vibrometer, and other non-contact monitoring methods are characterized by relatively low
precision and insufficient resolution, and thus are not suitable for dynamic or real-time
monitoring. They can be used for monitoring large-scale or long-term deflection. Generally,
the maximum deflection of a bridge structure occurs in the mid-span section, making it
difficult to monitor since no fixed reference point is available. For this reason, deflection
measurement is limited in practical application for bridge evaluation.

Similar to deflection, bridge rotation also reflects the overall deformation of a bridge
structure. Compared with deflection, the rotation of a bridge section can be measured
relative to the vertical direction without using any physical reference point. Therefore, rota-
tion measurement for bridge health monitoring has gradually become a popular research
topic. However, rotation measurement is challenging in conventional understanding since
the rotation absolute value for any civil engineering infrastructure is limited and not on a
magnified scale. To address this issue, many researchers developed various techniques for
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rotation measurement in the past decade [17–19]. So far, rotation monitoring methods are
generally based on the gravity pendulum setup and then convert or magnify the angular
information into other types of measurable parameters such as resistance, capacitance,
magnetic field, or optical parameters [20], etc.

In many studies, the rotation data of different bridge sections have been used to
indirectly calculate or reconstruct the deflection and deformation of the bridge superstruc-
ture [21–24]. Zhai et al. [25] proposed a method to identify the modal parameters of a
simply supported beam based on the inclination angle data. Hoult [26] used a rotation
sensor network to monitor the long-term changes in boundary conditions of long-span
bridges. Many recent studies also have used rotation data for the damage detection [27,28].
Alamdari et al. [29] proposed a rotation-based method for identifying the stiffness loss of
a cable stayed bridge, and compared experimental results with the strain-based damage
identification method. The results showed that the effectiveness of the strain-based method
was largely dependent on the position of the strain-measuring points, which may affect
the cable damage identification results. Huseynov et al. [20] proposed a new method to
identify the presence and location of damage in a simply supported bridge based on the
characteristics of rotation influence lines and verified its effectiveness through laboratory
experiments. The study concluded that rotation is the optimum parameter for identifying
local damage.

Compared with local strain and acceleration measurement, rotation can better re-
flect the overall deformation of a structure. Moreover, rotation is also more convenient
to measure than deflection since no extra reference point is needed. Thus, it has great
application prospects and supplementary potential in the current bridge health monitoring
and condition evaluation system [30,31]. Inclinometers have been widely used in automo-
bile, aviation, and other industrial fields for rotation measurement. In civil engineering,
inclinometers were originally used for geotechnical monitoring and long-term deformation
monitoring of bridges during the construction or early service stage [32,33]. Moreover, incli-
nometers are also useful to assess the effective plastic deformation demand during seismic
events [34,35]. In the past decades, with the improvement in precision of the inclinometer,
rotation monitoring has been used increasingly in the civil engineering for structural health
monitoring. Table 1 lists some commercial inclinometers and their parameters [20,36–40].
Among them, precision of 3.5 × 10−4 (◦) and resolution of 1 × 10−4 (◦) partially meet
the minimum requirements for small-angle bridge monitoring. However, it is evident
from Table 1 that the sampling frequencies of such inclinometers are too low to meet the
demands of dynamic tests.

Table 1. Technical specifications of commercially available inclinometers.

Model Country of Origin Measurement
Range (◦)

Resolution in
Degrees (◦)

Precision in
Degrees (◦) Sampling Rate (Hz)

DNS Germany ±85 3 × 10−3 ±3 × 10−2 100
JDI 100 USA ±1 1 × 10−4 ±4 × 10−3 125
JN2101 Germany ±45 1 × 10−3 ±1 × 10−2 20

ACA2200 Japan ±0.5 1 × 10−4 ±3 × 10−3 20
ZERO-TRONIC Switzerland ±0.5 1 × 10−4 ±3.5 × 10−4 10

T935 UK ±1 6 × 10−5 ±4 × 10−4 10

In summary, current inclinometers have the following disadvantages for bridge rota-
tion monitoring: (1) The working range is too wide while the resolution and precision are
too low. Bridge rotation is very small in amplitude [41,42] and thus it is difficult to capture
the tilt signal. (2) Current inclinometers are designed primarily for static or low-frequency
monitoring, which limits their use in dynamic measurements.

To address above issues, the novelty of this work is to propose, design, and validate a
new elastomer-based inclinometer with high accuracy for ultrasensitive dynamic monitor-
ing of beam-end rotation. The motivation of this research is to monitor the health condition
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and evaluate the bridge bearing capacity in more accurate and efficient ways by utilizing
the bridge rotation response. The working principle of the proposed inclinometer is to
convert or magnify the beam-end rotation into the deformation of an elastomer. Based
on the dynamic measurement system, a custom software module was developed for data
acquisition. Characteristics of the proposed inclinometer, including range, resolution,
linearity, and repeatability were calibrated first in the lab. Finally, to verify its feasibility
and effectiveness, in-situ experiments were conducted to measure the dynamic rotation
response of an in-service bridge subjected to moving vehicle loads. The in-situ test results
indicate that the proposed inclinometer has excellent accuracy and resolution for bridge
rotation measurement and thus has great potential for future bridge health monitoring and
capacity evaluation.

This paper is organized into the following sections:
Section 1 is the general introduction of research background, current trend of rotation

measurement, and the novelty and motivation of this work. Section 2 is dedicated to the
working principle of the elastomer-based inclinometer. Section 3 constructs the design
and data acquisition system of the proposed inclinometer. Section 4 investigates the
characteristics of the proposed inclinometer, including range, resolution, linearity, and
repeatability. Section 5 describes the in-situ experimental tests to illustrate the feasibility of
the proposed method. Finally, discussions and conclusions are presented in Section 6.

2. Working Principle of the Elastomer-Based Inclinometer

The fundamental principle of the proposed inclinometer is to convert the section
rotation into the strain of an elastomer. By utilizing the strain gauges on elastomer, high-
precision monitoring of the rotation can be achieved. In this method, bridge pier is used
as a reference point, relative to which the beam-end rotation is monitored. The concept of
this method is shown in Figure 1, top and bottom rigid bodies are fixed on the pier and
superstructure, respectively. The elastomer (red part) is fixed to the two rigid bodies for
connection and transfers the section rotation into elastomer bending. The bending strain
can then be measured and utilized for rotation sensing.
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Figure 1. Schematic illustration of the inclinometer setup.

Figure 2 illustrates the deformation of the inclinometer under bridge rotation, w1 and
w2 represent the displacements at two ends of the rigid component caused by the rotation of
the beam end (downward displacement is positive and upward is negative); w0 represents
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the vertical displacement of the beam end, and it is always small. The following equation
represents the displacement relationship shown in Figure 2.

w1 = w0 +
L0

2
θ (1)

w2 = w0 −
L0

2
θ (2)

w1 − w2 = L0θ (3)
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Figure 2. Deformation illustration of the inclinometer under bridge rotation.

Displacement of the top rigid body causes the bending deformation of the two elas-
tomers. On left elastomer, the values of strain gauges 1 and 2 caused by w1 can be expressed
as follows:

ε1 = −ε2 =
3h(l − 2∆l)

l3 w1 (4)

where l and h are the length and thickness of the elastomer, respectively; and ∆l represents
the distance between strain gauges and elastomer ends. Similarly, on the right elastomer:

− ε3 = ε4 =
3h(l − 2∆l)

l3 w2 (5)

The relation between the rotation angle and the elastomer strain can then be obtained
from (Equations (1)–(5)). The fundamental principle of the inclinometer proposed in this
work is to convert the small rotation into the strain of the elastomers. The rotation can thus
be obtained by measuring the strains. Compared with the direct rotation or displacement
measurement, strain measurement has higher resolution and thus can improve the accuracy
of bridge rotation sensing. Moreover, all connections of the inclinometer are rigid to reduce
potential errors, which can further enhance the accuracy of rotation measurement results.

3. Design and Data Acquisition of the Proposed Inclinometer
3.1. Design

Figure 3a,b shows the design of the proposed inclinometer, which consists of upper
and lower rigid covers, elastomer, strain gauges, rigid rods, and connecting bolts. The
upper and lower covers are designed to be fixed on the superstructure and pier of the
bridge, respectively. The elastomer with two strain gauges connects the upper and lower
covers. The rigid rods are bolted to the covers for height adjustment on different bridges,
which can be disassembled easily and reused. Figure 3c shows the prototype of the
proposed inclinometer.
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Figure 3. Schematic illustration of the inclinometer: (a) device components; (b) device installed on
bridge; (c) prototype of the proposed inclinometer.

Dimensions and features of each component are summarized in Table 2.

Table 2. Dimensions and features of the inclinometer components.

No. Component Size/(mm) Feature

1 Upper cover 420 × 150 × 8 Convert rotation to strain
2 Lower cover 420 × 150 × 8 Fix reference plane
3 Elastomer 80 × 10 × 5 Elastic sensitive element
4 Limit rod Φ20 Limit before test
5 Connection rods 100 × 100 × 8 Fix the device to the bridge
6 Strain gauge 5 × 3 Sensing elastic beam strain signal

The sensitivity coefficient and measurement range of the proposed inclinometer can
be adjusted for different purposes by changing the height, length, and modulus of the
elastomer, which is further discussed in the following sections.

3.2. Data Acquisition Module

The proposed inclinometer converts the rotation into a strain signal. Thus, based
on the current strain gauge data acquisition system, a custom data collection module
was designed. As discussed in Section 2, a total of four strain gauges were used on the
inclinometer, which can form a Wheatstone full-bridge circuit, as shown in Figure 4a. The
conversion relation between the output strain signal ε of the full-bridge and rotation θ can
be established as follows:

ε = ε1 − ε2 + ε3 − ε4 =
6h(l − 2∆l)L0

l3 θ (6)

Let

λ =
6h(l − 2∆l)L0

l3 (7)

Then
ε = λ · θ (8)

It is evident from Equations (6)–(8) that there is a linear relation between the full-bridge
output and the rotation. In Figure 4a, U is the input voltage of the strain circuit, ∆U is the
output voltage. Based on the characteristics of the strain monitoring circuit, the output
voltage and rotation angle satisfy:

∆U
U

=
K
4

λ · θ (9)

where K is the sensitivity coefficient of the strain gauge and it is usually equal to 2. The
inclinometer sensitivity coefficient λ is determined by Equation (7). By adjusting the
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elastomer height h and length l, strain gauge position ∆l, and inclinometer length L0, the
sensitivity coefficient can then be adjusted for different measuring purposes.

The theoretical characteristic curve of the inclinometer is shown in Figure 4b, which in-
dicates the output signal of the inclinometer is linearly correlated to the measured rotation.
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As shown in Figure 5, the HBM dynamic testing system (with an MGCplus data
acquisition system) and its supporting Catman Easy software were utilized as the data
acquisition module of the proposed inclinometer.
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Figure 5. Data acquisition module interface.

The data acquisition module interface contains the real-time output curve of measured
rotation versus time (right part in Figure 5) and inclinometer list (left column in Figure 5),
which is designed for multiple inclinometers measurement for in-situ application. The
maximum data acquisition frequency is determined by the HBM system, which is 9.6 kHz.

3.3. Calibration Test

For the calibration test, as shown in Figure 6, the lower cover was fixed, while the
upper was set to undergo dynamic rotation in the longitudinal direction. Two LVDTs were
placed at both ends of the cover to monitor the vertical displacement, from which the actual
rotation can be derived. In this study, we used an HBM LVDT displacement transducer
with a precision of 0.001 mm. The displacement transducer measurements are provided as
w1 and w2, and the real-time rotation angle is calculated by (w1 − w2)/L.
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Figure 6. (a) Schematic illustration and (b) laboratory setup of the calibration test.

The calibration process was conducted by repeatedly applying a weight on the in-
clinometer and then release it. Sampling rate of 50 Hz was chosen to ensure that the
dynamic response of the inclinometer under such circumstance can be adequately captured.
The time-history curve of the strain output is shown in Figure 7a. Similarly, time-history
curves of the relative displacements measured by the LVDTs are shown in Figure 7b. The
corresponding relation between the output strain and input rotation θ is shown in Figure 8.
It is evident that there is a good linear correlation between the two parameters.
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Figure 8 shows that even a small rotation angle input can result in a large strain of the
elastomer, which means the proposed inclinometer has ultrahigh sensitivity. After carrying
out five calibration tests, the value of the coefficient λ was averaged to be 23,190 µε/◦.
Factors such as the physical parameters (elastic modulus) of the elastomer, manufacturing
errors, and strain gauge installation errors can cause a discrepancy between the real and
theoretical value of λ. Nevertheless, the proposed inclinometer can significantly amplify
the rotation signal, which proves that it is suitable for high-precision dynamic monitoring
of bridge rotation.

4. Inclinometer Characteristic Parameters
4.1. Measurement Range

The measurement range of the inclinometer is determined by the elastic modulus and
dimensions of the elastomer. The elastomer used in this study was fabricated of brass. This
material has a relatively high allowable stress ([σ] = 369 MPa) and low elastic modulus
(E = 110 GPa), making it easy to deform. Based on the inclinometer design, ∆l = 12 mm,
L0 = 420 mm, the calculated range can be obtained by the two steps as follows:

The allowable strain [ε]:

[ε] =
[σ](l − 2∆l)

El
= 2348µε (10)

The maximum rotation angle:

[θ] =
2l3

3h(l − 2∆l)L0
[ε] = 0.39◦ (11)

As shown in Equation (11), the rotation measurement range is determined by elas-
tomer length l, height h, strain gauge position ∆l, and inclinometer length L0. Therefore, by
adjusting the elastomer dimension and inclinometer setup, the maximum measurement
range of the proposed inclinometer can be tuned for different purposes. The above cal-
culation is based on the assumption that the centerline of the inclinometer is the same
with the rotation axis of the bridge, which means w1 = −w2. In real application, this may
not be satisfied and thus the range will be slightly decreased. However, the maximum
rotation specified in the current bridge design code is 0.115◦. Therefore, the range of the
inclinometer is sufficient to meet the requirements for beam-end rotation monitoring. In
addition, the measurement range can be adjusted by changing the elastomer material, size
of the elastomer, or the effective length of the upper cover.

4.2. Measurement Accuracy

The precision of an instrument refers to the difference between the measurements
and the real values. The inclinometer accuracy relies on the HBM MGC Plus dynamic
data acquisition system. According to previous study [43], the relative error of the HBM
dynamic monitoring system for strain measurements is 0.1%, and the relative error, δ, for
the rotation angle is 0.1%. The maximum error, that is, when the measured rotation angle
reaches the measurement range of the present monitoring device, 4max, is provided by
the following:

∆max = δ[θ] = 3.9× 10−4 (◦) (12)

Compared with other inclinometers listed in Table 1, accuracy of the proposed incli-
nometer is obviously higher. It is worth noting that Equation (12) describes the maximum
absolute error of the present device, but the precision level is related to the rotation an-
gle measured during the actual monitoring process, which will generally not exceed the
monitoring range of the present device. Using actual monitoring data from Section 4.2 as
an example, the maximum rotation angle of the beam end during the selected monitoring
period was 6.85 × 10−3 (◦), and the corresponding monitoring error was 6.85 × 10−6 (◦).
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This device had obvious advantages in terms of its accuracy and can be used to accurately
monitor small rotations of beam ends.

4.3. Measurement Resolution

Resolution of an instrument refers to the ability to capture the smallest change in the
measurand. For the proposed inclinometer, it first relies on strain measurement resolution.
Then amplification of the rotation angle by the inclinometer also increases the resolution.
The actual resolution can be obtained based on the calibration data in Section 3.3. One of
the rotation time-history curves was selected, as shown in Figure 9a, and the measured
data was sorted based on the magnitude, as shown in Figure 9b.
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Figure 9. Resolution test chart (a) actual test curve; (b) resolution.

It is evident from Figure 9b that when the rotation angle values output by the present
device are sorted, an obvious stepwise increase can be observed, and the minimum change
in the rotation angle, that is, the device resolution, can be determined to be 3.59 × 10−7 (◦).
The difference in the rotation angles between adjacent data points in Figure 7a can be
expressed as N × 3.59 × 10−7 (N is an integer). It is evident that compared with the
parameters of the commonly used inclinometers listed in Table 1, the present device is more
advantageous in terms of its resolution. On the other hand, the present rotation monitoring
device could not only satisfy the high precision and resolution requirements for bridge
rotation monitoring, but its precision and resolution performance were also unaffected by
the monitoring frequency.

4.4. Linearity and Repeatability

Linearity refers to the coincidence degree between the actual characteristic curve of
the transducer and the reference line, as shown in Figure 10a. The nonlinear error, e1, of the
characteristic curve can be calculated using Equation (12) [44]. A smaller nonlinear error
indicates less the influence of the initial state on the characteristic relationship between the
input value and the output value of the transducer. Thus, any point within the measurement
range can be used as the initiation point for relative monitoring. The calibration test
data in Section 3.3 were used as a basis to determine the actual linearity of the present
device. Different rotation angle values were input into the monitoring equipment within its
measurement range to obtain the actual characteristic curve of rotation–strain conversion,
as shown in Figure 10b. Using the line between the starting point and the maximum point
of the measured data as the reference line, the nonlinear error of the present monitoring
equipment was calculated to be 0.76%.

e1 =
|∆Lmax|

yFS
× 100% (13)
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Similarly, repeatability describes the degree of non-coincidence for the input–output
curve when the transducer input changes repeatedly, as shown in Figure 11a. The repeata-
bility error can be calculated using Equation (14). If the degree of non-coincidence is large,
the output values differ greatly for the same input signal, which also affects the monitoring
accuracy. Based on the repeatability characteristic curve of the experimental monitoring
data, as shown in Figure 11b, the repeatability error was calculated to be 0.82%.

e2 =
|∆Rmax|

yFS
× 100% (14)
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Figure 11. (a) Schematic diagram of repeatability characteristics; (b) actual repeatability curve of the
proposed inclinometer.

The linearity and repeatability of a transducer are also related to its manufacturing
technology and strain gauge bonding technology. In general, the actual characteristic
curve of the proposed device had good linearity and high coincidence, and its nonlinear
error and repeatability error were very small, indicating that the device had good linearity
and repeatability.

5. In-Situ Experiment
5.1. Experiment Overview

To further verify the feasibility and function of the proposed inclinometer, an ex-
pressway bridge called Jinjiang Bridge in Changsha City, Hunan Province (as shown in
Figure 12), was selected to conduct in-situ experiments. Real-time beam-end rotation data
generated by the random vehicle loads were captured and analyzed. The monitored bridge
is a five-span (each span measures 60 m) continuous bridge aligned in the east–west direc-
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tion. The superstructure is a prestressed concrete single-cell box girder. No lane closures
were required during the experiment. Therefore, the beam-end rotation monitoring was
carried out during the actual operation of the bridge.
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Figure 12. Bridge overview and installation point (red dot) of the inclinometer.

In the field experiment, the inclinometer was set at the beam end at the supporting
pier of the first span, as shown in Figure 12. Taking the pier as the fixed reference point,
the rotation angle of the beam end relative to the pier was measured in real-time. The gap
between the pier and the bridge was 29 cm, which was slightly higher than the height of the
inclinometer main part. Thus, the connection bolts were used to adjust height for correct
installation. High-strength structural epoxy with maximum tensile strength of 6.5 MPa was
used to fix the inclinometer on the beam and pier, as shown in Figure 13a. A temporary
working platform was set up near the monitoring point to for data acquisition and the
sampling frequency was 50 Hz. The in-situ monitoring setup is shown in Figure 13b. An
unmanned aerial vehicle (UAV) was used to photograph the bridge deck to synchronously
record the vehicle loads, as shown in Figure 13c.
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Figure 13. On-site installation of BRT-1 rotation monitoring device (a) device installation; (b) overall
setup; (c) UAV photography.

5.2. Results Analysis

During the experiment, the dynamic changes in the beam-end rotation were recorded.
The UAV captured video was utilized to mark each passing vehicle with time synchro-
nization to the rotation data. A typical 10 min period of data was selected for analysis, as
shown in Figure 14. It was evident that when a vehicle passed the monitored span, rotation
response of the beam end was effectively captured by the proposed inclinometer. The
captured data were compared with the UAV photos and it showed that different amplitude
signals correlated to different vehicles sizes (small, medium, and large).
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Figure 14. Time-history of typical beam-end rotation response.

The time-history data in Figure 14 were divided into segments to isolate each rotation
response when only a single vehicle crossed the span. Three typical data for different sizes
of vehicles, together with the corresponding photos captured by the UAV, are shown in
Figure 15. Figure 15a–c show the different sizes vehicles in each section, and Figure 15d–f
show the corresponding beam-end rotation response curves. It is evident that the time
required by each vehicle to pass the monitored span was approximately 2 s, indicating that
the three vehicles traveled across the bridge at a high speed of approximately 110 km/h
(speed limit of the bridge is 120 km/h). The changes in the amplitude of the rotation
angle caused by vehicle 1, vehicle 2, and vehicle 3 were 6.2 × 10−4, 3.2 × 10−4, and
46.8 × 10−4 (◦), respectively. The beam-end rotation and corresponding vehicle sizes and
weight are listed in Table 3.
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Figure 15. Beam-end rotation monitoring data under different vehicle loads (a) small vehicle;
(b) medium vehicle; (c) large vehicle; rotation response to (d) small vehicle; (e) medium vehicle;
(f) large vehicle.
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Table 3. Rotation responses generated by different types of vehicles.

Vehicle Size Small Medium Large

Approx. vehicle weight (ton) 2 4 35
Rotation response (×10−4 (◦)) 3.2 6.2 46.8

The monitoring point was located at the fixed support near the expansion joint close
to the end of the bridge. Therefore, when a vehicle passed over the expansion joint, the
rotation data inevitably contained some vibration interference. Nevertheless, the proposed
device was still able to accurately capture the rotation response of the beam end throughout
the entire experiment. When a 35-ton vehicle passed the bridge, the magnitude of the beam-
end rotation response was approximately 4% of the specified limit (0.115◦) for highway
bridges. The response curve clearly reflected the entire process and contained very little
noise. Furthermore, even when smaller vehicles of 2–5 tons crossed the bridge at a high
speed, the beam-end response was also clearly captured by the proposed inclinometer.
The above experimental results showed the feasibility and advantages of the proposed
inclinometer in terms of resolution and precision. Therefore, it can be used effectively to
capture the rotation responses of in-service bridges.

6. Conclusions

In this study, we developed a new elastomer-based inclinometer for bridge rotation
monitoring. The monitoring mechanism of the proposed device involved converting a
small displacement generated by the rotation of a rigid component into the strain of an
elastomer, and then using strain gauges to obtain a highly accurate beam-end rotation
signal. Compared with other methods, the proposed inclinometer can capture the small
rotation more accurately.

Based on theoretical analysis and calibration test results, measurement range, accu-
racy, resolution, linearity, and robustness were all analyzed. The results showed that the
measurement range of the proposed inclinometer met the current bridge design code;
the relative precision was 1/1000, the maximum absolute error was 3.19 × 10−4 (◦), the
resolution was 1.365 × 10−6 (◦), the nonlinear error and repeatability error were low, and
its performance parameters were better than most commercial rotation transducers.

The proposed inclinometer was tested on an in-service bridge. The device was installed
between the pier and the bridge superstructure to accurately capture the rotation response
under the actions of moving vehicles. The case study results showed that the inclinometer
output curve clearly reflected the beam-end rotation even for small vehicles crossing the
bridge at a high speed. The proposed inclinometer has obvious advantages in terms of its
resolution and precision, and can thus be used effectively to monitor the rotation responses
of bridges in the future.
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