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Abstract. We have analyzed the distribution of envel- 
oped viral infections in multinucleated L6 muscle 
cells. A temperature-sensitive vesicular stomatitis vi- 
rus (mutant VSV ts045) was utilized at the nonpermis- 
sive temperature (39~ As expected, the glycopro- 
tein (G protein) of this mutant was restricted to the 
ER when the multinucleated cells were maintained at 
39~ We demonstrate that this G protein remained 
localized when the infection was performed at low 
dose. By 4 h after infection the G protein patches 
spanned an average of 220 #m. The localization was 
independent of nuclear positions, showing that the ER 
was a peripheric structure. Thus, the infection did not 
recognize nuclear domains characteristic of nuclearly 
encoded proteins. After release of the 39~ block, 
transport through a perinuclear compartment into a re- 

stricted surface domain lying above the internal G pro- 
tein patch occurred. Accordingly, the transport path- 
way was locally restricted. After a 16-h infection the 
G protein spanned 420 #m, while the matrix protein 
occupied 700-800/xm of the myotube length. Double 
infection of multinucleated L6 muscle cells with Sem- 
liki Forest virus and VSV at high multiplicities 
showed that the glycoprotein of each virus occupied 
intracellular domains which were devoid of the other 
respective glycoprotein. Taken together, these findings 
indicate that the viral glycoproteins did not range far 
from their site of synthesis within the ER or other in- 
tracellular membrane compartments in these large 
cells. This result also suggests that relocation of viral 
RNA synthesis occurred slowly. 

M 
ULTINUCLF.ATEO muscle cells form by fusion of 
myoblasts, resulting in a reorganization of the in- 
tracellular organelles and membranes of the parent 

cells. Experiments using artificial systems where a single nu- 
cleus encoded the protein of interest, have shown that in mul- 
tinucleated muscle cells, membrane proteins are restricted to 
the vicinity of the nucleus of origin. A picture has emerged 
indicating that each nucleus directs the synthesis of a subset 
of myotube structures called a nuclear domain (Hall and Ral- 
ston, 1989). Thus in hybrid interspecies myotubes, a Golgi 
protein was targeted mainly into the Golgi region surround- 
ing the nucleus encoding that protein (Pavlath et al., 1989). 
Similarly, the intracellular localization of a muscle adhesion 
protein 5.1H11 (Pavlath et al., 1989) or a transfected lympho- 
cyte membrane protein CD8 (Ralston and Hall, 1989a) that 
was encoded by a single nucleus were found to be in prox- 
imity of the source nucleus. Proteins that naturally exist in 
myotubes like the acetylcholine receptor (Merlie and Sanes, 
1985; Fontaine and Changeux, 1989) or acetylcholine ester- 
ase (Rotundo and Gomez, 1990) are encoded by a limited 
subset of nuclei. 

Such a mode of expression results in mosaicism of protein 
localization. One explanation for the existence of nuclear do- 
mains is that certain gene products are effectively trapped 
into their target organelles remaining in the vicinity of the 
nucleus of origin. Another possibility is that the intracellular 

organelles of fusing myoblasts do not intermingle but remain 
associated with their parent nuclei in the multinucleated 
cells. Both models suggest that there is little exchange of 
membrane material between distant parts of the myotube. 

We analyze here how non-nuclearly encoded mRNA prod- 
ucts distribute in multinucleated ceils and whether they 
recognize nuclear domains. Enveloped RNA viruses were 
utilized for this purpose since the translation of the viral 
mRNA and the subsequent protein translocation and trans- 
port processes are totally dependent on cellular machinery. 
We found that a viral infection remained locally restricted in- 
side the multinucleated cells whose dimensions are many 
orders of magnitude larger than those in mononucleated 
cells. The localization of the viral glycoprotein was indepen- 
dent of the nuclear positions. Our results suggest that in mul- 
tinucleated muscle cells, membrane-associated viral mRNA 
products do not range further than ,~200/zm. This behavior 
shows that the membrane structures in large cells are rela- 
tively immobile. 

Materials and Methods  

Cells and Viruses 

Rat L6 myoblastic cells (Yaffe, 1968) were grown in DME (Gibco Laborato- 
ries, Grand Island, NY) containing 10% FCS (Gibco Laboratories). Sub- 
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confluent monolayers of L6 myobtasts were induced to fuse by growing the 
cells in DME containing 1% horse serum and 0.4 U/ml insulin. 4 d after 
the induction of fusion, the cells appeared as long, branched structures con- 
taining hundreds of nuclei which were gathered into groups. Wild-type 
vesicular stomafitis virus (VSV) ~ (Indiana serotype) was grown in BHK 
cells (Matlin et al., 1983). The mutant ts045 was a clone ts045-6 (Griffiths 
et al., 1985). Semliki Forest virus (SFV) was propagated in BHK cells as 
described ( ~ i i i n e n  et al., 1969). Virus titers were determined on 2-d-old 
L6 myoblast monolayers. In brief, infected cells were identified by im- 
munofluorescence staining for the viral glycoprotein, while the number of 
cells was determined by staining the nuclei with Hoechst dye 33258 (Sigma 
Chemical Co., St. Louis, MO). Multiplicities so obtained were regarded 
equivalent to plaque forming unit (pfu). The multinucleated cells were usu- 
ally infected at 0.01 pfu/cell with VSV ts045 for 1 h at 32~ and then grown 
at 39~ for indicated periods. Infections with wild-type VSV and SFV were 
done at 37"C. 

Metabolic Labeling and Analysis 
of the Labeled Virions 
The multinucleated muscle cells were infected with VSV at 2 pfu and grown 
for 4 h at 37~ A 10-rain pulse with 50 pCi/ml of [35S]methionine (Amer- 
sham Corp., Bucks, England) was then given, followed by a 60-rain chase. 
The chase medium was centrifuged (5,000 g, 10 min) to remove cellular 
debris, and virions were then pelleted (30,000 g, 60 rain). The pellet was 
analyzed by SDS-PAGE (Laemmli, 1970). 

Electron Microscopy 
For thin section EM, myotubes were cultured on microscope object glasses. 
Cells were fixed with 3% glutaraldehyde in 0.2 M sodium cacodylate buffer, 
pH 7.2, for 4 h. The specimens were stored in the same buffer supplemented 
with 7.5% sucrose. Postfixation was for 1 h in 4% OsO4. Specimens were 
dehydrated in ethanol and embedded in Epon. Thin sections were stained 
with uranyl acetate and lead citrate and examined with a Philips 410 elec- 
tron microscope (Philips Electronic Instruments Co., Mahwah, NJ). 

Antibodies 
Folyclonal antibodies against VSV glycoprotein (G protein) were prepared 
by immunizing a rabbit with G protein liposomes. The liposomes were pre- 
pared by the octylglucoside dialysis method (Eidelman et al., 1984). A viral 
lipid mixture was used for the re, constitution as described (Metsikk6 et al., 
1986). About 100 ~tg protein were injected intradermally three times at 
2-wk intervals. The antiserum was collected 3 wk after the last booster and 
absorbed with a monolayer of multinucleated L6 muscle ceils that were 
fixed and permeabilized. The preabsorbed antiserum specifically recog- 
nized the viral G protein when a cell lysate from BHK ceils, infected with 
VSV, was analyzed by Western blotting at 1:200 antiserum dilution. 

mABs against the VSV matrix (M) protein were prepared with some 
modifications as described (Galfr6 and Milstein, 1981). VSV nucleocapsids 
containing the M protein (skeletons) (Newcomb et al., 1982) were prepared 
as described by Petri and Wagner (1979), and injected with Freund's adju- 
vant intraperitoneally into BALB/c mice (100 t~g protein). During fusions, 
the ratio of spleen cells to P3-NSI-Ag4-1 myeloma cells was 5:1. Screening 
of the hybridomas was performed by Western blotting. In brief, polypep- 
tides in cell lysates from BHK cells infected with VSV were separated by 
SDS-PAGE and transferred onto nitrocellulose (Risau et al., 1981). The cul- 
ture medium of clone 2F9 specifically recognized VSV M protein and it was 
used for immunofluorescence studies. 

A mAB against the VSV G protein was prepared by Henrik Garoff and 
Brian Burke at the European Molecular Biology Laboratory (EMBL). As- 
cites fluid was used at 1:400 dilution for immunofluorescence studies. FOly- 
clonal antibodies against SFV p62/F_,2 gtycoprotein have been described 
(Metsikk6 and Garoff, 1990). They were directed against a peptide of 32 
amino acids, corresponding to the cytoplasmic tail of p62 glycoprotein. 
Polyelonai antibodies against rat RER were prepared by Louvard et al. 
(1982). A mannosidase II specific mAb (53FC3) (Burke et al., 1982; Baron 
and Garoff, 1990) was used as a Golgi marker. 

1. Abbreviations used in this paper: pfu, plaque forming unit; SFV, Semliki 
Forest virus; VSV, vesicular stomatitis virus. 

Immunofluorescence Studies 
Ceils were fixed with 3 % paraformaldehyde in PBS and permeabilized with 
Triton X-IO0 as described (Louvard, t980). Polyelonal anti-G protein 
serum was used at 1:200 dilution, followed by TRITC-conjugated anti- 
rabbit IgG (DAKOPATTS, Glostrup, Denmark; 1:400). Culture medium 
from clone 2F9 containing monoclonal anti-M protein antibody was diluted 
1:5. For double immunofluorescence staining, the polyclonal and monoclo- 
nal antibodies were mixed at appropriate dilutions, applied to fixed cells, 
and incubated. TRITC-conjugated swine anti-rabbit IgG (DAKOPATTS; 
1:200) and FITC-conjugated goat anti-mouse IgG (DAKOPATTS; 1:200) 
were mixed and used as secondary antibodies. Nuclei were visualized with 
Hoechst dye 33258. Simultaneous visualization of the internal and cell sur- 
face G proteins was performed in two stages. First, the fixed cells were incu- 
bated with polyclonal antibodies, followed by the TRITC-conjugated lgG. 
The ceils were then permeabilized with Triton X-100 and internal G protein 
was visualized with a monoclonal anti-G protein antibody and FITC-conju- 
gated anti-mouse IgG. Specimens were mounted with Mowiol (Hoechst, 
Frankfurt, Germany) in PBS containing 2.5% L4-diazobicyclo-[2.2.2]- 
octane (Sigma Chemical Co.) and viewed under the Leitz Aristoplan fluores- 
cence microscope (E. Leitz Inc., Rockleigh, NJ), using appropriate filters. 

Results 

Infection of Multinucleated L6 Cells 
The L6 myoblasts were induced to fuse by growing them in 
a medium containing horse serum and insulin. Under these 
conditions, branched myotubes were generated which con- 
tained several groups of nuclei separated by stretches of 
cytoplasm. To examine whether the L6 myotubes were suc- 
cessfully infected with VSV or the temperature-sensitive 
mutant of VSV ts045, we performed immunofluorescence 
staining for the VSV G glycoprotein. We found that the my- 
otubes were infected throughout their length at viral doses 
corresponding to 0.5 pfu/cell in the parental mononucleated 
L6 myoblasts. Furthermore, by using [3sS]methionine pulse- 
chase labeling of a myotube culture where 90% of the nuclei 
were counted in myotubes, we observed that the label was 
transferred into the medium in the form of virions (Fig. 1 A). 
The viral titer of a VSV-infected myotube culture medium 
was 1.7 x 106 pfu/ml when determined after a 6-h infection 
period. Thus, viral particle formation occurred in the mul- 
tinucleated muscle cells. Examination of the infected ceils by 
EM indicated that budding occurred at the cell surface (Fig. 
1 B). Rounding and detachment of the myotubes was not ob- 
served after a 24-h infection period with the wild-type VSV. 
While the VSV M protein probably disrupts the cytoskeleton 
and causes a cytopathic effect in mononucleated cells (Blon- 
del et al., 1990), it appears that myotubes are more resistant 
to this effect. 

Infection at Low Dose Remains Local 
We used the mutant VSV ts045 at 39~ to analyze whether 
the infection generated by a single viral particle remained lo- 
cal in the large muttinucleated ceils. At this temperature the 
mutant G protein should remain restricted to the ER and no 
infective particles should be formed (Schnitzer et al., 1979; 
Zilberstein et al., 1980; Metsikk6 and Simons, 1986). We 
determined that the conditioned medium from multinucle- 
ated muscle cells infected with ,'~2 pfu/cell of VSV ts045 
was unable to infect a fresh culture of muscle cells, indicat- 
ing that no infective progeny was generated to propagate the 
infection. At pfu <0.01 the ts045 infection was local as eval- 
uated by indirect immunofluorescence for the G protein in 
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Figure 1. Viral particle formation in multinucleated L6 myotubes. 
The L6 multinucleated muscle cells were infected with VSV (2 pfu 
and grown for 4 h. In A, the cells were pulsed with [35S]methio- 
nine and chased for 1 h. Electrophoretic analysis followed by auto- 
radiography shows that viral proteins (L, (3, N, M) were synthe- 
sized (lane 1). 5 % of the postnuclear cell lysate was applied to the 
gel. Lane 2 shows analysis of the virions in the medium (see 
Materials and Methods). All viral proteins were identified, indicat- 
ing viral particle formation. B shows an electron micrograph of 
budding viral particles (arrows) on a multinucleated muscle cell 
surface. The inset shows a budding virion in detail. Bars: (B) 1 #m; 
(inset) 100 nm. 

permeabilized cells. An example is shown in Fig. 2 A. The 
intracellular G protein localization showed an intense central 
region and the intensity disappeared with distance. The in- 
fected area generally varied between 5 and 25 % of the total 
area of a multinucleated cell, A fine granular staining pattern 
typical of the myotube ER (Gu et al., 1989) was observed 
as shown in detail in Fig. 2 C. Double immunofluorescence 
staining for the ER (Fig. 2 D) strongly suggests that the mu- 
tant G protein in cells incubated at 39~ was located at the 
ER. In nonpermeabilized cells no viral products were visu- 
alized. 

By utilizing double immunofluorescence staining for the 
VSV G and M proteins, we found that these proteins colocal- 
ized during early (<4 h) infection (not shown). After a 4-h 
infection period, the average extent of the intracellular stain- 
ing was 220 =[: 64/~m (SD) when measured on five myo- 
tubes, all of which were longer than 1 mm. These infection 
patches generally did not colocalize with nuclei or nuclear 
groups, and areas devoid of nuclei were often found to locally 
express G protein. When an infection center colocalized 

with a group of nuclei, fluorescent dots were often observed 
to surround vicinar nuclear groups. 

To analyze whether the dispersion of the G protein was be- 
cause of the exchange of ER membranes between nuclear 
groups, we stopped protein synthesis with cycloheximide 
(0.4 raM). Cycloheximide was added at 4 h after infection 
and the cells were fixed at 5 h after infection. Visualization 
of the G protein showed that the intense central staining dis- 
appeared (Fig. 3), suggesting that the G protein was part of 
a diffusible vesicle population. However, we could not dem- 
onstrate an increase in the size of the fluorescent G protein 
patches during the 1-h cycloheximide treatment, indicating 
that the G protein did not migrate far from the site of syn- 
thesis. 

At 16 h after infection G protein localization spanned 420 
+ 76/~m (SD) when measured on 10 myotubes. In the same 
myotubes, the viral matrix protein showed smooth staining 
spanning 700-800/~m on the average (Fig. 4). Phase con- 
trast microscopy revealed usually that the M protein staining 
did not cover the entire length of the myotubes. These mea- 
surements show that the G protein dispersed at a rate of,,o 26 
/~m/h in multinucleated muscle cells while the correspond- 
ing rate for M protein was 40-50/~m/h. At this speed the vi- 
ral infection should fill the cytoplasm of a 20 ~m diameter 
mononuclear cell within 45 rain. 

Exocytic Transport Is Vertical in Multinucleated 
Muscle Cells 

Incubation of mononucleated cells at 20~ blocks exocytic 
membrane traffic into a compartment called the trans-Golgi 
network (Matlin and Simons, 1983). We applied this block 
on myotubes infected with the VSV ts045. Accordingly, after 
a 3-h infection period at 39~ the locally infected myotubes 
were transferred to 20~ for 2 h. A prominent discontinuous 
perinuclear staining with diffuse dots in the cytoplasm was 
seen (Fig. 5 A and C). The infection remained local but in 
the majority of cases vicinar groups of nuclei shared the 
perinuclear G protein. A Golgi-specific marker partially 
colocalized with the G protein in the infected area after the 
2-h incubation at 20~ (Fig. 5, B and D). Some G protein 
was probably left at the ER, explaining why the colocaliza- 
tion was not complete. It seems plausible that the perinuclear 
and dotty cytoplasmic staining represented the myotube 
trans-Golgi network. The presence of Nocodazole during 
the 20~ block did not scatter the observed circumnuclear 
ring structures (data not shown). Thus, depolymerization of 
microtubuli had little effect on the 20~ compartment. Fur- 
thermore, microtubuli were not essential for the transport 
from the ER into the 20~ compartment. This situation is 
thus comparable to that in the Cos cells where Nocodazole 
does not inhibit exocytic transport of the G protein (Feather- 
stone et ai., 1985). 

Incubation for 30 min at 32~ after the 20~ block re- 
sulted in the appearance of the G protein on the cell surface. 
The surface staining was located over the sites where the 
internal G protein was seen, as shown by double immuno- 
fluorescence staining for the G protein before and after per- 
meabilizing the cells (Fig. 6). Thus the G protein was trans- 
ported from the presumed trans-Golgi network to the cell 
surface along the shortest route. After 2 h at 32~ the sur- 
face G protein dispersed to a larger area on the myotubes, 
suggesting that at least a portion of the total G protein frac- 
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Figure 2. Distribution of VSV ts045 G protein in locally infected L6 multinucleated muscle cells at the nonpermissive temperature. In 
A, a local infection patch is shown. Polyclonai anti-G protein antibodies and TRITC-conjugated anti-rabbit IgG were used for the visualiza- 
tion. Nuclei in the same microscope field were visualized by Hoechst 33258 dye and are shown in B, together with the cell borders. The 
total length of the cell shown was 1.8 mm. C and D show double immunofluorescence staining with a mAb against the G protein and 
polyclonal anti-ER antibodies, followed by the appropriate FITC- and TRITC-coupled secondary antibodies. Note that the infection (C) 
remains local. Bars, 50 ~m. 

tion was mobile. In mononucleated cells 75 % of the surface 
G protein has been shown to be mobile (Scullion et al., 
1987). 

Double Infection in the Multinucleated Cells 

Lyric viruses such as SFV or VSV cut off cellular protein 
synthesis and generally will not grow in the same cell (Met- 
sikk6 and Garoff, 1989). To establish whether multinucle- 
ated cells could be simultaneously infected by two lytic 
viruses, we infected myotubes with VSV and SFV and fol- 
lowed the progress of this double infection. We found that 

double infection in a multinucleated muscle cell was possi- 
ble but that the two viral glycoproteins generally did not 
intermingle. As shown in Fig. 7, intracellular domains of 
VSV G protein were separated from those containing SFV 
p62 glycoprotein. 

Extent of the mutual exclusion of VSV and SFV infections 
in multinucleated L6 muscle cells (as shown below). Infected 
areas for the VSV and SFV glycoproteins (see Fig. 7) were 
counted in five microscope fields. Percentages of the total 
number of the infected areas are given. The means and SD 
are shown: 
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Figure 3. Dispersion of the viral gly- 
coprotein in the ER. The VSV ts045 
was grown for 3 h at 39~ then fixed 
and processed for immunofluores- 
cence. A localized distribution is 
seen (A). Cycloheximide was added 
after a 3-h growth period at 39~ to 
stop protein synthesis, and after 1 h 
treatment at 39~ the cells were 
fixed. The typical gradient-like dis- 
tribution of the G protein disappears 
and a dot-like staining at 150 #m 
from the presumed infection center 
(arrow) is seen (B). The cells studied 
were >1 mm long. Bar, 100 #m. 

only VSV G only SFV p62/E2 VSV G and SFV p62/E2 

41.6 + 4.8 41.3 + 15~0 17.1 :t: 10.6 

The results indicate that exclusion occurred in 83% of the 
infected domains. The mean dimensions of these domains 
were 200-300 #m. Providing that the viral glycoproteins as 
such were not mutually exclusive, we conclude that the gly- 
coproteins did not migrate far from their sites of synthesis, 
Immunofluorescence staining for the VSV G protein in non- 
permeabilized, doubly infected muscle cells showed uniform 
distribution on the cell surface (not shown), indicating that 
exocytosis occtn'red. Since the patches of intracellular G 
protein staining represented the viral glycoprotein in both 
the ER and the Golgi network, we conclude again, that the 
transport pathway from the ER to the Golgi network was lo- 
cally restricted in the myotubes, and that lateral diffusion in 
the plasma membrane occurred. 

Discussion 
Our data indicate that the viral G protein was locally synthe- 
sized and inserted into the ER. This finding implies that the 
mRNA for the glycoprotein remained locally restricted, sug- 
gesting that the intracytoplasmic translocation of viral repli- 

cation occurred slowly. Because the VSV ts045 G protein 
was blocked at the ER, we could follow the time course of 
its subsequent distribution within the ER. Since the VSV G 
protein remained localized for hours, we conclude that ex- 
change of ER material within these large ceils is slower than 
that of G protein degradation. Our results with cyclohexi- 
mide suggest, however, that the protein in the ER could mi- 
grate short distances (Fig. 3). The average span of the G pro- 
tein was 220 #m at 4 h after infection and 420 #m at 16 h 
after infection. For the CD8 membrane protein a 68 #m in- 
tracellular range was found (Ralston and Hall, 1989a). The 
reason for the discrepancy between these two results is pro't~ 
ably that the viral infective RNA is more mobile than that 
of the nuclei. Moreover, CD8 was not blocked at the ER and 
therefore did not have time to disperse within the ER. We 
conclude that the longitudinal exchange of ER material oc- 
curred slowly. Thus, the ER in these large cells appears to 
be a relatively static compartment. 

The infection patches were constantly found at areas with- 
out nuclei. This supports the idea that rough ER structures 
in myotubes do not belong to individual nuclei. Thus, the lo- 
calization of the ER in multinucleated muscle cells is inde- 
pendent of nuclear positions. It appears that after myoblast 
fusion, their respective ER membranes completely intermin- 
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Figure 4. Double immunofluorescence 
staining of VSV G and M proteins at 
16 h after infection in locally infected 
multinucleated cells. The cells were in- 
fected with VSV ts045 at 0.003 pfu for 
1 h, then incubated at 39~ for 15 h, and 
fixed. A shows G protein distribution. 
Two local infections are seen. B shows 
the M protein distribution. Bar, 300 #m. 
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Figure 6. Examples of the surface appearance of the G protein in locally infected multinucleated muscle cells. Muscle cells were infected 
at 0.01 pfu and then grown for 3 h at 39"C, followed by a 2-h growth period at 20~ To facilitate transport to the cell surface, the temperature 
was shifted to 32"C for 30 min, The left panels show internal staining while the corresponding surface stainings are shown on the right. 
Bar, 100 #m. 

gle. Furthermore, the ER in myotubes is associated with 
microtubuli which also exhibit nuclear-independent local- 
ization (Tassin et al., 1985a). 

We demonstrated myotube membrane structures where 
the G protein accumulated at 200C. The structures were 
mainly perinuclear and resembled the Golgi apparatus previ- 
ously described in myotubes (Tassin et al., 1985b; Gu et al., 
1989). A Golgi-specific marker showed similar localization 
in double immunofluorescence staining (Fig. 5). Occasion- 
ally, dot-like staining after the block at 20~ was found at 
areas devoid of nuclei. Hence, the 20~ compartment was 
not totally perinuclear. However, in contrast to the situation 
with the ER, most of the 20~ compartment showed a struc- 
tural association with the nuclei, i.e., the nuclear periphery. 
The localization of the 20~ compartment in myotubes dif- 
fered from that of the trans-Golgi network described in mono- 
nuclear cells (Matlin and Simons, 1983; Griffiths and Si- 
mons, 1986). Whether or not this compartment functionally 
corresponds to the Golgi or the trans-Golgi network remains 
to be seen. The perinuclear staining was seldom restricted 
to a single group of nuclei but was generally also found as 

a faint fluorescence in nearby groups of nuclei. This finding 
again suggests that the nuclei and their associated Golgi re- 
gions in the multinucleated cells share a common ER. In 
summary, we show that after the release of a 39~ block and 
subsequent incubation at 20~ the locally expressed G pro- 
tein in the ER was transported into circumnuclear structures 
surrounding several nuclear groups. At 32~ transport into 
the overlying plasma membrane was observed. This situa- 
tion is comparable with that found for the T lymphocyte anti- 
gen CD8, which is expressed in a single nucleus in multinu- 
cleated cells. This antigen may be visualized both as a 
localized intracellular patch and as being diffusely distrib- 
uted over the entire cell surface (Ralston and Hall, 1989a). 
In contrast, an isoform of N-CAM (5.1Hll) generally re- 
mains as a patch on the cell surface near the nucleus encod- 
ing it (Pavlath et al., 1989). 

The VSV ts045 G protein dispersed with time in the mnl- 
tinucleated cells albeit slowly (26/~m/h). This also suggests 
that the intracytoplasmic relocation of the viral RNA replica- 
tion was slow. SFV polymerase which is not packaged into 
viral particles is apparently located on cytopathic vacuoles 

Figure 5. Distribution of the VSV ts045 G protein in multinuclcated L6 muscle cells during a 20~ transport block. The G protein was 
visualized using polyclonal anti-G protein antibodies and a TRITC-conjugated anti-rabbit IgG, Pcrinuclear G protein staining is shown 
in A and C The corresponding double immunofluorescence stainings with a monoclonal anti-Golgi antibody and a FITC-conjugated 
anti-mouse IgG are shown in B and D. The infections (A and C) are local. Bar, 50/~m. 
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Figure 7. Double infection of multinucleated muscle cells with VSV and SFV. Cells were infected at 2 pfu of both VSV and SFV simultane- 
ously. At 5 h after infection the cells were fixed and subjected to double immunofluorescence staining for the VSV G protein (A) or the 
SFV p62 glycoprotein (B). Bar, 100 t~m. 

in BHK or CHO cells (Froshauer et al., 1988). It seems that 
the replication of the SFV RNA is restricted to the sites of 
viral entry. However, Per~inen and Kaariainen (1991) found 
that one incoming virion induced the formation of numerous 
cytopathic vacuoles, suggesting that viral RNA can move 
from membrane to membrane. The situation with the VSV 

polymerase remains to be elucidated. We think that the dis- 
persion of the G protein was not exclusively due to the move- 
ment of ER membranes. Rather, viral replication moved 
short distances. The finding that the M protein dispersed 
faster than the G protein could be because of the cytoplasmic 
nature of the M protein. It is known that a fraction of the M 
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protein is soluble in infected cells (Knipe et al., 1977). Fur- 
thennore, cytoplasmic proteins have been shown to diffuse 
freely in myotubes (Minz and Baker, 1967; Ralston and Hall, 
1989b). 

We show here that SFV and VSV can be propagated in a 
single multinucleated cell but that both viruses occupy their 
own domains of glycoprotein expression (Fig. 7). It is likely 
that the mRNA synthesis of both viruses was also restricted 
to such domains. It is reasonable to think that neither the gly- 
coprotein nor the replicative viral RNA ranged more than 
,,o200 #m in the doubly infected cells. We think that the first 
virus to be uncoated by endocytosis initiated local mRNA 
synthesis and occupied the protein synthesis machinery in a 
domain spanning ~ 2 0 0  #m. 

In summary, in multinucleated L6 myoblast-derived mus- 
cle cells viral protein synthesis did not recognize nuclear do- 
mains at the ER level but still remained localized for a con- 
siderable period of time. This behavior reflects a static 
characteristic of the ER. Thus, there was little exchange of 
material between the ER membranes at different longitudinal 
parts of myotubes. At later steps of exocytosis, the membrane 
compartments were at least to some extent associated with 
individual nuclei. Thus there is strong supporting evidence 
for the functionality of nuclear domains. First, there is re- 
stricted longitudinal transport and second, organelles such 
as the Golgi network or the 20~ compartment are preferen- 
tially associated with individual nuclei. This situation pro- 
vides the basis for positional information in multinucleated 
cells. 
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