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Abstract

The tumor-suppressive role of Farnesoid X receptor (FXR) in colorectal tumorigenesis supports restoring FXR
expression as a novel therapeutic strategy. However, the complicated signaling network and tumor heterogeneity hinder
the effectiveness of FXR agonists in the clinical setting. These difficulties highlight the importance of identifying drug
combinations with potency and specificity to enhance the antitumor effects of FXR agonists. In this study, we found that
the pB-catenin level affected the antitumor effects of the FXR agonist OCA on colon cancer cells. Mechanistic studies
identified a novel FXR/B-catenin complex in colon cancer cells. Furthermore, the depletion of f-catenin expedited FXR
nuclear localization and enhanced its occupancy of the SHP promoter and thereby sensitized colon cancer cells to OCA.
Furthermore, we utilized a drug combination study and identified that the antiparasitic drug nitazoxanide (NTZ)
abrogated f-catenin expression and acted synergistically with OCA in colon cancer cells. The combination of OCA plus
NTZ exerts synergistic tumor inhibition in CRC both in vitro and in vivo by cooperatively upregulating SHP expression.
In conclusion, our study offers useful evidence for the clinical use of FXR agonists combined with B-catenin inhibitors in

combating CRC.

Introduction

Colorectal cancer (CRC) is the second most common cause
of cancer-related death [1]. Globally, approximately
1,800,000 new cases are diagnosed as CRC every year. Due
to distant metastasis and relapse, most advanced-stage of
CRC has a poor prognosis [2, 3]. The five-year survival rate
of stage I CRC patients exceeds 90%; however, the five-
year survival rate of stage IV CRC patients is slightly higher
than 10% [4]. An increasing number of genetic and mole-
cular alterations have been recognized in colorectal
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carcinogenesis, including genetic mutations, microsatellite
instability, and DNA hypermethylation [5].

Canonical Wnt/p-catenin signaling plays a vital role in
colorectal tumorigenesis [6]. Persistent activation of Wnt
signaling is characterized by nuclear accumulation of
B-catenin [7]. p-Catenin can be stabilized in approximately
75% of CRC patients by inactivating mutations in APC, and
in an additional 5% of patients by phosphodegron mutations
in B-catenin [8]. These mutations facilitate the occurrence of
microadenoma, whereas other mutations, including KRAS,
p53, and SMAD4 mutations, contribute to a malignant
transition from microadenoma to larger adenomas and ade-
nocarcinomas [9]. Targeting the Wnt/B-catenin pathway is
supposed to be a rational therapeutic strategy for CRC [10].
However, to date, no anticancer drugs targeting this signaling
pathway have advanced to clinical applications. Porcupine
inhibitors and tankyrase inhibitors exert inhibitory effects on
Wht signaling upstream of the p-catenin destruction complex
[11], and are therefore unlikely to effectively fight against
B-catenin in CRC with the most frequent mutations (APC or
B-catenin mutations) [12]. Recently, the antiparasitic drug
nitazoxanide (NTZ), approved by the US Food and Drug
Administration (FDA) for use in humans, has been reported
to antagonize Wnt/p-catenin signaling by abrogating
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B-catenin independent of GSK-3p and APC [13], indicating
the potential therapeutic value of NTZ in APC-mutated or
B-catenin-mutated CRC.

Farnesoid X receptor (FXR, encoded by NR1H4), a
bile acid-activated nuclear receptor, regulates the home-
ostasis of lipid, cholesterol and glucose metabolism [14].
Mounting evidence supports a pivotal role for FXR in
colorectal tumorigenesis. Diminished FXR is significantly
related to late tumor stage and often predicts a poor
prognosis [15]. Loss of FXR promoted intestinal inflam-
mation and colon tumorigenesis [16]. Conversely, acti-
vation of intestinal FXR can suppress abnormal cell
growth and curtail CRC progression [17]. Thus, targeting
FXR and restoring its function might be an attractive
tactic for CRC treatment.

Obeticholic acid (OCA) is a novel FXR agonist and a
derivative of chenodeoxycholic acid (CDCA) and shows
almost 100-fold greater potency than CDCA [18]. Impor-
tantly, OCA has been approved by the FDA for the treat-
ment of primary biliary cholangitis [19]. Recent studies
indicate that OCA shows a promising antitumor effect in
cholangiocarcinoma [20] and HCC [21]. However, the
complicated signaling network and tumor heterogeneity
might hinder the effectiveness of FXR agonists in cancer
treatment [22]. This highlights the importance of identifying
drug combinations or novel chemicals with potency and
specificity to enhance the antitumor effects of FXR activa-
tion. Herein, our study aimed to explore the antitumor effect
of OCA in CRC and further identify a potential target to
rationally design a combinational approach based on an
FXR agonist to combat CRC.

Materials and methods
Cell cultures

Colon cancer cells SW403, SW480, DLD-1, HT-29,
HCT116, and RKO (Shanghai Institute of Cell Biology,
Chinese Academy of Sciences) were all routinely cultured
in DMEM (Gibco BRL, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (Gibco BRL, Carlsbad, CA,
USA) at 5% CO, at 37 °C. Once the cell confluence reaches
70%, they were treated with various doses of OCA (Sellerk,
Houston, TX, USA) for 48 h in the presence or absence of
NZT (Sellerk, Houston, TX, USA). For ICG-001, cells were
incubated in the presence of ICG-001 (10puM, Sellerk,
Houston, TX, USA) for 24 h along with OCA. OCA (5 mg)
was reconstituted in 1.1887 mL DMSO to 10 mM. NTZ
(5 mg) was reconstituted in 1.6272 mL. DMSO to 10 mM.
The final concentration of DMSO in control and experi-
mental groups was maintained at less than 0.1% in all
treatments.

Lentiviral vectors and transfection

The phU6-EGFP-shRNA-FXR and phU6-EGFP-shRNA-
B-catenin lentiviral vectors and their control vectors were
commercially purchased from GeneChem Co., Ltd. (Shang-
hai, China). The transfection process is completed in accor-
dance with the manufacturer’s instructions.

Drug combination studies

For in vitro experiment, Cells per well were seeded in the
96-well plates at a density of 3 x 10°. The following day, the
cells were treated with a single compound or with a com-
bination of OCA and NTZ for 48 h. CCKS8 kit was used to
measure cell viability. Combination index (CI) and fraction
affected (Fa) values were calculated using CompuSyn
software. CI>1, CI=1, and CI< 1 indicate antagonism,
addictive and synergy effect respectively.

For in vivo experiment, Q value method of Zhengjun jin
was adopted [23]. Q value > 1.15 was synergistic; 0.85-1.15
was additive; <0.85 was antagonistic.

CCK8, colony formation, cell cycle, and apoptosis
assays

For CCK8 assay, cells were seeded into 96-well culture
plates at 3000 cells/well for 48 h. Cell viability was checked
by CCK-8 assay according to manufacturer’s protocol.
Normalization was done to cells treated with DMSO as
vehicle, which were defined as 100%. For colony formation
assay, three hundred cells were seeded and cultured for
14 days. Colonies (250 cells/colony) were counted. For cell
cycle determination, cells were seeded at a density of 1 x
10° cells/well in 6-well plates. Cells were collected and
fixed in 75% freezing ethanol and kept overnight at 4 °C.
After digesting with RNase A for 30 min at 37 °C, the cells
were incubated with propidium iodide for 30 min shielded
from light. The cell cycle was evaluated with flow cyto-
metry (BD, Franklin Lakes, NJ, USA). For apoptosis assay,
cells were seeded at a density of 1 x 10° cells/well in 6-well
plates. Cells were labeled with Annexin V PE/7-AAD (BD
Biosciences, Franklin Lakes, NJ, USA) according to the
manufacturer’s protocol as previously described [24]. Each
experiment was performed in triplicate.

Transwell assays

Cell invasion was measured by using Transwell inserts
(Corning, New York, NY, USA) with Matrigel (BD,
Franklin Lakes, NJ, USA). The under chamber was filled
with 600 uL of RPMI 1640 medium added with 20% FBS.
The upper chamber filters were precoated with 50 uL of
Matrigel and plated at 1x10° cells per upper chamber.
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The cells were incubated at 37 °C for 48 h. After incubation,
cells not through the aperturs on the upper surface of the
Transwell inserts were got rid of with fresh PBS. The
migratory or invading cells on the underside of the mem-
brane were fixed with 4% paraformaldehyde and dyed with
1% crystal violet. The number of cells was counted in three
randomly selected fields of fixed cells under an inverted
microscope. Each experiment was repeated three times.

Nude mouse xenograft assay

All animal experiments were conducted in line with the
institutional guidelines, and was authorized by the Institu-
tional Animal Care and Use Committee of the First Affili-
ated Hospital of Xi’an Jiaotong University. The female
BALB/c-nude mice (5-week-old) were purchased from a
corporation of Shanghai (SLAC Laboratory Animal Co,
China). The mice were injected with 5 x 10° colon cancer
cells into the right flanks to construct xenograft tumor
mice model. Once the size of xenograft tumors reached
approximately 100 mm?, the nude mice were randomly
divided into four subgroups and were administered by oral
gavage of OCA (10 mg/kg/day) and NTZ (200 mg/kg/day)
alone or in combination for consecutive 18 days. Tumor
size was monitored using callipers every 3 days, and the
tumor volume was measured the according to the formula
(axb*x0.5, a: length, b: width). After 18 days of drug
administration, the mice were executed and the xenograft
tumors were isolated and weighted.

RNA isolation and real-time PCR

TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.)
was employed to extract total RNA from cells in accordance
with the manufacturer’s instructions. The PrimeScript® RT
Reagent kit (Takara Biotechnology Co., Ltd., Dalian, China)
was employed to reverse transcription in the condition of
37 °C for 15 min and 85 °C for 5 s, followed by reserved at
4 °C. Real-time PCR was performed using SYBR Premix Ex
Taq II (Takara Biotechnology Co., Ltd.) on a PCR Detection
system (CFX96™, Bio-Rad Laboratories, Inc., Hercules, CA,
USA). The gRT-PCR condition adopted two-step method:
pre-denaturation at 95 °C for 30 s followed by forty cycles of
denaturation at 95 °C for 5 s and extension at 60 °C for 1 min.
The relative mRNA expression level was analyzed by using
the 2744%4 method [25]. The sequences of primers were
summarized in Supplementary Table S1. Each experiment
was repeated three times.

Immunohistochemistry (IHC)

Fresh tissues were quickly fixed with 10% neutral formalin
at room temperature overnight and embedded in paraffin.
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Afterwards, 4-um tissue slides were prepared. The standard
Streptavidin-Biotin Complex (SABC) method was adopted
to perform THC staining procedure. Primary antibodies were
employed in the slides with the concentration of 1:100
overnight at 4 °C, and then biotinylated secondary antibody
(Wuhan Boster Biological Technology, Ltd., Wuhan,
China) was employed for 30 min at 37 °C. The images were
collected by using a Nikon ECLIPSE Ti-S microscope
mounted with a Nikon digital camera (Nikon Corporation),
and all specimens were independently evaluated by two
researchers.

Total protein extraction and Western blot

The cells were lysed with RIPA buffer containing con-
taining a protease inhibitor cocktail on ice for 40 min. The
BCA method (Pierce; Thermo Fisher Scientific, Inc.) was
used to quantify each sample. Separate the protein by
SDS-PAGE and transfer the protein to activated poly-
vinylidene difluoride membranes. Following 5% skim
milk, the membranes were incubated with primary anti-
bodies followed by incubation with horseradish perox-
idase (HRP)-conjugated secondary antibodies. The
visualized signals of the bands were acquired by exposing
to Chemiluminescent HRP Substrate (Millipore, Billerica,
MA, USA) via protein imprinting imaging system and
the protein expression was analyzed using Image software
(National Institutes of Health, Bethesda, MD, USA). The
detailed information regarding these antibodies was pre-
sented in Supplementary Table S2. Each experiment was
repeated three times.

Immunofluorescence (IF)

Cells were fixed with 4% paraformaldehyde for 20 min, and
then punched with 0.2% Triton X-100 for 10 min. Block
cells with 5% bovine serum albumin at room temperature
for 30 min, and then incubate cells with primary antibody
(anti-FXR with 1:100 dilution) at 4 °C overnight. The sec-
tions were washed three times with PBS for 10 min each
time, and then incubated with Alexa Fluor 594-conjugated
secondary antibody (1:400 dilution, Invitrogen, Carlsbad,
CA, USA) for 1 h at room temperature and protected from
light. The nucleus was stained with DAPI for 10 min.
Finally, the sample was observed using a fluorescence
microscope (Leica Microsystems, Heidelberg, Germany) to
analyze the subcellular localization of FXR. Each experi-
ment was repeated three times.

Immunoprecipitation (IP) assay

After fresh cells were washed three times with cold PBS,
they were collected by IP lysis. The bait protein antibody
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(anti-FXR antibody) is cross-linked with Amino-Link
plus coupling resin (Pierce Co-IP kit, Rockford, IL, USA)
at room temperature for 1-2 h according to the method of
the manufacturer’s instructions. About 500 pg of protein
lysate was added to resin-antibody complex and was
shook slowly at 4 °C overnight. After the protein complex
is eluted from resin, it is separated by western blotting
after high temperature deformation. The target protein
antibody (anti-B-catenin) was used to detect the interac-
tion with the bait protein. IgG antibody was used as a
negative control to exclude nonspecific binding. Each
experiment was repeated three times.

Quantitative chromatin immunoprecipitation
(qChlP)

EZ-ChIP Kit (Millipore, Bedford, MA, USA) was used in
fresh cells for ChIP experiments according to the method of
the manufacturer’s instructions. Five microgram of anti-
FXR antibody and 1 pg IgG negative control antibody were
used to precipitate the chromatin-protein mixture, and
finally amplified with specific primers (Supplementary
Table S1) of the target fragment or endogenous noncoding
region fragment and detected its expression using real-time
quantitative PCR. The qRT-PCR condition adopted two-
step method: pre-denaturation at 95 °C for 30 s followed by
forty cycles of denaturation at 95 °C for 5 s and extension at
60 °C for 1 min. The formula for calculating the enrichment
index was E(Input Cg-ChIP Cq)/E(Inpul Cqg-Control Cq). Each experi—
ment was repeated three times.

Statistical analysis

The differences among the experimental group and control
group were compared by the Student’s z-test or one-way
ANOVA. All statistical results were done using the SPSS
statistical package (SPSS Inc., Chicago, IL, USA). P <0.05
was considered as statistically significant.

Results

B-Catenin level determines the varying responses of
colon cancer cells to OCA

The effect of FXR activation by OCA on the growth of six
colon cancer cells was assessed by CCK8 assays. The
results showed that RKO and HCT116 cells showed the
most sensitivity to OCA with IC50 values of 0.9211 and
0.8377 uM, respectively, whereas DLD-1 and HT-29 cells
were moderately resistant to OCA with IC50 values of
2.044 and 2.993 uM, respectively (Fig. la). However,
SW403 and SW480 cells showed resistance to OCA with

IC50 values of 5.344 and 3.994 uM, respectively (Fig. 1a).
SHP, the well-known target of FXR, has been proven to
repress tumor growth by inducing apoptosis and cell cycle
arrest [26]. As expected, after OCA exposure, RKO and
HCT116 cells had dramatic changes in the mRNA and
protein levels of p21°™!, cyclin D1, c-Myc, and SHP,
whereas DLD-1 and HT-29 cells showed moderate changes
(Fig. 1b—f and Supplementary Fig. 1a—d). However, SW403
and SW480 cells failed to show these changes (Fig. 1b—f
and Supplementary Fig. 1a—d). We next evaluated the levels
of FXR in six colon cancer cells in response to OCA
exposure. Despite the fact that OCA increased the levels of
FXR in colon cancer cells (Fig. 2a, b and Supplementary
Fig. 1f), no correlation between FXR levels and OCA
sensitivity was observed. OCA performs its function by
expediting FXR nuclear translocation and occupancy of its
target genes [27]. The results of IF assays indicated that
RKO and HCT116 cells after OCA exposure had dramatic
nuclear localization of FXR, whereas the other four cell
lines treated with OCA exhibited moderate or low nuclear
localization of FXR (Fig. 2¢). From these observations, we
inferred that there might exist contributing factors that
influence the nuclear localization of FXR induced by OCA
and thereby affect the antitumor effect of OCA.

SW403, SW480, DLD-1, and HT-29 cells have APC
mutations, and HCT116 cells p-catenin mutations, whereas
RKO cells have no Wnt/p-catenin signaling-related mutations
[28]. We reasonably questioned the correlation between the
activity of Wnt/B-catenin signaling and OCA sensitivity.
However, we did not observe a correlation between TCF/LEF
transcriptional activities and OCA sensitivity (Fig. 1g). Intri-
guingly, RKO and HCT116 cells, which were sensitive to
OCA expressed low or no levels of p-catenin, while colon
cancer cells resistant to OCA harbored high levels of -catenin
(Fig. 1h and Supplementary Fig. le). Among them, SW403
and SW480 cells had the highest expression of p-catenin. We
inferred that B-catenin level might affect the antitumor effects
of OCA on colon cancer cells.

Loss of B-catenin sensitizes colon cancer cells to the
antitumor effect of an FXR agonist

We explored the detailed mechanism by which f-catenin
regulates the antitumor effects of OCA. Deficiency of
FXR resulted in sustained activation of the Wnt/B-catenin
pathway [29]. Firstly, we supposed whether there exists
any physical interaction between p-catenin and FXR. IP of
lysates with a pB-catenin antibody demonstrated that FXR
and P-catenin interacted with each other in colon cancer
cells (Fig. 3a); moreover, this interaction was abolished
upon B-catenin or FXR depletion (Fig. 3b, c).

We next hypothesized that f-catenin might affect FXR
nuclear localization induced by OCA [30]. To confirm this

SPRINGER NATURE
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Fig. 1 p-Catenin level determines the varying responses of colon
cancer cells to OCA. a The effect of FXR agonist OCA on the via-
bility of colon cancer cells SW403, SW480, DLD-1, HT-29, HCT116,
and RKO detected by CCKS8 assays. b The effect of OCA on the
protein levels of p21CIPl, cyclin D1, c-Myc, and SHP in colon cancer
cells detected by western blotting analysis. c—f The effect of OCA on

notion, we evaluated the effect of depleting p-catenin
expression on FXR nuclear localization of SW403, SW480,
DLD-1, and HT-29 cells treated with OCA. The IP assay
showed that the OCA treatment induced the dissociation of
the FXR/B-catenin complex; notably, p-catenin depletion
expanded this dissociation (Fig. 4a, b). Moreover, a marked
elevation of nuclear FXR occurred in p-catenin-depleted
cells as early as 2 h after OCA treatment, while a compar-
able elevation of nuclear FXR occurred in the control cells
at 6h (Fig. 4c—f), indicating that depletion of f-catenin
accelerates FXR nuclear localization. As expected,
depletion of PB-catenin enhanced the binding of FXR to
the SHP promoter after OCA treatment, as detected by
the qChIP assay (Fig. 5a, b). Intriguingly, treatment with

SPRINGER NATURE

the mRNA levels of p21CIPl, cyclin D1, ¢c-Myc, and SHP in colon
cancer cells detected by real-time PCR. g The effect of OCA on the
luciferase activities of TOP/FOP-Flash reporter plasmid in colon
cancer cells. h The expression of f-catenin in colon cancer cells
detected by western blotting analysis. All data are the mean + SD of
three independent experiments. *P <0.05, **P <0.01.

ICG-001, an antagonist of p-catenin/TCF4-mediated
transcription, did not induce occupancy of FXR on the
SHP promoter (Fig. 5c); conversely, ICG-001 suppressed
this occupancy. This is likely due to ICG-001 elevating
the free pool of B-catenin [22]. These observations indi-
cated that P-catenin levels but not its transcriptional
activity affected the antitumor effects of OCA. Impor-
tantly, depletion of P-catenin enhanced the inhibitory
effect of OCA on the growth of SW403, SW480, DLD-1,
and HT-29 cells (Fig. 5d). Taken together, these data
strongly suggest that depletion of pP-catenin makes FXR
amenable to earlier activation and accelerates FXR
nuclear translocation and occupancy of its target genes,
thereby enhancing the antitumor effect of OCA.
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NTZ acts synergistically with OCA in colon cancer
cells

The above observations inspired us to reason that modulation
of p-catenin by chemical agents could enhance the antitumor
effect of OCA on colon cancer cells. We assessed drug
combination synergism in vitro by measuring the average
combination index (CI) of OCA combined with the anti-
parasitic drug NTZ, which has been proven to abrogate
[-catenin expression [31]. We first determined the IC50 values
of NTZ in colon cancer cells. The results showed that NTZ
inhibited the growth of SW403, SW480, DLD-1, and HT-29
cells with IC50 values of approximately 2.764, 2.294, 2.149,
and 1.930 uM, respectively (Supplementary Fig. 2a). More-
over, NTZ caused dose-dependent repression of [-catenin
expression in colon cancer cells (Supplementary Fig. 2c—f).
Decreased p-catenin protein levels were followed by changes
in the gene expression of the f-catenin downstream targets
c-Myc and cyclin D1 (Supplementary Fig. 2b—f). These data
indicated that NTZ inhibits the growth of colon cancer cells by
abrogating p-catenin expression.

The average CI values indicated that the antiparasitic
drug NTZ had strong synergistic effects with OCA on
SW403, SW480, DLD-1, and HT-29 cells (Fig. 6a—d).
Altogether, this evidence suggests that NTZ might enhance
the efficacy of OCA against CRC.

OCA and NTZ synergistically inhibit the tumorigenic
properties of colon cancer cells in vitro

By conducting a series of in vitro experiments, we evaluated
whether NTZ enhanced the efficacy of OCA against CRC.
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NTZ. Survival fraction (left) and the CI (right) are shown for each of
these four cell lines. Fa fraction affected. Error bars represent means
+ SD.

SW403, SW480, DLD-1, and HT-29 cells were treated with
OCA and NTZ alone or in combination. Compared to the
single drug treatments, the combination of OCA and NTZ
significantly repressed colony formation in colon cancer
cells (Fig. 7a and Supplementary Fig. 3a). We further
assessed the effects of combination therapy on cell cycle
distribution and apoptosis by using flow cytometry. The
combination of OCA and NTZ led to an increased percen-
tage of cells in the GO/G1 phase and a decreased percentage
in the S phase compared to the single drugs (Fig. 7b and
Supplementary Fig. 3b). Moreover, an increase in the
apoptosis rate was observed in cells treated with OCA and
NTZ in combination compared to that in cells treated with
the single drugs (Fig. 7c and Supplementary Fig. 3c). In
addition, the combination of OCA and NTZ dramatically
suppressed the invasive ability of cells relative to the single
drug treatments (Fig. 7d and Supplementary Fig. 3d).
Consistent with the observations above, the combination
therapy of OCA and NTZ significantly elevated SHP
expression and altered cell cycle-related and invasion-
related proteins (Supplementary Fig. 4a—d). Altogether, this
evidence suggests that NTZ enhances the efficacy of OCA
in colon cancer cells.

OCA and NTZ synergistically retard tumor growth
in vivo

To validate the synergistic effects of NTZ and OCA in vivo,
we generated xenograft mouse models by injecting colon
cancer cells subcutaneously into nude mice. The xenograft
tumors in the OCA-treated and NTZ-treated groups devel-
oped much more slowly and were smaller and lighter than
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Fig. 7 OCA and NTZ synergistically inhibited the tumorigenic
properties of colon cancer cells in vitro. a, b The effect of OCA,
NTZ alone, or OCA plus NTZ on colony formation and cell cycle
distribution of SW403 and SW480 cells. ¢, d The effect of OCA, NTZ
alone or OCA plus NTZ on the apoptosis and invasion of SW403 and

those in the single drug-treated groups (Fig. 8a, b, d—f, h).
According to Q value method of Zhengjun jin [23] (Q value
> 1.15 was synergistic; 0.85-1.15 was additive; <0.85 was
antagonistic), Q value for SW403 and SW480 xenografts is
1.19 and 1.22, respectively, indicating that combination of
OCA and NTZ have synergistical effect. Importantly, the
combination therapy significantly lengthened progression-
free survival in relation to the single treatments (Fig. 8c, g).
Mechanistically, the results from the IHC assay showed a
stronger staining intensity of SHP, p21, E-cadherin, and
active caspase-3 and a weaker staining of c-Myc, cyclin D1,
and MMP-2 in xenograft tumors treated with both agents
than in those treated with a single agent (Fig. 8i, j).
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SW480 cells. For SW403 cells, the concentrations of OCA and NTZ
used were 1.25 uM and 0.625 uM, respectively. For SW480 cells, the
concentrations of OCA and NTZ used were 1puM and 0.5uM,
respectively. All data are the mean + SD of three independent
experiments. *P <0.05, **P <0.01.

In summary, these data suggested that OCA and NTZ can
work synergistically to retard tumor growth in vivo.

Discussion

Chemotherapy is the second major treatment type for CRC
after surgical treatment, but there are many problems with
chemotherapy, such as drug resistance and side effects [32].
Thus, more effective strategies and novel targets for che-
motherapy in this malignancy are urgently required. The
tumor suppressive role of FXR in colorectal carcinogenesis
has inspired us to restore FXR expression as a novel
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therapeutic strategy [17]. However, the complicated signaling
network and tumor heterogeneity might hinder the effective-
ness of FXR agonists in cancer treatment [22]. Our study
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tumor xenografts formed by SW403 (i) and SW480 (j) cells.
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indicated that RKO and HCT116 cells that expressed no or
low B-catenin were sensitive to OCA, whereas colon cancer
cells harboring moderate or high levels of f-catenin were less
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sensitive or resistant to OCA. Notably, despite the increased
FXR levels in all six colon cancer cells in response to OCA,
only RKO and HCT116 cells had marked nuclear localization
of FXR. We thus speculate that p-catenin might affect the
localization of nuclear FXR induced by OCA, thereby
antagonizing its antitumor effects. Subsequently, we identified
a novel FXR/B-catenin complex in colon cancer cells, which
was previously confirmed by the work of Thompson et al in
primary hepatocytes [22]. The FXR/p-catenin complex might
antagonize FXR nuclear localization and subsequent target
gene transcription by FXR agonists [33]. As expected,
depletion of B-catenin expedited FXR nuclear localization and
enhanced its occupancy on the SHP promoter following OCA
exposure. In HCC with f-catenin mutations [34], elevated
p-catenin might sequester FXR and impair its ability to
maintain bile acid homeostasis, which leads to intratumoral
cholestasis. Intriguingly, activation of FXR blocked the Wnt/
B-catenin signaling pathway in HCC [29], indicating that
there might exist a reciprocal relationship between FXR and
B-catenin. Collectively, these novel findings identify an
unrecognized role of f-catenin in colorectal carcinogenesis
via sequestration of FXR and repression of its activity.
Whnt/B-catenin signaling is one of the most promising
targets for cancer chemotherapy, and a wide variety of Wnt
inhibitors have been developed and are in the preclinical or
clinical phase I stage [11]. Recently, the antiparasitic drug
NTZ drew our attention. In contrast to previous Wnt inhi-
bitors, NTZ antagonizes Wnt/p-catenin signaling indepen-
dent of GSK-3 and APC [31]. NTZ increased the
citrullination and degradation of P-catenin by stabilizing
PAD2. Our study demonstrated that NTZ repressed the
growth of colon cancer cells by abrogating f-catenin
expression. Notably, NTZ depleted P-catenin in colon
cancer cells with mutant APC or f-catenin, For cancer
treatment, a new use for an “old drug” has many benefits
without the limitation of unknown safety and toxicity pro-
files [35]. Hence, NTZ is expected to be a potential antic-
ancer drug for cancer patients with Wnt pathway mutations.
Monotargeted therapies are new treatment options that have
begun to enter cancer treatment. However, due to complicated
signaling networks and tumor heterogeneity, the effectiveness
of these drugs is still unsatisfactory [36]. Recently, combina-
tion therapy has gathered tremendous interest with its ability to
enhance efficacy and reduce side effects; for example,
GW4064 combined with acyclic retinoid (ACR) exerted
synergistic inhibitory effects on the growth of HCC with lower
doses of both agents [37]. The depletion of p-catenin in col-
orectal carcinogenesis expedites FXR nuclear localization and
FXR occupancy of target genes and thus offers a novel ther-
apeutic opportunity. Herein, we identified the antiparasitic
drug NTZ with synergism with OCA against CRC. This
synergistic effect of OCA and NTZ was verified in a series of
in vitro and in vivo experiments. Furthermore, our study
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revealed that this synergistic effect was probably attributed to
elevated SHP expression. SHP has also been shown to sup-
press tumor cell proliferation and invasion via transcriptional
repression of cyclin D1 and Ccl2 expression [26, 38]. How-
ever, we cannot completely rule out that other possible
mechanisms might also account for the synergistic effects of
OCA and NTZ against CRC. The activation of FXR by
GW4064 has been proven to antagonize Wnt/B-catenin sig-
naling in HCC [29]. Hence, OCA may work synergistically
with NTZ to repress the activity of Wnt/p-catenin signaling.
The present study demonstrates that B-catenin affects the
antitumor effects of OCA on colon cancer cells. Mechan-
istically, we identified an FXR/p-catenin complex in colon
cancer cells. Depletion of p-catenin accelerated the nuclear
translocation of FXR and increased its occupancy of the SHP
promoter in response to OCA treatment. Moreover, the
combination of OCA plus the p-catenin inhibitor NTZ exerted
synergistic tumor inhibition in CRC. Altogether, these find-
ings offer useful evidence for the clinical use of FXR agonists
combined with B-catenin inhibitors in combating CRC.
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