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1  | INTRODUC TION

Sustainable farming methods often mimic patterns and processes 
that are characteristic of natural ecosystems with the assumption 
that unmanaged wild communities have undergone intense selection 
over evolutionary time, weeding out poor designs in favor of supe-
rior ones (Altieri, 1995; Denison, 2012). Thus, understanding how 

natural communities are structured and identifying the components 
that are disrupted by modern agricultural practices may offer novel 
insight on how to restructure cropping systems to enhance produc-
tion (e.g., higher yield, greater water use efficiency, fewer inputs of 
pesticides, and/or fertilizer).

Perhaps the most dramatic difference between natural and ag-
ricultural systems lies in their varying levels of diversity. Even to the 
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Abstract
Agriculture has long employed phylogenetic rules whereby farmers are encouraged 
to rotate taxonomically unrelated plants in shared soil. Although this forms a central 
tenet of sustainable agriculture, strangely, this on-farm “rule of thumb” has never 
been rigorously tested in a scientific framework. To experimentally evaluate the re-
lationship between phylogenetic distance and crop performance, we used a plant–
soil feedback approach whereby 35 crops and weeds varying in their relatedness to 
tomato (Solanum lycopersicum) were tested in a two-year field experiment. We used 
community profiling of the bacteria and fungi to determine the extent to which soil 
microbes contribute to phenotypic differences in crop growth. Overall, tomato yield 
was ca. 15% lower in soil previously cultivated with tomato; yet, past the species level 
there was no effect of phylogenetic distance on crop performance. Soil microbial 
communities, on the other hand, were compositionally more similar between close 
plant relatives. Random forest regression predicted log10 phylogenetic distance to 
tomato with moderate accuracy (R2 = .52), primarily driven by bacteria in the genus 
Sphingobium. These data indicate that, beyond avoiding conspecifics, evolutionary 
history contributes little to understanding plant–soil feedbacks in agricultural fields; 
however, microbial legacies can be predicted by species identity and relatedness.
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untrained eye, natural communities stand out in maintaining more 
plant species per unit area than crop fields. While richness and even-
ness are, historically, the two most popular means by which to quan-
tify diversity, recent studies emphasize a more cryptic component: 
phylogenetic relatedness, defined as the amount of time since two 
species shared a common ancestor (Cavender-Bares, Kozak, Fine, & 
Kembel, 2009; Vamosi, Heard, Vamosi, & Webb, 2009). Relatedness 
offers a quantitative estimate for the degree of shared evolutionary 
history, either between two co-occurring individuals or averaged 
across an assemblage of species. This means that two communities 
can have identical richness, while differing drastically in relatedness. 
Spatial analyses of species coexistence in natural ecosystems report 
evidence for phylogenetic overdispersion, a pattern whereby locally 
assembled communities are more phylogenetically dissimilar than 
expected based on null models that randomly assemble commu-
nities without considering evolutionary history (Allan et al., 2013; 
Cavender-Bares, Ackerly, Baum, & Bazzaz, 2004; Cooper, Rodríguez, 
& Purvis, 2008; Gerhold, Cahill, Winter, Bartish, & Prinzing, 2015). 
These findings imply that in agricultural systems configuring polycul-
tures based on random crop arrangement is “unnatural” and may in 
fact be less successful than employing a targeted approach to maxi-
mize the phylogenetic distance separating crops.

Despite pleas for integrating a phylogenetic perspective on ap-
plied sciences (Ness, Rollinson, & Whitney, 2011) and insights that 
phylodiversity has offered in various applied disciplines (e.g., for-
est management, Jactel & Brockerhoff, 2007; habitat restoration, 
Verdú, Gómez-Aparicio, & Valiente-Banuet, 2012; ecosystem func-
tion, Srivastava, Cadotte, MacDonald, Marushia, & Mirotchnick, 
2012; invasive species, Pearse & Altermatt, 2013; urban planning, 
MacIvor, Cadotte, Livingstone, Lundholm, & Yasui, 2016), the exist-
ing agricultural literature virtually ignores evolutionary history (but 
see Ingerslew & Kaplan, 2018; Miller & Menalled, 2015; Schellhorn 
& Sork, 1997). In some cases, crops may be taxonomically clustered, 
either intentionally or unintentionally, because of similar growing re-
quirements (i.e., related species possess comparable tillage, fertility, 
and/or irrigation needs). This would be predicted if traits conferring 
adaptation to growth environments are phylogenetically conserved. 
An analogous process, called phylogenetic underdispersion, is some-
times observed in nature when related species co-occur because 
they share traits allowing them to persist in unique or stressful en-
vironments (Forrestel, Donoghue, & Smith, 2014; Verdú & Pausas, 
2007).

Most crop production guides, however, recommend avoiding 
consecutive plantings of related species (i.e., same genus or fam-
ily) over time. Closely related species tend to be more ecologically 
similar, resulting in more intense competition for a limited pool of 
resources (Burns & Strauss, 2011; Losos, 2008). Seedling survival 
and growth, for example, are higher with increasing phylodiversity 
of neighboring vegetation (Castillo, Verdú, & Valiente-Banuet, 2010; 
Webb, Gilbert, & Donoghue, 2006), presumably due to increasingly 
divergent abiotic requirements and ecomorphological traits associ-
ated with acquiring those resources (e.g., rooting depth). Thus, plants 
on average stand to benefit from associating with distantly related 

species via niche partitioning (Cadotte, 2013). A second major driver 
is evading consumers. Closely related plants are more likely to share 
parasitic insects and pathogens (Gilbert, Briggs, & Magarey, 2015; 
Gilbert & Webb, 2007; Novotny et al., 2006; Yguel et al., 2011). As a 
result, increasing phylodiversity is a good rule of thumb for improv-
ing the statistical likelihood of cultivating nonhosts in a crop field 
without underlying knowledge of pest biology or diet breadth. In the 
context of rotations, host-specific, soil-borne microbial pathogens 
are considered the primary driver of negative feedbacks from close 
relatives.

Existing evidence for soil-mediated phylogenetic effects on 
plant performance and microbial communities are mixed and de-
rive entirely from unmanaged systems. Phylogenetic influences on 
plant–soil feedbacks impacting plant growth are highly inconsistent 
across studies, likely depending on variables such as the amount of 
phylogenetic distance tested relative to the focal plant (Anacker, 
Klironomos, Maherali, Reinhart, & Strauss, 2014; Burns & Strauss, 
2011; Dostál & Palečková, 2010; Fitzpatrick, Gehant, Kotanen, 
& Johnson, 2017; Kuťáková, Herben, & Münzbergová, 2018; Liu 
et al., 2012; Mehrabi, Bell, & Lewis, 2015; Mehrabi & Tuck, 2014; 
Münzbergová & Šurinová, 2015). Yet, phylogeny appears to play a 
relatively stronger role in structuring plant-associated soil microbes; 
close relatives tend to share more similar communities of rhizosphere 
bacteria and fungi, particularly for plant pathogenic taxa (Barberan 
et al., 2015; Gilbert & Webb, 2007; Peay, Baraloto, & Fine, 2013; 
Sarmiento et al., 2017; Schroeder et al., 2019). In combining these 
two approaches, one study found that increasing phylogenetic dis-
tance between neighbors improved focal plant growth in field-col-
lected “live” soil, but after the soil was experimentally treated with 
fungicide the relationship dissipated (Liu et al., 2012). These data 
suggest that plant species- and/or genus-specific fungal pathogens 
mediate the negative consequences of growing in the same soil as 
close relatives.

Surprisingly, no field studies have quantified the effects of plant 
phylogenetic diversity on crop yield and soil microbiomes in agri-
culture, despite the fact that agronomists widely advocate rotations 
based on these factors. In a recent greenhouse study, we found 
that relatedness did not predict the soil legacy of 36 crop and weed 
species on short-term vegetative growth of potted tomato plants 
(Ingerslew & Kaplan, 2018). Here, we conducted a 2-year field ex-
periment using the same agricultural plant community to assess 
whether species relatedness impacts soil microbial legacies and to-
mato yield. In keeping with the central tenets of the phylogenetic di-
versity hypothesis, we predicted that plants more closely related to 
tomato imprint similar soil microbiomes, resulting in correspondingly 
lower yield, compared to more distantly related taxa.

2  | MATERIAL S AND METHODS

We conducted a 2-year field experiment at the Meigs-
Throckmorton Purdue Agricultural Center near Lafayette, Indiana 
(USA), during 2017 and 2018. In year one, we conditioned the soil 
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using 36 species of crops and agricultural weeds, varying widely 
in their relatedness to the focal crop, tomato. In year two, we cul-
tivated tomato throughout the entire field to evaluate the legacy 
effect of the prior year plantings. The community of 36 species (22 
crops, 14 weeds; Table 1) was selected to represent plants com-
monly encountered on diversified vegetable farms, both locally in 
our area and throughout much of the United States. Thus, all have 
the potential to generate a soil legacy in which tomato would sub-
sequently grow. The species composition included solanaceous 

crops and weeds in the same genus or family as tomato (Solanum 
lycopersicum), as well as distant relatives (see Ingerslew & Kaplan, 
2018 for phylogenetic tree illustrating the evolutionary relation-
ships among plant taxa in this group).

This experiment was conducted in a single field (285 × 90 ft LW), 
which was previously (2016) planted in corn (var Becks 6175LL). 
Immediately before starting the experiment, in May 2017, we sampled 
soil (6-inch depth) at four random locations in each of the eight repli-
cated blocks used in the study. The four samples per block were mixed 

TA B L E  1   List of plant species used in study, along with taxonomic affiliation and domestication status. Species are organized in rank 
order from least (top) to most (bottom) closely related to the focal plant, tomato

Plant type Family Common name Species name

Crop Poaceae Rye Secale cereale

Crop Poaceae Wheat Triticum aestivum

Crop Poaceae Barley Hordeum vulgare

Crop Poaceae Corn Zea mays

Crop Poaceae Oats Avena sativa

Crop Poaceae Foxtail millet Setaria italica

Wild Poaceae Crabgrass Digitaria sanguinalis

Wild Poaceae Barnyard grass Echinochloa crus-galli

Wild Cyperaceae Yellow nutsedge Cyperus esculentus

Crop Brassicaceae Collard greens Brassica oleracea

Crop Fabaceae Bean Phaseolus vulgaris

Crop Fabaceae Pea Pisum sativum

Wild Fabaceae Red clover Trifolium pratense

Wild Malvaceae Velvetleaf Abutilon theophrasti

Crop Cucurbitaceae Watermelon Citrullus lanatus

Crop Cucurbitaceae Pumpkin Cucurbita pepo

Crop Cucurbitaceae Cucumber Cucumis sativus

Crop Amaranthaceae Spinach Spinacia oleracea

Wild Amaranthaceae Redroot pigweed Amaranthus retroflexus

Wild Amaranthaceae Lambsquarters Chenopodium album

Crop Apiaceae Carrot Daucus carota

Crop Asteraceae Sunflower Helianthus annuus

Crop Asteraceae Lettuce Lactuca sativa

Wild Asteraceae Field thistle Cirsium discolor

Wild Asteraceae Ragweed Ambrosia artemisiifolia

Crop Lamiaceae Basil Ocimum basilicum

Wild Convolvulaceae Morning glory Ipomoea pandurata

Crop Solanaceae Tobacco Nicotiana tabacum

Wild Solanaceae Jimsonweed Datura stramonium

Crop Solanaceae Sweet pepper Capsicum annuum

Crop Solanaceae Tomatillo Physalis philadelphica

Wild Solanaceae Ground cherry Physalis pruinosa

Crop Solanaceae Eggplant Solanum melongena

Wild Solanaceae Horsenettle Solanum carolinense

Wild Solanaceae Bittersweet nightshade Solanum dulcamara

Crop Solanaceae Tomato Solanum lycopersicum
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to provide one analytical sample, which was used to conduct a basic 
soil test as recommended for commercial growers (A&L Great Lakes 
Laboratories). Soil textural characterization was silty clay loam or clay 
loam (19% sand, 53% silt, 28% clay) with the following general char-
acteristics: organic matter = 2.75, available phosphorus = 42.87 ppm, 
exchangeable potassium = 168 ppm, magnesium = 256.25 ppm, cal-
cium = 1656.25 ppm, pH = 6.7, buffer pH = 7.0, cation exchange ca-
pacity = 11.95, and percent base saturation of cation elements: %K 
3.65, %Mg 18.04, %Ca 69.4, and %H 8.91.

2.1 | Soil conditioning

We cultivated 36 plant species in a randomized complete block de-
sign with 8 replicated blocks in a single field. We also included two 
plant-free fallow control plots per block, resulting in 304 total plots 
(= 36 species + 2 controls × 8 blocks). A block consisted of two ad-
jacent 285 ft length rows (between-row spacing, 6 ft), with 19 plots 
equally split between the two rows. A plot was considered four con-
secutive plants of the same species in a row, with 3 ft between-plant 
spacing, and a 6 ft buffer separating plot treatments. There was no 
space between neighboring blocks, that is, each two-row block was 

immediately adjacent to the next. The field was tilled in late May 
2017 before constructing raised beds covered in a double layer of 
black plastic mulch to reduce weed pressure with drip tape for irri-
gation. A preplanting fertilizer was added to the soil at the following 
rates: potash 0-0-60 (71  lbs/ac) and diammonium phosphate 18-
46-0 (147 lbs/ac).

Seeds for each of the 36 species were germinated in the labo-
ratory in the spring and fertilized weekly beginning 2 weeks after 
transplanting seedlings into pots in the greenhouse. See Ingerslew 
and Kaplan (2018) for details on germination procedures and seed 
sources. Because seedling size varied across species, we standard-
ized germination times. On June 1, seedlings were transplanted 
into their randomly assigned field plots. Because pure species 
plot treatments were necessary for the experimental design, we 
applied the following herbicides between rows on July 7 and 31 
to prevent natural weed infiltration: paraquat (Gramoxone SL 2.0) 
and S-metolachlor (Dual II Magnum). Other pesticides (i.e., insecti-
cides, fungicides) were not applied in either year of the study. We 
hand weeded within and between rows as needed throughout the 
growing season to maintain treatments.

Between October 9 and 18, all plants were harvested and re-
moved from the field. To do so, we uprooted plants, removing the main 

F I G U R E  1   Impact of identity of the 
conditioning plant species in year 1 (y-axis) 
on tomato yield (mean ± 95% CI) in year 
2 (x-axis). Vertical dashed line represents 
the global mean across all plots (= 22.27); 
thus, 95% CIs that do not bracket this line 
over- or under-perform relative to the 
community average. Red bars represent 
plants that are closely related to tomato, 
that is, in the family Solanaceae, while the 
white bar denotes the plant-free fallow 
control. Hatched bars separate weed 
species from crops (unhatched)
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taproot and as much of the larger roots as possible. On November 
27, the herbicides glyphosate, sulfentrazone, and metribuzin were 
applied to the whole field to kill any remaining plants.

2.2 | Tomato response

Because we aimed to measure tomato responses to soil leg-
acy effects from year 1 species treatments, we grew tomatoes 
throughout the entire field with seedlings transplanted in the 
exact location where the previous year's plants grew. Some spe-
cies were persistent in reestablishing from belowground rhizomes 
(e.g., thistle, horsenettle, some grasses); these plants were repeat-
edly pulled by hand as needed to avoid competing with tomato. On 
June 1, we transplanted 1,216 tomato seedlings (var RG 611) into 
the field (i.e., 304 plots × 4 plants per plot). Two weeks later, they 
were fertilized through the drip irrigation with a soluble fertilizer 
(30 gallons of 10-34-0 NPK).

During transplant, we collected soil from each plot for microbial 
and nutrient analyses to quantify the soil legacy from year 1 treat-
ments. Bulk soil was collected rather than rhizosphere soil to isolate 
the species temporal legacy without the confounding influence of 
tomato conditioning, while also measuring the initial soil properties 
experienced by the roots of a new tomato seedling. To do so, we 
sampled from the top 3-inch profile of the soil layer at each of the 
four locations in a plot where plants previously grew; then, we com-
bined these samples, creating a single ca. 350 g soil sample per plot. 
Sterile nitrile gloves were used to avoid microbial contamination be-
tween plots. In the field, we temporarily stored samples in sealed 
plastic bags in a cooler, before placing them in a −20°C freezer in 
the laboratory until analysis. After manually homogenizing samples, 
a 2 g subsample was isolated for microbial analysis (see below sec-
tions). The remainder was sent to the University of Connecticut Soil 
Nutrient Analysis Laboratory (Storrs, Connecticut) where they were 
analyzed for plant-available calcium, magnesium, phosphorus, po-
tassium, sulfur, iron, manganese, copper, zinc, aluminum, and boron 
using a modified Morgan extractant.

Tomato harvest began August 22 when green fruits began rip-
ening and lasted for 2  weeks. Blocks were harvested sequentially 
to avoid temporal effects on yield that may impact interpretation of 
treatments. Each plant was cut at its base, fruits were removed, and 
we measured total fruit yield per plant.

The program Phylomatic (Webb & Donoghue, 2005) was used to 
assign phylogenetic distances separating each species in the commu-
nity from tomato. This continuous variable was used as a predictor 
to test the impact of relatedness on plant–soil feedbacks. To do so, 
average tomato fruit yield per plant was calculated for each plot as 
the response variable. Because some tomato seedlings died after 
transplant, we created averages based on the number of plants (out 
of 4 max.) remaining; most plots had 3–4 surviving to the end of the 
season for yield estimates. This allowed us to standardize data across 
plots, rather than using total plot yield, which assumes plant den-
sity is identical. One of the 36 species treatments—spinach, Spinacia 

oleracea—did not persist in year 1 and thus was removed from the 
analysis. The impact of phylogenetic distance on plant–soil feedback 
for tomato yield was tested using regression (Proc Reg in SAS v. 9.4). 
As a response variable, we used species means for the plant–soil feed-
back effect size, calculated as ln(species treatment/fallow control).

This was followed up with categorical tests (Proc GLM) compar-
ing tomato yield: (i) fallow (1) versus plant treatments (35), (ii) to-
mato (self, 1 sp.) versus all other plants in the community (non-self, 
34 sp.), (iii) congener versus noncongener (i.e., Solanum, 4 sp. versus 
non-Solanum, 31 sp.), and (iv) confamilial versus nonconfamilial (i.e., 
Solanaceae, 7 sp. versus non-Solanaceae, 28 sp.). Comparison (i) was 
used to evaluate whether plants imprint legacies on the soil that are 
unique from bare ground. Comparisons (ii–iv) were used to deter-
mine whether phylogenetic threshold effects occur at the species, 
genus, or family levels, respectively.

To gauge potential nonmicrobial mechanisms underlying plant–soil 
feedbacks on tomato yield, we also compared tomato versus nonto-
mato soil for each of the nutritional traits measured (Proc GLM). A 
Bonferroni correction was applied to the statistical outcome to account 
for the multiple univariate tests performed on each individual nutrient.

2.3 | Amplicon library preparation, sequencing, and 
bioinformatics

A 250  mg soil subsample was analyzed by Argonne National 
Laboratory for community profiling of bacteria and fungi. Raw 
sequence data are accessible in the Qiita repository (ID 12546; 
Gonzalez et al., 2018).

2.3.1 | 16S rRNA sequencing for 
bacterial community

Briefly, PCR amplicon libraries targeting the 16S rRNA encoding 
gene present in metagenomic DNA were produced using a barcoded 
primer set adapted for the Illumina HiSeq2000 and MiSeq (Caporaso 
et al., 2012). DNA sequence data were then generated using Illumina 
paired-end sequencing at the Environmental Sample Preparation 
and Sequencing Facility (ESPSF) at Argonne National Laboratory. 
Specifically, the V4 region of the 16S rRNA gene (515F-806R) was 
PCR amplified with region-specific primers that include sequencer 
adapter sequences used in the Illumina flow cell (Caporaso et al., 
2011, 2012). The forward amplification primer also contains a twelve 
base barcode sequence that supports pooling of up to 2,167 different 
samples in each lane (Caporaso et al., 2011, 2012). Each 25 µl PCR re-
action contained 9.5 µl of MO BIO PCR Water (Certified DNA-Free), 
12.5 µl of QuantaBio's AccuStart II PCR ToughMix (2× concentration, 
1× final), 1 µl Golay barcode tagged Forward Primer (5 µM concentra-
tion, 200 pM final), 1 µl Reverse Primer (5 µM concentration, 200 pM 
final), and 1 µl of template DNA. The conditions for PCR were as fol-
lows: 94°C for 3 min to denature the DNA, with 35 cycles at 94°C for 
45 s, 50°C for 60 s, and 72°C for 90 s, with a final extension of 10 min 
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at 72°C to ensure complete amplification. Amplicons were then 
quantified using PicoGreen (Invitrogen) and a plate reader (Infinite 
200 PRO, Tecan). Once quantified, volumes of each of the products 
were pooled into a single tube so that each amplicon is represented 
in equimolar amounts. This pool was then cleaned up using AMPure 
XP Beads (Beckman Coulter) and then quantified using a fluorometer 
(Qubit, Invitrogen). After quantification, the molarity of the pool was 
determined and diluted down to 2 nM, denatured, and then diluted 
to a final concentration of 6.75 p.m. with a 10% PhiX spike for se-
quencing on the Illumina MiSeq. Amplicons were sequenced on a 
151  bp  ×  12  bp  ×  151  bp MiSeq run using customized sequencing 
primers and procedures (Caporaso et al., 2012).

2.3.2 | ITS sequencing for fungal community

Genomic DNA was amplified using an internal transcribed spacer 
(ITS) barcoded primer set, adapted for the Illumina HiSeq2000 and 
MiSeq. These primers were designed by Kabir Peay's lab at Stanford 
University (Smith & Peay, 2014). The reverse amplification primer 
also contained a 12 base barcode sequence that supports pooling 
of up to 2,167 different samples in each lane (Caporaso et al., 2011, 
2012). Each 25 µl PCR reaction contained 9.5 µl of MO BIO PCR 
Water (Certified DNA-Free), 12.5 µl of QuantaBio's AccuStart II PCR 
ToughMix (2× concentration, 1× final), 1  µl Golay barcode tagged 
Forward Primer (5 µM concentration, 200 pM final), 1 µl Reverse 
Primer (5  µM concentration, 200  pM final), and 1  µl of template 
DNA. The conditions for PCR were also as follows: 94°C for 3 min 
to denature the DNA, with 35 cycles at 94°C for 45 s, 50°C for 60 s, 
and 72°C for 90 s, with a final extension of 10 min at 72°C to ensure 
complete amplification. Amplicons were quantified using PicoGreen 
(Invitrogen) and a plate reader. Once quantified, different volumes of 
each of the products were pooled into a single tube so that each am-
plicon was equally represented. This pool was then cleaned up using 
AMPure XP Beads (Beckman Coulter) and then quantified using a 
fluorometer (Qubit, Invitrogen). After quantification, the molarity of 
the pool was determined and diluted down to 2 nM, denatured, and 
then diluted to a final concentration of 6.75 p.m. with a 10% PhiX 
spike for 2 × 251 bp sequencing on the Illumina MiSeq.

2.3.3 | Bioinformatics

Sequence data were processed and analyzed using the plugin-based 
microbiome bioinformatics framework QIIME 2 (Bolyen et al., 2019). 
DADA2 (Callahan et al., 2016) was used (via the q2-dada2 QIIME 2 
plugin) to quality filter the sequence data, removing PhiX, chimeric, 

F I G U R E  2   Relationship between phylogenetic distance 
separating tomato from the species conditioning the soil in year 
1 and plant–soil feedback on tomato yield in year 2. Each point is 
the mean across all plot replicates for the 35 plant species tested. 
Horizontal dashed line denotes an effect size of zero where the 
conditioning plant species had no impact on tomato growth relative 
to the control. Effect size was calculated as ln(species/control)

TA B L E  2   ANOVA results for plant species and block effects on alpha diversity of bacteria (16S) and fungi (ITS) in field-collected soil

Marker Metrica  Factor df F p

16S Richness Plant species 35 0.88 .663

Block 7 66.72 <.001

Evenness Plant species 35 1.89 .003

Block 7 18.88 <.001

Shannon Plant species 35 1.52 .038

Block 7 34.02 <.001

Faith's PD Plant species 35 0.92 .602

Block 7 43.46 <.001

ITS Richness Plant species 35 1.80 .006

Block 7 32.85 <.001

Evenness Plant species 35 1.04 .410

Block 7 39.64 <.001

Shannon Plant species 35 1.20 .212

Block 7 44.63 <.001

aEach marker × metric combination represents a separate ANOVA test (metric ~ plant species + block) (total N = 6 tests). 
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and erroneous reads. The 16S rRNA gene sequences were too short 
to overlap paired-end reads after denoising, so only forward reads 
were used for downstream analysis, trimmed at 151 nt. The plugin 
q2-cutadapt (Martin, 2011) was used to trim primers and adapters 
from the ITS sequence data prior to paired-end DADA2 denoising. 

To construct a phylogenetic tree, 16S rRNA gene sequence variants 
were inserted into the Greengenes version 13_8 reference phylog-
eny (McDonald et al., 2012) using the q2-fragment-insertion plugin 
(Janssen et al., 2018). Taxonomy was assigned to sequence variants 
using q2-feature-classifier (Bokulich, Kaehler, et al., 2018) with the 

F I G U R E  3   Alpha diversity by plant species. (a) Bacterial 16S rRNA gene Shannon diversity after even rarefaction at 15,618 sequences 
per sample. (b) Bacterial 16S rRNA gene evenness after even rarefaction at 15,618 sequences per sample. (c) Fungal ITS richness (observed 
sequence variants) after even rarefaction at 4,000 sequences per sample. This figure displays all alpha diversity metrics that were 
significantly associated with plant species (Table 1)
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classify-sklearn method against the Greengenes 16S rRNA refer-
ence database 13_8 release (McDonald et al., 2012) or against the 
UNITE ITS reference database (Nilsson et al., 2018).

QIIME 2’s q2-diversity plugin was used to estimate alpha diver-
sity (within-sample diversity) using the following metrics: richness (as 
observed sequence variants), Shannon diversity and evenness, and 
Phylogenetic diversity (Faith, 1992). Microbiome beta diversity (be-
tween-sample diversity) was estimated in QIIME 2 using weighted 
and unweighted UniFrac distance (Lozupone & Knight, 2005). 
Feature tables were evenly subsampled at 4,000 sequences per sam-
ple (for ITS data) or 15,618 sequences per sample (16S rRNA gene 
data) prior to alpha or beta diversity analyses. Appropriate rarefac-
tion levels were chosen using alpha rarefaction to determine where 
richness estimates converge toward the asymptote, indicating that 
sampling richness has been saturated; in the case of the 16S rRNA 
gene data, 15,618 sequences were chosen as the sequencing depth of 
the lowest-coverage sample, well beyond the minimum appropriate 
rarefaction depth. Two-way ANOVA tests were performed (using the 
q2-longitudinal plugin, Bokulich, Dillon, Zhang, et al., 2018) to test 
whether alpha diversity estimates differed between plant species and 
blocks, or between tomato yield, tomato biomass, or phylogenetic 
distance to tomato. Two-way permutational multivariate analysis 

of variance tests (Anderson, 2001; as implemented in the adonis 
method in the vegan R package (Oksanen et al., 2018), wrapped via 
the q2-diversity plugin) were performed to test whether beta diver-
sity estimates partitioned by block, plant species, tomato yield, or 
phylogenetic distance to tomato.

Supervised learning methods are increasingly being used to char-
acterize and differentiate microbial communities across samples 
(Bokulich, Dillon, Bolyen, et al., 2018). For example, supervised learn-
ing can be used to identify patterns in microbiome data that relate 
to different groups of samples (e.g., across experimental treatments 
or environmental gradients). Supervised learning was performed in 
q2-sample-classifier (Bokulich, Dillon, Bolyen, et al., 2018) via fivefold 
nested cross-validation (classify-samples-ncv method), using random 
forest classification or regression models (Breiman, 2001) grown with 
100 trees. Supervised learning was performed to determine how accu-
rately sample groups can be distinguished based on taxonomic profiles 
and phylogenetic distance to tomato using microbial abundance data 
as features; 16S rRNA gene and fungal ITS sequence data tables were 
merged and used to train learning models.

DEseq2 (Love, Huber, & Anders, 2014) was used to test whether 
microbial species abundances were differentially abundant between 
blocks, plant species, and based on phylogenetic distance to tomato.

TA B L E  3   PERMANOVA results for plant species and block effects on beta diversity of bacteria (16S) and fungi (ITS) in field-collected soil

Marker Metrica  Factor df R2 F p

16S Bray–Curtis Plant Species 35 .20 1.96 <.001

Block 7 .10 4.69 <.001

Residuals 244 .71  

Total 286 1.00  

Jaccard Plant Species 35 .15 1.33 <.001

Block 7 .06 2.68 <.001

Residuals 244 .79  

Total 286 1.00  

Unifrac Plant Species 35 .15 1.29 <.001

Block 7 .06 2.63 <.001

Residuals 244 .79  

Total 286 1.00  

wUnifrac Plant Species 35 .23 2.53 <.001

Block 7 .13 7.41 <.001

Residuals 244 .63  

Total 286 1.00  

ITS Bray–Curtis Plant Species 35 .15 1.73 <.001

Block 7 .25 14.26 <.001

Residuals 243 .60  

Total 285 1.00  

Jaccard Plant Species 35 .15 1.29 <.001

Block 7 .06 2.82 <.001

Residuals 243 .79  

Total 285 1.00  

aEach marker × metric combination represents a separate PERMANOVA test (distance ~ plant species + block) (total N = 6 tests). 
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3  | RESULTS

3.1 | Phylogenetic relatedness does not affect 
tomato yield

Of the 35 conditioning species cultivated in year one, tomato was the 
only species whose soil legacy impacted tomato yield in year two; 
that is, 95% CI does not bracket the community mean in Figure 1. 
However, this negative feedback did not extend past the species 
level to other plants in the genus Solanum or family Solanaceae (see 
other red bars in Figure 1 aside from S.  lycopersicium). As a result, 
there was no overall relationship between the phylogenetic distance 
separating tomato from the rotation species in year one and tomato 
yield in year two (t(1) = 0.20, p = .8429; Figure 2).

These outcomes correspond with categorical comparisons 
using major taxonomic thresholds. Tomatoes growing in self 

(tomato) plots had 15.3% lower yield than tomatoes growing in 
non-self (i.e., all other nontomato plant species) plots (p < .001). 
However, neither genus (p =  .724) nor family (p =  .996) had any 
predictive explanatory power on tomato growth. In fact, yield 
was nearly identical when comparing across these broader taxo-
nomic groups. Similarly, tomato yield was the same in fallow con-
trol plots compared with any of the treatments receiving plants 
(p = .643).

Importantly, none of the soil nutrients showed strong evi-
dence for explaining species-level differences in crop performance, 
namely the lower yields in tomato plots. When comparing the nu-
tritional profiles of tomato versus nontomato soils, none were 
significant at the Bonferroni-corrected p  =  .003 level. The only 
mineral trending in this direction (p  =  .030) was potassium, which 
was lower in tomato (322.25 ppm ± 27.67 SE) than nontomato soils 
(394.28 ppm ± 6.21 SE).

F I G U R E  4   Random forest classification correctly identifies soil planting history 27.6% of the time via fivefold cross-validation. Confusion 
matrix shows the predicted planting history of each sample, as the proportion of times that samples in each class were predicted to belong 
to each possible class
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3.2 | Plant species imprint unique phylogenetic 
signatures on the soil microbiome

Both bacterial and fungal alpha diversity (i.e., within-sample bio-
diversity) were impacted by block, which was highly significant 
for all response variables, and secondarily by plant species, which 
affected some but not all responses (Table  2). Because of the 
overriding statistical influence of block effects on bacterial and 
fungal profiles, this spatial factor is accounted for in all subsequent 

measurements. Bacterial Shannon H (Figure  3a; p  =  .038) and 
evenness (Figure 3b; p = .003) differed between plant species, but 
neither richness nor phylogenetic diversity were significantly af-
fected (p > .05). Fungal richness, on the other hand, was different 
between plant species (Figure 3c; p =  .006), but Shannon H and 
evenness were not (p > .05).

Planting history also exhibited a substantial impact on both bac-
terial and fungal beta diversity (i.e., between-sample dissimilarity). 
Plant species had a significant effect on all beta diversity metrics 

F I G U R E  5   Random forest models identify microbial features predictive of planting history. The top 15 most predictive bacterial and 
fungal features are shown (minimum importance score 0.010), and the heatmap displays their normalized average relative abundances within 
each plant species. Samples and features are hierarchically clustered by UPGMA of pairwise Bray–Curtis dissimilarities
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for both bacterial and fungal communities (PERMANOVA p < .001; 
Table 3) and accounted for between 15% and 23% of the variation 
in beta diversity. Block also significantly impacted beta diversity 
(p  <  .001), accounting for between 6% and 25% of the variation, 
which was less explanatory power than plant species for all metrics 
except for fungal Bray–Curtis dissimilarity.

Next, we identified features that differentiate plant species to 
determine how planting history alters the relative abundance of 

specific microorganisms in the soil. To achieve this, we trained ran-
dom forest classifiers on combined bacterial and fungal feature ta-
bles and subsequently inspected the resulting models to determine 
which features were most relevant for differentiating previous plant 
species. Random forest classifiers, using the combined bacterial 
and fungal community, could accurately predict the previous plant 
species grown in each soil plot 27.6% of the time (Figure 4), a nearly 
10-fold improvement over the baseline accuracy rate of 2.8% (the 

F I G U R E  6   Bacterial features most abundant in tomato soils. The heatmap shows the normalized relative abundance of 24 features 
identified as being differentially abundant among plant species and block, and most abundant in tomato soils. Values shown on the heatmap 
represent the mean of each feature averaged across each plant species (N = 8 per species). Column margin colors indicate the family 
affiliation of each plant species represented in that column. Samples and features are hierarchically clustered by UPGMA of pairwise Bray–
Curtis dissimilarities
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accuracy rate that would be achieved by assigning all samples to the 
most common class). The predictive features are primarily bacterial 
and include several Sphingobium species that are most abundant in 
soils previously planted with Solanaceae, indicating that this may be 
a group of bacteria that is enriched by that plant family (Figure 5). 

Interestingly, different Sphingobium species are associated with two 
different clusters of Solanaceae, separating Solanum and Capsicum sp. 
from other Solanaceae regardless of domestication status (crop ver-
sus weed), suggesting genus-specific associations among Solanaceae 
and Sphingobium groups.

F I G U R E  7   Fungal features most abundant in Solanaceae soils. The heatmap shows the normalized relative abundance of 10 features 
identified as being differentially abundant among plant species and block, and most abundant in Solanaceae soils. Values shown on the 
heatmap represent the mean of each feature averaged across each plant species (N = 8 per species). Column margin colors indicate the 
family affiliation of each plant species represented in that column. Samples and features are hierarchically clustered by UPGMA of pairwise 
Bray–Curtis dissimilarities
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DeSeq2 was also used to identify bacterial and fungal fea-
tures that were differentially abundant between plant species and 
block. A total of 1,394 bacterial features (239 most abundant in 
Solanaceae, 24 most abundant in tomato; Figure 6) and 213 fungal 
features (10 most abundant in Solanaceae, 2 in tomato; Figure  7) 
were differentially abundant (FDR-corrected p < .01). Among the dif-
ferentially abundant bacteria were 27 sequence variants classified 
as Sphingomonadaceae, including one Sphingobium, supporting the 
links between this group and plant species.

PERMANOVA tests indicate that both bacterial and fungal 
beta diversity are associated with phylogenetic distance to tomato 
(p < .05), indicating an association between plant phylogeny and mi-
crobiome composition; however, all distance metrics yielded low R2 
values (≤.01), indicating that plant evolutionary history explains little 
variation in beta diversity. Similarly, Mantel tests indicated signifi-
cant correlation between host plant phylogeny (not distance to to-
mato) and bacterial and fungal pairwise distances (p < .05), with the 
exception of bacterial weighted UniFrac.

Last, we identified microbial features that were predictive of the 
host plant species’ genetic distance to tomato. Random forest regres-
sion predicted log 10 distance to tomato with moderate accuracy via 
fivefold cross-validation (Figure 8; Pearson R2 = .52, p < .001; mean 
squared error  =  0.21). Again, we see several Sphingobium species 
among the top 16 most predictive features (minimum 0.03 impor-
tance score), associated with various Solanaceae species (Figure S1); 
these include many of the same Sphingobium sequence variants that 
predict plant species (Figure 5). These results indicate that a number 

of microbial species (primarily bacteria) are enriched in soils follow-
ing Solanaceae cultivation, and their abundance is weakly predictive 
of the genetic distance between that plant and tomato, indicating 
species- and family-specific microbial associations.

4  | DISCUSSION

Given the purported relationship between planting history and soil 
microbiome composition, we hypothesized that microbial com-
munity structure is linked to the evolutionary history of the host 
plant. Such a relationship would justify phylogenetically informed 
crop rotation practices, under the assumption that microbes as-
sociated with plant species represent host-specific pathogenic 
or performance-reducing taxa. Overall, we found mixed support 
for this hypothesis. Although phylogeny predicted some of the 
variation underlying plant legacy on soil microbial communities, 
phylogenetic relationships were entirely uninformative past the 
species level for predicting differences in tomato performance. 
Thus, we conclude that plant phylogeny is moderately impor-
tant in structuring the microbiome of agricultural soils, but has 
no value in forecasting changes to yield in multi-species cropping 
systems. Notably, these general conclusions mirror those from a 
recent study conducted on short-term vegetative growth of pot-
ted, greenhouse tomatoes using the same experimental plant com-
munity (Ingerslew & Kaplan, 2018).

Several putative factors could lead to a “phylogenetic breakdown” 
across levels whereby the same evolutionary pattern is not passed 
along from microbes to plants (i.e., if phylogeny structures microbes 
and microbes mediate plant health, then why is phylogeny unrelated 
to tomato performance?). First, microbes may not be the primary 
mechanism responsible for changes to crop yield. While it is widely 
assumed that soil microbes influence plant health and performance, 
plant–soil feedbacks are also driven by variation in growth-limit-
ing micronutrients (van der Putten, Bradford, Brinkman, Voorde, 
& Veen, 2016). We consider this explanation less likely, compared 
with natural ecosystems, since fields were fertilized, which should 
dilute nutritional differences across plant species treatments. Yet, 
phosphorus levels were 18% lower in tomato soils compared with 
all other plots, which could serve as a factor contributing to lower 
yields in self versus non-self treatments. Phosphorus deficiency is 
known to reduce tomato growth and reproduction (Biddinger, Liu, 
Joly, & Raghothama, 1998; Menary & Staden, 1976).

Second, the large degree of functional redundancy among micro-
bial taxa in the rhizosphere could result in detectable changes to the 
taxonomic composition of the microbiome, but without ultimately 
affecting the overall impact of that soil on plant health (Berendsen, 
Pieterse, & Bakker, 2012; Vandenkoornhuyse, Quaiser, Duhamel, 
Van, & Dufresne, 2015). This is particularly relevant given the rel-
atively high level of resolution that recent advances in sequencing 
and statistical technologies allow for discerning even subtle shifts 
to microbial community structure (nontargeted identification of mi-
crobial genera and species, Bokulich, Kaehler, et al., 2018). Similarly, 

F I G U R E  8   Random forest regression between microbiota and 
genetic distance to tomato suggests that phylogenetically related 
plants harbor similar soil microbial communities. Fivefold cross-
validation was used to train/predict log10 genetic distance to 
tomato as a function of soil microbiota composition across all plant 
species samples collected in this study. The scatterplot shows the 
relationship between true and predicted genetic distance. The 
gray line indicates the linear regression trend line between true 
and predicted values (Pearson R2 = .52, p < .001; mean squared 
error = 0.21). The dotted line marks the ideal 1:1 relationship 
between true and predicted values
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the compositional changes to the microbiome could involve taxa that 
are weakly tied to plant health, rather than pathogens or mutual-
ists. Of the microbial groups correlated with tomato in this study, 
none are well-documented pathogens. For example, bacteria in 
the genus Sphingobium were closely affiliated with tomato and the 
Solanaceae family in general. This association has been reported 
from other studies of the tomato rhizosphere (Kim, Dungan, Kwon, 
& Weon, 2006; Kwak et al., 2018; Lee et al., 2016; Renaut, Masse, 
Norrie, Blal, & Hijri, 2019) and even tomato flowers (Kwon, Lee, 
Kim, Jeon, & Kwak, 2018), suggesting that Sphingobium are tightly 
linked to aboveground and belowground tomato growth or repro-
duction. Unfortunately, the functional roles these bacteria play are 
unclear. Some have suggested they degrade secondary metabolites 
from root exudates or cells in the soil (Pascual et al., 2016). They also 
controlled lettuce corky root disease when experimentally tested, 
demonstrating a potential role in disease suppression (van Bruggen, 
Francis, & Jochimsen, 2014). Targeted genomics of Sphingobium sp. 
detected in our study, as well as shotgun metagenome and meta-
transcriptome experiments, will elucidate the functional roles of 
these species and communities (respectively), as well as their inter-
actions with the host plants.

The paucity of fungi among the predictive features in our statis-
tical models suggests that plant species exert a stronger effect on 
bacterial composition or that bacteria are more likely to form spe-
cies-specific relationships. Alternatively, ITS primer bias (Bokulich & 
Mills, 2013) could lead to selective amplification of fungal taxa in the 
soil. Multi-locus amplification and/or shotgun metagenome sequenc-
ing could be used in future studies to provide a more complete view 
of fungal diversity, yielding greater insight into plant–fungal associa-
tions in the soil. PCR cycle count is known to introduce subtle biases 
in amplicon sequencing experiments (Sze & Schloss, 2019) and could 
be an additional factor that reduced the apparent differentiation of 
fungal profiles between closely related crop species in this study.

Regardless of the specific microbial groups driving phylogenetic 
patterns, a few notable outcomes emerged from the overall analysis. 
For one, the random forest regression revealed that predictive mod-
els were far more accurate at identifying distant plant relatives based 
on the soil microbiome than close relatives (i.e., compare solid versus 
dashed lines in Figure 8). The model consistently predicted that other 
solanaceous plants were more distant relatives than their true evo-
lutionary history indicates. In addition, the regression illustrates that 
the model is more consistent in assigning an evolutionary classifica-
tion to close and distant relatives; those plants intermediate in their 
relatedness to tomato were highly variable. In other words, the spread 
among the datapoints along the y-axis is more pronounced in the mid-
dle—0.75 to 1.75—distances compared with close and distant relatives 
where the predicted values tend to cluster around a central point. This 
outcome is further supported by random forest classification where 
certain plant species imprint highly distinct microbial signatures (see 
dark purple squares along the diagonal in Figure 4), whereas others 
leave virtually no discernible legacy. To our knowledge, the reasons 
underlying why some plants generate long-term, species-specific leg-
acies on the soil microbiome and others do not are unknown.

As a whole, our data indicate that phylogenetic related-
ness should not be used as a proxy for plant complementarity in 
multi-species crop rotations. The only rule consistent with cur-
rent dogma is that consecutive plantings of the same species in 
shared soil should be avoided whenever possible. This means that 
crops should be rotated with a different species, but the identity 
of that rotation partner over time is not necessarily contingent on 
whether they are congeners or come from opposite ends of the 
plant kingdom. We suspect that certain crop pairings are bene-
ficial and synergize based on somewhat idiosyncratic aspects of 
how those species respond to the others’ legacy. An important 
caveat to these conclusions is that our experimental design, due 
to the large number of species treatments, was established using a 
plant–soil feedback framework based on how plants respond from 
one year to the next. True rotation studies, however, implement 
long-term rotations that simulate how farms produce crops in real-
ity. If several nontomato Solanum species were rotated over a 5- or 
10-year period, this could lead to the development of soil-borne 
diseases that we did not observe in a simple, two-year feedback 
study. Similarly, low-input (e.g., organic) systems with different 
abiotic and biotic pressures could change the relationship be-
tween phylogeny and yield. Our experiment was also conducted 
with a single crop and soil type; more studies are needed using a 
wider diversity of crop species and locations before broader con-
clusions can be drawn. Nevertheless, these data clearly illustrate 
the limitations to applied phylogenetics in agriculture and suggest 
that future cropping system studies test rotations that vary relat-
edness as part of their experimental design.
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