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Abstract: Gout is a chronic inflammatory disease evoked by the deposition of monosodium urate
(MSU) crystals in joint tissues. The nucleotide-binding oligomerization domain (NOD)-like receptor
(NLR) family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the gout
inflammatory symptoms induced by MSU crystals. We investigated whether epigallocatechin-3-gallate
(EGCG) suppresses the activation of the NLRP3 inflammasome, thereby effectively preventing gouty
inflammation. EGCG blocked MSU crystal-induced production of caspase-1(p10) and interleukin-1β
in primary mouse macrophages, indicating its suppressive effect on the NLRP3 inflammasome.
In an acute gout mouse model, oral administration of EGCG to mice effectively alleviated gout
inflammatory symptoms in mouse foot tissue injected with MSU crystals. The in vivo suppressive
effects of EGCG correlated well with the suppression of the NLRP3 inflammasome in mouse foot
tissue. EGCG inhibited the de novo synthesis of mitochondrial DNA as well as the production of
reactive oxygen species in primary mouse macrophages, contributing to the suppression of the NLRP3
inflammasome. These results show that EGCG suppresses the activation of the NLRP3 inflammasome
in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of
gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a
promising therapeutic option for NLRP3-dependent diseases such as gout.

Keywords: inflammasome; gout; mitochondria; reactive oxygen species; green tea; macrophages;
innate immunity

1. Introduction

Gout is a relatively common inflammatory arthritis that can cause pain in the joints and seriously
impair the quality of life of a patient. Gout is typically known to occur in middle-aged men; yet,
the incidence is increasing in the elderly population [1]. The precipitation of monosodium urate (MSU)
crystals in joints is a key factor in the initiation and development of gout [2].

Accumulating evidence indicates that the MSU crystals-induced inflammatory responses and
gout pathogenesis are dependent on interleukin (IL)-1β [3]. It is now well established that the
nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing
3 (NLRP3) inflammasome senses MSU crystal deposition, subsequently activating the downstream
immune signals and inducing the production of IL-1β [3]. The NLRP3 inflammasome is a multiprotein
complex consisting of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) as
an adaptor, and pro-caspase-1 as an effector enzyme [4]. Activation of the NLRP3 inflammasome
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culminates in the activation of pro-caspase-1, leading to the cleavage of inactive pro-IL-1β and pro-IL-18
to the active form of IL-1β and IL-18. Mice deficient in NLRP3 fail to produce active IL-1β in the foot
pads in response to MSU crystals in an acute gout mouse model [5].

Current therapeutic strategies to target IL-1β have proven successful for alleviating the symptoms
of gout in clinical studies, suggesting that targeting the NLRP3 inflammasome may have a critical
impact on gout treatment. Current clinical trials are underway for the development of IL-1 inhibitors
including anakinra (an IL-1 receptor antagonist) [6], rilonacept (IL-1 Trap, a soluble decoy receptor) [7],
and canakinumab (anti-IL-1β monoclonal antibody) [8]. Despite the efficacy of these inhibitors, there
are some issues in patients, limiting the extensive use of IL-1 inhibitors in the treatment of gout. These
include the high cost and the inconvenient administration route of IL-1 inhibitors [9].

Therefore, we searched for orally available small-molecule drugs for gout treatment that inhibit
the NLRP3 inflammasome, thereby blocking the production of active IL-1β. Epigallocatechin-3-gallate
(EGCG) is an active component of green tea and is well known to have anti-inflammatory properties.
There is a previous report that EGCG reduces the messenger RNA (mRNA) and protein expression of
renal NLRP3 in a lupus nephritis mouse model [10]. Similarly, Gao et al. reported that EGCG decreases
the protein level of renal NLRP3 in a contrast-induced nephropathy rat model [11]. These reports
show that oral or intravenous infusion of EGCG suppresses the expression of tissue NLRP3 protein,
possibly leading to the reduction of NLRP3 inflammasome activation. However, it is not entirely clear
whether EGCG affects the activation of NLRP3 inflammasome induced by various NLRP3 inducers
in macrophages and in gouty inflammatory response. In this study, we investigated whether EGCG
could suppress the activation of the NLRP3 inflammasome in macrophages in order to pursue the
possibility of its therapeutic application for NLRP3-mediated diseases such as gout.

2. Results

2.1. EGCG Suppresses NLRP3 Inflammasome Activation in Primary Macrophages

We investigated whether EGCG blocks the activation of the NLRP3 inflammasome induced by
various activators in primary mouse macrophages. To exclude the possibility that EGCG may affect the
priming activation step by lipopolysaccharide (LPS), macrophages were treated with EGCG after the
LPS was washed out. Cleavage of pro-caspase-1 and pro-IL-1β to caspase-1(p10) and IL-1β, respectively,
is considered a hallmark of inflammasome activation. EGCG inhibited the MSU crystal-induced
cleavage of pro-caspase-1 and pro-IL-1β to caspase-1(p10) and IL-1β in cell supernatants, as shown by
immunoblotting (Figure 1A). Consistently, EGCG reduced the MSU crystal-induced secretion of IL-1β
in a dose-dependent manner, as measured by enzyme-linked immunosorbent assay (ELISA) of the cell
culture medium (Figure 1B).

We further examined whether EGCG inhibits NLRP3 inflammasome activation by other activators
such as adenosine triphosphate (ATP) and nigericin. EGCG suppressed ATP-induced cleavage of
pro-caspase-1 and pro-IL-1β to caspase-1(p10) and IL-1β in primary macrophages (Figure 1C). In
addition, ATP-induced IL-1β secretion was suppressed by EGCG (Figure 1D). Nigericin-induced the
cleavage of pro-caspase-1 and pro-IL-1β to caspase-1(p10) and IL-1β was blocked by EGCG (Figure 1E).
The nigericin-induced secretion of IL-1β was reduced by EGCG (Figure 1F).

These results show that EGCG suppresses NLRP3 inflammasome activation induced by MSU
crystals, ATP, and nigericin, suggesting that EGCG inhibits NLRP3 inflammasome activation by
various stimuli.
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Figure 1. Epigallocatechin-3-gallate (EGCG) suppresses the activation of the (NOD)-like receptor 

(NLR) family pyrin domain containing 3 (NLRP3) inflammasome in primary macrophages. 

Lipopolysaccharide (LPS)-primed bone marrow-derived primary macrophages were treated with 

EGCG for 1 h and then stimulated with monosodium uric acid (MSU) crystals (500 μg/mL for 6 h), 

adenosine triphosphate (ATP) (5 mM for 1 h), or nigericin (10 μM; 2 h for E and 16 h for F) in the 

presence or absence of EGCG as indicated. (A), (C), and (E) Cell culture supernatants (SUP) and cell 

lysates (LYS) were immunoblotted for pro-caspase-1, caspase-1(p10), pro-IL-1β, and IL-1β. In the 

bar graph, the band density of caspase-1(p10) and cleaved IL-1β normalized to corresponding 

pro-caspase-1 and pro-IL-1β, was expressed as means ± SD (n = 3). #, significantly different from 

vehicle group, p < 0.05; *, significantly different from MSU, ATP, or nigericin alone, p < 0.05. (B), (D), 

and (F) Cell culture supernatants were analyzed for secreted IL-1β by ELISA. The values represent 

the means ± SD (n = 3). #, significantly different from vehicle group, p < 0.05; *, significantly different 

from MSU, ATP, or nigericin alone, p < 0.05. N.D., not detected. IL: interleukin. 
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Inflammasome Activation 

We investigated whether the inhibitory effects of EGCG on MSU crystal-induced NLRP3 

inflammasome activation resulted in the prevention of gouty inflammation in an acute gout mouse 

model. An acute gout mouse model was generated by injecting MSU crystals into the hindfoot; the 

injection led to increased footpad thickness (Figure 2A). In contrast, oral administration of EGCG 

reduced the footpad thickness to normal levels in a dose-dependent manner (Figure 2A). EGCG 

blocked the MSU crystal-induced recruitment of neutrophils to foot tissues as shown by histological 

examination (Figure 2B). In addition, EGCG suppressed the recruitment of myeloperoxidase to the 

MSU crystal-injected foot tissues as determined by immunohistochemical staining (Figure 2C). 

Furthermore, EGCG prevented the MSU crystal-induced production of inflammatory cytokines such 

as IL-6 in the foot tissues (Figure 2D). These results show that oral administration of EGCG 

attenuates the inflammatory symptoms of acute gout caused by the injection of uric acid crystals in 

mice. 

Figure 1. Epigallocatechin-3-gallate (EGCG) suppresses the activation of the (NOD)-like receptor (NLR)
family pyrin domain containing 3 (NLRP3) inflammasome in primary macrophages. Lipopolysaccharide
(LPS)-primed bone marrow-derived primary macrophages were treated with EGCG for 1 h and then
stimulated with monosodium uric acid (MSU) crystals (500 µg/mL for 6 h), adenosine triphosphate
(ATP) (5 mM for 1 h), or nigericin (10 µM; 2 h for E and 16 h for F) in the presence or absence of EGCG
as indicated. (A,C,E) Cell culture supernatants (SUP) and cell lysates (LYS) were immunoblotted for
pro-caspase-1, caspase-1(p10), pro-IL-1β, and IL-1β. In the bar graph, the band density of caspase-1(p10)
and cleaved IL-1β normalized to corresponding pro-caspase-1 and pro-IL-1β, was expressed as means
± SD (n = 3). #, significantly different from vehicle group, p < 0.05; *, significantly different from MSU,
ATP, or nigericin alone, p < 0.05. (B,D,F) Cell culture supernatants were analyzed for secreted IL-1β
by ELISA. The values represent the means ± SD (n = 3). #, significantly different from vehicle group,
p < 0.05; *, significantly different from MSU, ATP, or nigericin alone, p < 0.05. N.D., not detected.
IL: interleukin.

2.2. Oral Administration of EGCG Prevents Acute Gouty Inflammation in Mice by Blocking NLRP3
Inflammasome Activation

We investigated whether the inhibitory effects of EGCG on MSU crystal-induced NLRP3
inflammasome activation resulted in the prevention of gouty inflammation in an acute gout mouse
model. An acute gout mouse model was generated by injecting MSU crystals into the hindfoot; the
injection led to increased footpad thickness (Figure 2A). In contrast, oral administration of EGCG
reduced the footpad thickness to normal levels in a dose-dependent manner (Figure 2A). EGCG
blocked the MSU crystal-induced recruitment of neutrophils to foot tissues as shown by histological
examination (Figure 2B). In addition, EGCG suppressed the recruitment of myeloperoxidase to the MSU
crystal-injected foot tissues as determined by immunohistochemical staining (Figure 2C). Furthermore,
EGCG prevented the MSU crystal-induced production of inflammatory cytokines such as IL-6 in
the foot tissues (Figure 2D). These results show that oral administration of EGCG attenuates the
inflammatory symptoms of acute gout caused by the injection of uric acid crystals in mice.



Molecules 2019, 24, 2138 4 of 11

Molecules 2019, 24, x FOR PEER REVIEW 4 of 12 

 

We examined whether EGCG suppresses NLRP3 inflammasome activation in foot tissues 

injected with MSU crystals. Injection of MSU crystals induced the cleavage of pro-caspase-1 to 

caspase-1(p10) and the cleavage of pro-IL-1β to IL-1β in the foot tissue homogenates (Figure 3A). 

The oral administration of EGCG prevented the cleavage of pro-caspase-1 to caspase-1(p10) and of 

pro-IL-1β to IL-1β in the foot tissues injected with MSU crystals (Figure 3A). EGCG decreased MSU 

crystal-induced IL-1β production in foot tissue homogenates as determined by ELISA (Figure 3B). 

Immunohistochemical analysis of the mouse foot tissues with anti-caspase-1 and IL-1β antibody 

staining showed that the levels of caspase-1 and IL-1β were increased in the foot tissues injected 

with the MSU crystals, while oral administration of EGCG reduced the increased levels of caspase-1 

and IL-1β in gouty foot tissues (Figure 3C). 

These results demonstrate that oral administration of EGCG effectively alleviates the 

inflammatory symptoms of uric acid crystal-induced acute gout in mice, mediated by blockade of 

NLRP3 inflammasome activation. 

 
Figure 2. Oral administration of EGCG suppresses acute gout symptoms induced by MSU crystal 

injection in mice. Mice were orally administered EGCG (1, 10, and 30 mg/kg) or vehicle (0.02% 

dimethyl sulfoxide (DMSO) in water). After 1 h, MSU crystals (2 mg/0.1 mL of phosphate-buffered 

saline (PBS)/mouse) or PBS was subcutaneously injected into the footpad of the right hindfoot of 
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Figure 2. Oral administration of EGCG suppresses acute gout symptoms induced by MSU crystal
injection in mice. Mice were orally administered EGCG (1, 10, and 30 mg/kg) or vehicle (0.02% dimethyl
sulfoxide (DMSO) in water). After 1 h, MSU crystals (2 mg/0.1 mL of phosphate-buffered saline
(PBS)/mouse) or PBS was subcutaneously injected into the footpad of the right hindfoot of each mouse.
After 24 h, the footpad tissues were collected for further analysis. (A) Time course of footpad thickness
gain compared with the footpad thickness at the 0 h time point per group. (B) Representative picture of
hematoxylin and eosin staining of the hind feet. Infiltrating neutrophils in the hindfoot tissue appear
as purple dots. (C) Representative pictures of immunohistochemistry staining of foot tissues with
myeloperoxidase (MPO) (200×). (D) Supernatants of the foot tissue homogenates were analyzed for
IL-6 by ELISA. The values in the line and bar graphs represent the means ± SD (n = 6 mice/group). #,
significantly different from vehicle group, p < 0.05; *, significantly different from MSU alone, p < 0.05.

We examined whether EGCG suppresses NLRP3 inflammasome activation in foot tissues injected
with MSU crystals. Injection of MSU crystals induced the cleavage of pro-caspase-1 to caspase-1(p10) and
the cleavage of pro-IL-1β to IL-1β in the foot tissue homogenates (Figure 3A). The oral administration
of EGCG prevented the cleavage of pro-caspase-1 to caspase-1(p10) and of pro-IL-1β to IL-1β in the
foot tissues injected with MSU crystals (Figure 3A). EGCG decreased MSU crystal-induced IL-1β
production in foot tissue homogenates as determined by ELISA (Figure 3B). Immunohistochemical
analysis of the mouse foot tissues with anti-caspase-1 and IL-1β antibody staining showed that the
levels of caspase-1 and IL-1β were increased in the foot tissues injected with the MSU crystals, while
oral administration of EGCG reduced the increased levels of caspase-1 and IL-1β in gouty foot tissues
(Figure 3C).
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enzymatic activity (Figure 4C). These results show that EGCG does not directly inhibit NLRP3 
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Figure 3. Oral administration of EGCG attenuates NLRP3 inflammasome activation in an acute gout
mouse model. The foot tissue samples analyzed are the same as those used in Figure 2. (A) Supernatants
from the foot tissue homogenates were analyzed for pro-caspase-1, caspase-1(p10), pro-IL-1β, and IL-1β
by immunoblotting. # indicates an individual sample. (B) The foot tissue homogenates were analyzed
for IL-1β by ELISA. The values represent the means ± SD (n = 6 mice/group). #, significantly different
from vehicle group, p < 0.05; *, significantly different from MSU alone, p < 0.05. (C) Representative
pictures of immunohistochemistry staining of foot tissues for caspase-1 and IL-1β (200×).

These results demonstrate that oral administration of EGCG effectively alleviates the inflammatory
symptoms of uric acid crystal-induced acute gout in mice, mediated by blockade of NLRP3
inflammasome activation.

2.3. EGCG Inhibits the De Novo Synthesis of Mitochondrial DNA in Macrophages

To investigate the mechanism by which EGCG suppresses NLRP3 inflammasome activation,
we investigated whether EGCG directly binds to the components of the NLRP3 inflammasome by
surface plasmon resonance (SPR) analysis with a recombinant protein, the PYD of NLRP3 or ASC.
The SPR analysis demonstrated that EGCG did not directly associate with the PYD of NLRP3 or ASC
(Figure 4A,B). We further investigated whether EGCG inhibits the enzymatic activity of caspase-1 by
in vitro caspase-1 enzyme activity using recombinant caspase-1. EGCG did not suppress the enzymatic
activity of caspase-1, while a caspase inhibitor, Z-YVAD-FMK, decreased the caspase-1 enzymatic
activity (Figure 4C). These results show that EGCG does not directly inhibit NLRP3 inflammasome
components such as NLRP3, ASC, and caspase-1.
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of EGCG or Z-YVAD-FMK. The values represent the means ± SD (n = 3). #, significantly different 

from vehicle, p < 0.05; *, significantly different from rCaspase-1 alone, p < 0.05. 
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Figure 4. EGCG does not directly associate with NLRP3 and apoptosis-associated speck-like protein
containing a CARD (ASC) or inhibit caspase-1 enzyme activity. (A,B) Sensorgrams were obtained by
SPR analysis to determine the interaction between EGCG and recombinant (A) NLRP3-PYD or (B)
ASC. Different concentrations of EGCG are presented as an overlay plot aligned at the start of injection.
Table of kinetic parameters obtained from the SPR analysis and calculated by Biocore T200 evaluation
software. (C) An in vitro assay for caspase-1 enzymatic activity was performed using a fluorometric
caspase-1 assay kit with recombinant caspase-1 (rCaspase-1) in the presence or absence of EGCG or
Z-YVAD-FMK. The values represent the means ± SD (n = 3). #, significantly different from vehicle,
p < 0.05; *, significantly different from rCaspase-1 alone, p < 0.05.

Activation of the NLRP3 inflammasome causes mitochondrial disruption, leading to the generation
of reactive oxygen species (ROS) [12]. Therefore, we investigated whether EGCG reduces the generation
of ROS induced by NLRP3 inflammasome activation in primary mouse macrophages. EGCG suppressed
intracellular ROS production induced by the MSU crystals in macrophages (Figure 5A). Consistently,
ROS production induced by ATP or nigericin was significantly decreased by EGCG (Figure 5B,C).

ROS generated upon NLRP3 inflammasome activation induce the oxidation of mitochondrial
DNA (mtDNA), and oxidized mtDNA is released into the cytosol to induce the activation of the NLRP3
inflammasome [13]. It has been reported that mtDNA is synthesized de novo during the process of
NLRP3 inflammasome activation [13]. Therefore, we investigated whether EGCG affects the de novo
synthesis of mtDNA in macrophages. Relative total mtDNA amounts were quantified by quantitative
PCR with primers specific for the mitochondrial D-loop region (D-loop) or a region of mtDNA that
is not inserted into nuclear DNA (non-NUMT) in macrophages. The amount of nuclear DNAs (Tert,
B2m) was measured to normalize mtDNA production. MSU crystals increased the amount of mtDNA
(D-loop, non-NUMT), while EGCG suppressed MSU crystal-induced mtDNA synthesis (Figure 5D,E).
These results show that EGCG blocks the de novo synthesis of mtDNA occurring upon NLRP3 activation
in macrophages. These results suggest that EGCG reduces the production of oxidized mtDNA by
suppressing both ROS production and mtDNA synthesis.

Collectively, these results show that EGCG suppresses the activation of the NLRP3 inflammasome
in macrophages via the blockade of mtDNA synthesis, contributing to the prevention of
gouty inflammation.



Molecules 2019, 24, 2138 7 of 11
Molecules 2019, 24, x FOR PEER REVIEW 7 of 12 

 

 

Figure 5. EGCG suppresses the production of reactive oxygen species and the de novo synthesis of 

mitochondrial DNA induced by NLRP3 inflammasome activators in primary macrophages. (A)–(C) 

Bone marrow-derived primary mouse macrophages were pretreated with an oxidative stress 

indicator, H2DCFDA (10 μM), for 1 h and further stimulated with monosodium uric acid (MSU) 

crystals (500 μg/mL), ATP (5 mM), or nigericin (10 μM) for 1 h in the presence or absence of EGCG. 

Reactive oxygen species (ROS) levels are presented as a percentage of the control. (D), (E) 

LPS-primed bone marrow-derived primary mouse macrophages were stimulated with MSU crystals 

(500 μg/mL) for 6 h in the absence or presence of EGCG. The levels of mitochondrial DNA were 
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inflammasome. 

Figure 5. EGCG suppresses the production of reactive oxygen species and the de novo synthesis of
mitochondrial DNA induced by NLRP3 inflammasome activators in primary macrophages. (A–C)
Bone marrow-derived primary mouse macrophages were pretreated with an oxidative stress indicator,
H2DCFDA (10 µM), for 1 h and further stimulated with monosodium uric acid (MSU) crystals (500
µg/mL), ATP (5 mM), or nigericin (10 µM) for 1 h in the presence or absence of EGCG. Reactive
oxygen species (ROS) levels are presented as a percentage of the control. (D,E) LPS-primed bone
marrow-derived primary mouse macrophages were stimulated with MSU crystals (500 µg/mL) for 6 h
in the absence or presence of EGCG. The levels of mitochondrial DNA were determined by quantitative
PCR. The values represent the means ± SD (n = 3); #, significantly different from vehicle group, p < 0.05;
*, significantly different from MSU, ATP, or nigericin alone, p < 0.05.

3. Discussion

EGCG, a green tea polyphenol component, is well known for its anti-inflammatory properties.
Previous reports have shown that the inhibition of the NLRP3 inflammasome by EGCG may lead
to the suppression of lupus nephritis and peritonitis in mouse models [14,15]. Our results further
demonstrate that EGCG is effective in preventing acute gout by inhibiting NLRP3 inflammasome
activation, as oral administration of EGCG reduced inflammatory symptoms in an MSU crystal-induced
acute gout mouse model. The inhibitory effects of EGCG on gouty inflammation correlate well with
decreased NLRP3 inflammasome activity in gouty tissues. EGCG treatment reduced IL-1β secretion
and neutrophil recruitment in foot tissues injected with MSU crystals. Gout is a form of inflammatory
arthritis that is induced by the deposition of uric acid crystals, characterized by neutrophil infiltration
into the inflammatory joints. Discovering the role of the NLRP3 inflammasome and the subsequent
release of IL-1β is important to elucidate the pathogenesis of this disease [16]. Our study suggests
that administration of EGCG could be extended to the treatment of other diseases relevant to uric acid
crystal accumulation and the NLRP3 inflammasome.

MSU crystals, ATP, and nigericin have different upstream signaling pathways to activate
NLRP3. MSU crystals are phagocytosed and destabilize the phagosome, which activates the NLRP3
inflammasome. ATP triggers NLRP3 inflammasome activation by binding to the P2X7 purinergic
receptor, thereby increasing potassium efflux. Nigericin, a microbial toxin derived from Streptomyces
hygroscopicus, decreases intracellular potassium levels by acting as a potassium ionophore. Our results
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show that in addition to suppressing MSU-induced NLRP3 activation, EGCG treatment suppresses
various activators of the NLRP3 inflammasome, such as ATP and nigericin, suggesting that the
inhibitory target of EGCG may be common to these different activators. We previously reported
that the inhibitory effects of caffeic acid phenethyl ester are due to the direct binding of caffeic acid
phenethyl ester to ASC [5]. In contrast, the SPR analysis showed that EGCG does not directly bind
to ASC or NLRP3 PYD. EGCG also does not inhibit caspase-1 enzymatic activity. These results
demonstrate that the target of EGCG does not lie in the NLRP3 inflammasome complex itself but in the
upstream pathways.

Oxidized mtDNA is known to activate the NLRP3 inflammasome [17]. Zhong et al. showed
that NLRP3 priming induces de novo synthesis of mtDNA, which is further oxidized under oxidative
stress conditions [13]. Cytidine/uridine monophosphate kinase 2 (CMPK2) is an essential enzyme that
provides deoxyribonucleotides for mtDNA synthesis. CMPK2 expression is regulated by interferon
regulatory factor 1 (IRF1) transcription factor activated in an LPS-priming step [13]. CMPK2-dependent
mtDNA synthesis is required for the production of oxidized mtDNA fragments in response to NLRP3
activators [13]. Oxidized mtDNA associates with the NLRP3 inflammasome complex to activate NLRP3
inflammasome. We show that de novo synthesis of mtDNAs induced by MSU crystals is decreased
by EGCG in macrophages. This suggests that EGCG may regulate the upstream events to produce
mtDNA including CMPK2 activity or CMPK2 expression. The detailed mechanism for inhibition of de
novo synthesis of mtDNA by EGCG needs to be investigated further. Blockade of mtDNA synthesis
inhibited IL-1β production induced by NLRP3 activators such as ATP, nigericin, and MSU, while IL-1β
production by an AIM2 inflammasome activator, poly dA:dT, was not inhibited by blockade of mtDNA
synthesis [13]. These show that newly synthesized mtDNA is required for NLRP3 inflammasome
activation induced by various NLRP3 activators [13]. Therefore, it is likely that the common inhibitory
effect of EGCG on various NLRP3 inducers may be linked to the common suppression of mtDNA
synthesis in response to various NLRP3 inducers including ATP or nigericin. This needs to be further
elucidated in a future study. In addition, EGCG reduces the ROS levels increased by MSU crystal
stimulation in macrophages. These results suggest that the suppression of NLRP3 inflammasome
activation by EGCG is mediated by the blockade of mtDNA synthesis, which is the source of oxidized
mtDNA, an NLRP3 activator. EGCG appears to be effective in reducing the generation of oxidized
mtDNAs by blocking both new mtDNA synthesis and ROS production.

In conclusion, EGCG inhibits acute gout inflammation, including proinflammatory cytokine release
and neutrophil infiltration into the lesion site, mediated by the suppression of NLRP3 inflammasome
activation in macrophages. The inhibition of ROS production and mtDNA synthesis by EGCG
contributes to its suppressive effect on the NLRP3 inflammasome.

4. Materials and Methods

4.1. Animals and Cell Culture

Mice (C57BL/6) were obtained from RaOn Bio (Seoul, Korea). The mice were housed in a room
controlled for temperature (23 ± 3 ◦C) and relative humidity (40–60%) under specific pathogen-free
conditions. Mice were acclimated in the animal facility for at least a week before the experiments.
Animal care and the experimental protocols were carried out in accordance with the guidelines
of the Institutional Animal Care and Use Committee (IACUC) of the Catholic University of Korea
(permission #2014-015). Bone marrow-derived primary macrophages (BMDMs) were prepared after
bone marrow was isolated from C57BL/6 mice as described previously [18]. Cell culture was performed
as previously described [19]. Briefly, BMDMs were cultured in Dulbecco’s modified eagle medium
(DMEM) containing 10% (v/v) fetal bovine serum (Invitrogen, Carlsbad, CA, USA), 10,000 units/mL of
penicillin, and 10,000 µg/mL of streptomycin (Invitrogen).
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4.2. Reagents

Epigallocatechin-3-gallate (EGCG) was purchased from Sigma-Aldrich (St. Louis, MO, USA)
and the stock solution was prepared in DMSO. Purified LPS from Escherichia coli was obtained
from List Biological Laboratory Inc. (Campbell, CA, USA) and dissolved in endotoxin-free water.
Monosodium urate (MSU) and ATP were purchased from Invivogen (Carlsbad, CA, USA). Nigericin and
H2DCFDA were purchased from Sigma-Aldrich. A caspase inhibitor, Z-YVAD-FMK, was obtained from
Calbiochem (Darmstadt, Germany). An antibody for mouse caspase-1 was obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). An antibody for interleukin-1β (IL-1β) was from R&D Systems
(Minneapolis, MN, USA). All other reagents, if not specified, were purchased from Sigma-Aldrich.

4.3. Analysis of Inflammasome Activation

This was performed as previously described [20]. BMDMs were plated in 6-well plates at a
density of 2 × 106 cells/mL and primed with LPS (500 ng/mL for MSU crystals stimulation; 100 ng/mL
for ATP, and nigericin stimulation) for 4 h. To exclude the effect of EGCG on the LPS priming
step, EGCG was added after washing out the LPS with phosphate-buffered saline (PBS). The cells
were treated with EGCG for 1 h and stimulated with NLRP3 inflammasome activators such as MSU
crystals, ATP, and nigericin in the presence or absence of EGCG in serum-free medium. The cells were
lysed in radioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.25%
sodium deoxycholate, 150 mM NaCl, 1 mM EGTA, 1 mM PMSF, 1 mM Na3VO4, 10 µg/mL aprotinin,
and 10 µg/mL leupeptin). The degradation of pro-caspase-1 to caspase-1(p10) and the cleavage of
pro-IL-1β to IL-1β in the supernatants were regarded as indicators of inflammasome activation and
were determined by immunoblot assays.

4.4. Enzyme-Linked Immunosorbent Assays

Enzyme-linked immunosorbent assays (ELISAs) were performed as previously described [21].
Levels of IL-1β and IL-6 in culture media or foot pad homogenates were determined using DuoSet
enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems, Minneapolis, MN, USA).

4.5. An Acute Gout Mouse Model

An acute gout mouse model was performed as previously described [5]. Briefly, C57BL/6 mice
(7 to 8 weeks old) were orally administered with 0.5 mL sterilized water containing EGCG (1, 10,
30 mg/kg) or vehicle (0.02% DMSO). After 1 h, MSU crystals (2 mg in 0.1 mL of sterile, endotoxin-free
PBS) or PBS were subcutaneously injected under the plantar surface of the right paw. The foot thickness
was monitored over time. Twenty-four hours after injecting the MSU crystals, the foot tissues were
homogenized in RIPA buffer, and the supernatant was collected for ELISAs and immunoblot assays.
For histological analysis, sagittal sections of the footpads were fixed in 10% paraformaldehyde and
stained with hematoxylin and eosin. For immunohistochemistry, the sections were deparaffinized in
xylene and then rehydrated using alcohol series. Primary antibody was diluted 1:200. The sections
were then incubated with secondary antibody at room temperature for 30 min.

4.6. Caspase-1 Enzyme Activity Assay

The enzymatic activity of caspase-1 was determined using a Caspase-1 assay kit from Bio-vision
(Milpitas, CA, USA) according to the manufacturer’s instructions. Fluorescence was recorded at 400 nm
after excitation at 505 nm using a SpectraMaxM5 microplate reader (Molecular Devices, Sunnyvale,
CA, USA).

4.7. Reactive Oxygen Species (ROS) Measurement

ROS measurement was performed using H2DCFDA according to the manufacturer’s instructions.
In brief, bone marrow-derived primary mouse cells were seeded in 96-well plates and incubated
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overnight. Macrophages were pre-treated with an oxidative stress indicator, H2DCFDA (10 µM) for
1 h and further stimulated with monosodium uric acid (MSU) crystals (500 µg/mL), ATP (5 mM),
or nigericin (10 µM) for 1 h in the presence or absence of EGCG. Cells were washed with PBS and
fluorescence intensity (excitation = 485 nm; emission = 530 nm) were measured using a microtiter plate
reader (VICTORTMX3, PerkinElmer, MA, USA).

4.8. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis for Total Mitochondrial DNA

Total mitochondrial DNAs (mtDNAs) were isolated using G-spinTM DNA Mini Kit (iNtRON
Biotechnology, Korea) according to manufacturer’s instructions. qPCR was performed as
previously described [22]. mtDNAs were quantified by qPCR using primers specific for the
mitochondrial D-loop region (D-loop) or a specific region of mtDNA that is not inserted into
nuclear DNA (non-NUMT). Nuclear DNA encoding Tert or B2m was used for normalization.
Primer sequences are as follows: D-loop F: 5′-AATCTACCATCCTCCGTGAAACC-3′; D-loop R:
5′-TCAGTTTAGCTACCCCCAAGTTTAA-3′; Tert F: 5′-CTAGCTCATGTGTCAAGACCCTCTT-3′;
Tert R: 5′-GCCAGCACGTTTCTCTCGTT-3′; B2m F: 5′-ATGGGAAGCCGAACATACTG-3′; B2m
R: 5′-CAGTCTCAGTGGGGGTGAAT-3′; non-NUMT F: 5′-CTAGAAACCCCGAAACCAAA-3′;
non-NUMT R: 5′-CCAGCTATCACCAAGCTCGT-3′. Specificity of the amplified PCR products
was assessed by melting curve analysis.

4.9. Statistical Analysis

Data are expressed as means ± SD. Comparisons of data between groups were performed by
one-way ANOVA followed by Tukey’s multiple range test. Values of p < 0.05 were considered
significant. Representative data are presented from two or three independent experiments.
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