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Abstract

The development of modeling structures at the channel level that can integrate subcellular

and cell models and properly reproduce different experimental data is of utmost importance

in cardiac electrophysiology. In contrast to gate-based models, Markov Chain models are

well suited to promote the integration of the subcellular level of the cardiomyocyte to the

whole cell. In this paper, we develop Markov Chain models for the L-type Calcium current

that can reproduce the electrophysiology of two established human models for the ventricu-

lar and Purkinje cells. In addition, instead of presenting a single set of parameters, we pres-

ent a collection of set of parameters employing Differential Evolution algorithms that can

properly reproduce very different protocol data. We show the importance of using an ensem-

ble of a set of parameter values to obtain proper results when considering a second protocol

that suppresses calcium inactivation and mimics a pathological condition. We discuss how

model discrepancy, data availability, and parameter identifiability can influence the choice of

the size of the collection. In summary, we have modified two cardiac models by proposing

new Markov Chain models for the L-type Calcium. We keep the original whole-cell dynamics

by reproducing the same characteristic action potential and calcium dynamics, whereas the

Markov chain-based description of the L-type Calcium channels allows novel small spatial

scale simulations of subcellular processes. Finally, the use of collections of parameters was

crucial for addressing model discrepancy, identifiability issues, and avoiding fitting parame-

ters overly precisely, i.e., overfitting.

Introduction

The large variability in action potential (AP) and contraction responses in cardiomyocytes not

only across different species and cells [1] but also across different individuals [2], has given rise
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to a significant effort to develop models that can properly mimic different action potential

dynamics [1, 3–5].

These differences in the cell behavior can be linked with pathologies associated with Atrial

Fibrillation [6], Brugada Syndrome [7], or Long-QT [8], among others. The search for these

general pro-arrhythmic characteristics in computational models is directly related to the devel-

opment of proper parameter estimations in order to develop a better understanding of specific

channelopathies related to genetic mutations [9]. Experimental measures of the average effect

of particular gene mutations such as ΔKPQ or KCNQ1 [10] or genetically modified organism

[11] to study dysfunction in contraction due to problems in calcium handling can be used to

find key modifications in the parameters space or the need for changes in the structural prop-

erties of channels, pumps, or receptors. Therefore, modeling structures at the channel level

that can be integrated into different models and properly reproducing different experimental

data is of great importance.

Modeling cardiomyocyte channels as Markov Chains presents a clear advantage compared

with Hodgkin-Huxley (HH) type models, as the former allows the possibility to model intra-

cellular dynamics. The integration of the variability to analyze cell data from subcellular cal-

cium imaging, patch-clamp, and small tissue leads to computational cellular models that span

multiple scales. Specifically, subcellular data of spark activity and structure, or spatial differ-

ences in the calcium transient behavior depending on the level of t-tubule structure, cannot be

properly analyzed with a HH framework making it impossible to scale up from the micrometer

to the millimeter scale. This is especially relevant in the study of excitation-contraction cou-

pling via calcium handling. The key element of this handling is the calcium release units,

where a small number of L-type Calcium Channels (LCC) face a cluster of Ryanodine Recep-

tors [12]. A Markov Chain model structure can be used both in a subcellular model of the car-

diomyocyte [13] and in a whole-cell approach where these units are coarse-grained. Similarly,

the variability in parameters space needed to deal with the variability in behavior is efficiently

dealt with by Markov Chain models. More importantly, the parameter space of the different

populations can be directly linked with the necessary stochastic nature of calcium handling at

the micrometer scale. Following this approach, the analysis of these stochastic subcellular

properties have been recently employed to study large-scale organ behavior by introducing the

probability distribution of subcellular models into whole-cell models [14].

The inclusion of channel variability into whole-cell organs is particularly relevant to study

the effect of differences in calcium handling across animals and patients. Doing so necessarily

requires introducing Markov Chain models that can properly reproduce the stochastic subcel-

lular behavior. Different properties of the LCC, the Ryanodine Receptors, the Sodium-Calcium

exchanger (NCX), and the SERCA pump have been related with calcium alternans [15, 16].

Similarly, the relevance of calcium handling on the development of Atrial Fibrillation (AF)

and its direct association with Heart Failure is very well established [17, 18].

The relevance of the LCCs and the Ryanodine Receptors in calcium handling is very well-

known. Calcium-Induced Calcium-Release in the calcium release unit scale is the key to

understand calcium alternans [19] in ventricles. Not as a period double-bifurcation, as it is

often stated in whole-cell models, but as an order-disorder Ising-like transition [19]. The Rya-

nodine Receptors are normally portraited as a Markov Chain model with two [20], four [21],

or more states in whole-cell models. The same structure is used for subcellular and whole-cell

models allowing for direct comparison between them. A whole-cell model where the Ryano-

dine Receptor has multiple states and its transitions are not stochastic but deterministic can be

understood as the limit of having the different calcium release units tightly coupled by calcium

diffusion. However, this is not the case for the LCC in most whole-cell models. This prevents
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the easy comparison among different length scales and the generation of a collection of param-

eters that can deal with the different sources of experimental data.

There is a great interest in producing L-type Calcium models that can be integrated into

subcellular, whole-cell, and tissue models. The purpose of this manuscript is the development

of Markov Chain models that can reproduce AP and intracellular calcium signals both from

experiments or from already established models of particular animals or cells. In addition,

instead of presenting a single set of parameters for the new model, we propose the use of a col-

lection of parameters, labeled as population, to overcome the limitations usually associated

with overfitting.

The goal is to find a collection of the parameters of the L-type Calcium current (ICaL) model

that can properly match very different protocol data. We show that proper penalty functions

and evolutionary algorithms can generate a collection of parameters that can reproduce differ-

ent protocols. We explain that the approach is sound by replacing two different HH Gate-

based ICaL models of the ventricle and Purkinje human cells with a Markov Chain-based (MC-

based) model. We first reproduce all the original model outputs in each case, showing that the

Markov Chain structure and the algorithm can match any particular data source. More impor-

tantly, we implement different experimental-like protocols to the gate-based models and show

how considering a collection of sets of parameter approaches gives the system enough flexibil-

ity to fit different data. One of the protocols simulates the condition of Calmodulin mutations

associated with long QT syndrome, which is known to promote proarrhythmic behavior in

ventricular myocytes.

We develop a general procedure to generate a collection of parameters. We use well-estab-

lish models to make the reasoning clear. However, the same method can be used to reproduce

different experimental data on calcium handling, not only by measuring the interaction

between calcium and voltage measures but also from single-channel data or any other type of

interaction or protocol employed.

In addition, we also discuss how model discrepancy, data availability, and parameter iden-

tifiability can influence the choice of the size of the collection of parameters. By acknowledging

the existence of model discrepancy and identifiability issues, the use of higher tolerances after

the fitting process may avoid fitting parameters overly precisely, i.e., overfitting.

Materials and methods

Cardiac models

An extensively employed mathematical model based in a Markov Chain (MC) description to

simulate the electrophysiology of cardiac cells is described in Mahajan et al. [22]. The main

objective of the model presented in Mahajan et al. [22] is the accurately reproduction of the

cardiac AP and the Intracellular Calcium Cycling at rapid heart rates. Starting from a previous

rabbit cardiac model [21], Mahajan et al. [22] modified the formulation of the ICaL current by

replacing it with a seven-state Markovian model. The ICaL equation proposed by Mahajan et al.

[22] reads

ICaL ¼ Po � �gCa
4PCaVF2

RT
cse2ðVF=RTÞ � 0:341½Ca2þ�o

e2ðVF=RTÞ � 1
; ð1Þ

where Po is the Opening fraction of the channels (represented by the Markovian Open state),

�gCa is the maximum conductivity parameter, V is the transmembrane potential, and cs is the

submembrane calcium concentration. The other terms are parameters of the model or physical

constants.
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However, there are also many models that use HH Gate-based descriptions for the ICaL for-

mulations. Such models have been extensively employed in the modeling of cardiac tissue at

large spatial scales. We consider here two typical examples of these models: [23, 24] employed

for ventricular tissue and Purkinje Fibers, respectively.

The first consolidated cardiac computational model is the Ten Tusscher and Panfilov [23].

This model, initially developed in [25], simulates the electrophysiology of the left ventricular

cells of humans. Different from the description adopted by Mahajan et al. [22], the Ten

Tusscher and Panfilov [23] model uses HH Gate-based structures to compose the ICaL formu-

lation. It is based in the combination of three voltage-dependent gates with another calcium-

dependent gate to simulate the opening fraction of the LCC.

The second consolidated cardiac model used here is the Stewart et al. [24]. The model is

based on Ten Tusscher and Panfilov [23] with modifications to simulate the electrophysiology

of the human Purkinje fibers cells.

Both models, Ten Tusscher and Panfilov [23], and Stewart et al. [24], adopted the HH

Gate-based approach to simulate the opening fraction dynamics of the ICaL current. Rearrang-

ing the terms, ICaL equation for both models reads

ICaL ¼ dff2fcass � GCaL
4ðV � 15ÞF2

RT
0:25csse2ðV� 15ÞF=RT � ½Ca2þ�o

e2ðV� 15ÞF=RT � 1
; ð2Þ

where d, f and f2 are the three voltage-dependent gates, and fcass is the calcium-dependent one;

GCaL is the maximum conductance of the current; V is the transmembrane potential; and css is

the diadic subspace calcium concentration. The other terms are model parameters or physical

constants.

As can be seen, the three cited models, Mahajan et al. [22], Ten Tusscher and Panfilov [23],

and Stewart et al. [24], simulate the same phenomenon, and, disregarding the parameters and

the values of the physical constants, they use the same equation to simulate the ICaL current.

Furthermore, it is possible to read the ICaL equation of the three models as a multiplication of

two terms: ICaL = O × Imax; where O is the channels Opening fraction and the Imax is the maxi-

mum current value when all channels are open. In Mahajan et al. [22] model, this opening

fraction term is represented by the Markovian state Po and reaches peak levels around 10% of

opening. On the other hand, in both Ten Tusscher and Panfilov [23], and Stewart et al. [24]

models, this opening fraction is represented by the multiplication of the four gates d, f, f2, fcass,
and reach the peak of around 90% in the opening levels. In the first moment, this difference in

the amplitude of the opening fraction values can look weird. However, it is important to high-

light the different natures that each model assumes. For instance, Mahajan et al. [22] focus on

models for cardiac cells of rabbits, whereas Ten Tusscher and Panfilov [23], and Stewart et al.

[24] propose models for cardiac cells of humans. Therefore, the difference observed in Fig 1,

showing the dynamics of the opening fraction, O, and the L-type Calcium current, ICaL, over

the time for the models from Mahajan et al. [22], Ten Tusscher and Panfilov [23], and Stewart

et al. [24], may be due to the differences between rabbits and humans.

As stated above, we consider two different approaches to model the opening fraction

dynamics. Majahan et al. [22] uses a MC-based structure, while Ten Tusscher and Panfilov

[23], and Stewart et al. [24] use a Gate-based formulation. However, as discussed by Mahajan

et al. [22], the use of an MC-based approach naturally models the ion channel biophysical

properties in terms of molecular transitions between discrete conformation states.

The first goal of this work is to propose and test a new MC-based ICaL model that can

replace the opening fraction, O, composed by the four gates d, f, f2, fcass, originally used in Ten

Tusscher and Panfilov [23] (TP), and Stewart et al. [24] (ST) models.
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Markov chain-based model

Considering that a single HH gate g can assume only two states (O—Open, and C—Close), we

can generate a Markovian model for this gate, calculating the transition rates g+ (rate of the

transition C! O) and g− (rate of the transition O! C) as

gþ ¼
g1
tg

ð3Þ

and

g� ¼
1 � g1
tg

; ð4Þ

where g1 and τg are equations defined by the HH Gate-based formalism [26].

Applying this analysis to the four gates of both TP, and ST models, it is possible to calculate

all the rates that control the dynamics between the Open and Close states for each gate. Fig 2A

illustrates these single MCs for each of the four gates and their respective transition rates. To

propose a MC-based model for the cardiac models TP, and ST, we use these eight transition

rates.

Once we defined the transition rates, we need to set the MC topology. Here, we adopt the

minimal seven-state MC arrangement proposed by Mahajan et al. [22]. Fig 2B illustrates the

original Mahajan et al. [22] MC for the ICaL formulation.

Thus, to transform the original gates from the Gate-based models into the MC-based for-

mulation, we combine the rates of the HH formalism, Fig 2A, with the consolidated ICaL MC-

based topology, Fig 2B. The result of this combination is the new proposed MC-based model

presented in Fig 2C. In addition, to adjust this new MC-based model to the original human

models, we introduce a set of eleven parameters that multiply some of the MC transition rates:

x ¼ fxijxi 2 R and i ¼ 0 � 10g.

Fig 1. Cardiac models outputs. Output dynamics generated by the simulation of the models Mahajan et al. [22] (MJ), Ten Tusscher and Panfilov [23]

(TP), and Stewart et al. [24] (ST). A: Opening Fraction,O. B: ICaL current.

https://doi.org/10.1371/journal.pone.0266233.g001
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The first five fitting parameters, x0 up to x4, are used to handle the MC calcium sensitivity.

Considering the MC top layer, states If and I0f , as the calcium-dependence layer, these five

parameters are related to calcium-dependence. The first two parameters, x0 and x1, compose

the calcium-dependent equation

f ðc; x0; x1Þ ¼
1

1þ ðx0�cp=cÞ
x13
; ð5Þ

originally adapted from the MC proposed by Mahajan et al. [22]. The other three parameters,

x2, x3, and x4, multiply, respectively, the calcium-dependent function f presented in the rates

C! If, C0 ! I0f , and O! I0f .

Fig 2. Schematic representations of the three markov chain structures considered in this study. A: The four independent Markov Chains for each

gate of the models Ten Tusscher and Panfilov [23] or Stewart et al. [24] considering only two possible states, Open (O) and Close (C) for each one. B:

The original structure of the Markov Chain used by Mahajan et al. [22] to simulate the ICaL phenomenon. C: The proposed Markov Chain as a

combination of the Hodgkin-Huxley formalism rates and the Mahajan et al. [22] topology, to replace the gates in the Ten Tusscher and Panfilov [23]

and Stewart et al. [24] models. The MC transitions generated considering the HH gates d, f, and f2 are shown respectively in blue, green, and yellow. The

calcium-dependent function f and the rates associated with the calcium concentration are shown in red. The set of parameters x used to fit both

calcium-dependent rates (parameters x0 to x4) and voltage-dependence rates (parameters x5 to x10) are shown in black.

https://doi.org/10.1371/journal.pone.0266233.g002
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On the other hand, the voltage-dependence appears in all MC states and rates. The top

layer, states If and I0f , and the fitting parameters x5 and x6 are associated with the voltage depen-

dence behavior of the HH gate f; the bottom layer, states If2 and I0f 2, and the fitting parameters

x9 and x10 are associated with the voltage dependence behavior of the HH gate f2; and the main

layer, states C, C0, and O, and the fitting parameters x7 and x8 are associated with the voltage

dependence behavior of the HH gate d. Concerning the fitting process, x5 and x6 are used to fit

the voltage dependence (top layer); the parameters x9 and x10 are used to fit the bottom layer,

and x7 and x8 are used to fit the main layer. To see a more detailed description of the new MC

model, please see S1 Appendix.

Fitting algorithm

In the above section, we propose a MC-based model to use in the ICaL formulation for both

Ten Tusscher and Panfilov [23], and Stewart et al. [24] models replacing the gate-based open-

ing fraction equations. Next, it is necessary to adjust the MC fitting parameters set x to repro-

duce the original outputs.

The fitting procedure has one primary objective: to find the eleven parameters xi that make

the Opening fraction of the new MC-based model able to reproduce the original Gate-based

opening values. As we are only replacing the ICaL opening fraction, once we recover its dynam-

ics, we also recover the ICaL current and, consequently, all the other model outputs, such as the

AP and intracellular calcium.

As can be seen in Eq (2), for both models, TP, and ST, the multiplication dff2 fcass deter-

mines the opening fraction, O. The curves generated by the two respective models are shown

in Fig 1A.

The goal is to replace these opening fraction terms by our proposed MC-based open state

and to find a parameter set x capable to recover the original model outputs. So, we can see it as

a minimization problem where we want to find the best set of parameters x that minimizes the

error between the new MC-based ICaL curve and the original one. As a minimization problem,

we have to chose the objective function, or fitness function, F. We defined as target as the ICaL

curve of the eleventh pulse (after a series of stimulated AP pulses). So, for the individual, or

candidate set x, the F function reads

FðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X11s

t¼10s

ðICaLMCðx; tÞ � ICaLHHðtÞÞ
2

ICaLHHðtÞ
2

v
u
u
t ; ð6Þ

where ICaLHH is the calcium current of the HH gate-based model and the ICaLMC is the calcium

current generated by the new MC-based model using the parameter set x. When we adjust the

MC-based model to recover the TP model, our target is ICaLHH ¼ ICaLTP . When adjusting to the

ST model, our target is ICaLHH ¼ ICaLST . To obtain the ICaL curves for the models, we simulated

them using a pacing of 1Hz. We must point out, however, that we have checked the robustness

of our approach to different pacing frequencies. Our best fits reproduce accurately the target

data for different frequencies. These results can be found in the S2 Appendix.

To solve this optimization problem, we used the Differential Evolution (DE) algorithm

available in the Python library Pygmo [27]. In the DE field, each set of parameters x is

labeled as an individual or possible solution. Moreover, a set of individuals, or solutions, is

labeled as population. The primary purpose of an evolutionary algorithm as DE is to begin

from a random initial population and, generations over generations, to evolve this population
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to find individuals, or solutions, that better solve the minimization problem. For more details

about the DE algorithm, please see [28].

To execute the DE, we set the population size as 100 individuals, and, to generate the initial

population used by the algorithm, we used the Latin Hypercube method available in Python
library SMT [29]. We set the number of generations of the algorithm to 50. So, at the end of the

DE execution, we will have 50 × 100 possible solutions. The optimization algorithm is con-

strained by imposing limits for each one of the parameter. The search space S for the parame-

ters was set as S ¼ fS � R11j0:1 � si � 5:9g, where si is the search space of the respective

parameter xi. All the other algorithm settings were adopted as the standard values imple-

mented by the Pygmo library. To see more details about its settings, please see [27]. The car-

diac models were implemented in C++. To simulate them, we used a multistep numerical

method provided by C++ SUNDIALS CVODE library [30] setting the maximum time step as

10−1ms.

Fitting robustness assessment

To analyze the fitting process of the new MC-based model, we considered a collection of the

individuals found by the Differential Evolution algorithm, labeled as population of solutions.

To compose this collection, or population, P• of the best solutions, we took into account how

each solution contributes to the respective population. After sorting all the 5000 solutions

from the best error F up to the worst, we could see that the relation between the individuals

and their respective error could be seen as two different relations. The first one is rather a lin-

ear relation and, the second one is similar to an exponential relation. In this way, we concluded

that the solutions in the exponential fraction should be discarded since the error they bring is

higher than the possible quality it would aggregate.

Then, considering only the linear fraction of the ratio, we could select as many solutions as

we could compute. At this point, we might also consider the computational cost. So, looking at

the computational cost and driven by the acknowledgment of model discrepancy and the bio-

logical variability usually found in the experiments, 10 − 20%, from all 5000 possibilities

obtained by the DE for each target model, we selected the best 300 solutions considering the

fitness function error F, which was equivalent to including all solutions that satisfy F(x)�16%,

or 6% of the solutions (300/5000). S1 Fig in the Supporting Information presents the ratio

between the sorted individuals and their respective errors F.

For each target model, TP and, ST, we generated the respective population PTP, and PST.

Furthermore, in the results, we highlight the best solution of the respective populations, PTP,
and PST, labeled as xb

TP
, and xb

ST
. It means the best solution which obtained the smallest error

Fðxb
�
Þ for each respective model.

Besides the statistical analysis, we also assess the robustness of the fitting process by evaluat-

ing if the same population of solutions P• can reproduce the original model (target data) under

a modified protocol. For that, we chose a protocol where the Calcium Inactivation is sup-

pressed. This protocol simulates the condition of Calmodulin mutations associated with long

QT syndrome which is known to promote proarrhythmic behavior in ventricular myocytes

[31].

This protocol, Suppressed Calcium Inactivation (SCI), consists of removing the calcium

sensitivity inside the Gate-based models and the MC-based models. To simulate this SCI pro-

tocol in the TP and in the ST original models, we set the gate fcass equals 1. To simulate the SCI

protocol in the MC-based formulation, we will set the calcium level c inside the function f = f
(x0, x1, c), Eq (5), as constant. Fig 3 shows the opening fraction, O, and ICaL curves for the mod-

els Mahajan et al. [22], Ten Tusscher and Panfilov [23], and Stewart et al. [24] under the SCI
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protocol. Considering the protocol SCI, we evaluate how the population of models P•, which

was fitted using a different protocol (Full), can reproduce the experiments TP|SCI, and ST|SCI.

Although we only use the fitness function F(x) to select the parameters of the models, we

also evaluate the solutions using some important biomarkers for the AP and the Intracellular

Calcium concentration ([Ca]i). For the AP, we consider the features: duration from the AP

peak up to 50% of decay, APD50, and the duration from the AP peak up to 90% of decay,

APD90. For the [Ca]i curve, the features are the Calcium basal level [Ca]imin, and the Calcium

Peak value, [Ca]iPeak.

Multi-protocol analysis

We also evaluate the benefits from selecting a new population of 300 solutions, from the same

original 5000 candidates, that takes into account both the original fitness function F(x) as well

as a similar error function for the SCI protocol. The idea behind this exercise is to evaluate

how the re-sampling of a new population of solutions can accommodate new experimental

evidence.

Although we did not use a multi-objective function in any case of the DE executions, we

also evaluated the capacity of all the 5000 solutions described in Section Fitting algorithm to

reproduce the respective original models, TP, and ST, simulated under the SCI protocol. For

each solution x, now, we have two errors associated with it: the Full protocol error, F(x)|N, and

the SCI protocol error, F(x)|SCI. Both, F(x)|N, and F(x)|SCI reflects the same mathematical equa-

tions presented in Eq (6), but each one considers the models simulated under the Full, and

under the SCI protocols, respectively. At this moment, we can define a new population PO•,

which is composed of the best Overall solutions evaluated considering the function OF(x):

OFðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðxÞjN þ F2ðxÞjSCI

p
: ð7Þ

This new populations POTP, and POST, obtained for the models TP, and ST, bring their

respective new best solutions xo
TP

and xo
ST

.

Fig 3. Cardiac models outputs under SCI protocol. Output dynamics of the models Mahajan et al. [22] (MJ), Ten Tusscher and Panfilov [23] (TP),

and Stewart et al. [24] (ST) under Suppressed Calcium Inactivation (SCI) protocol. The dashed lines represent the same variables but in full protocol. A:

Opening Fraction,O. B: ICaL current.

https://doi.org/10.1371/journal.pone.0266233.g003
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In summary, we will use a color scheme to represent the main findings in Results section.

The black markers presents the original TP, and ST models; the blue markers present the

selected MC-based solutions which compose the population of solutions found for the TP

model, PTP; the best solution of the population PTP, xb
TP

, is highlighted using the dark blues

color; the red markers present the selected MC-based solutions which compose the population

of solutions found for the ST model, PST; the best solution of the population PST, xb
ST

, is

highlighted using the dark red color; the orange markers present the selected MC-based solu-

tions which compose the population of the best overall solutions found for the TP model,

POTP; the best solution of the population POTP, xo
TP

, is highlighted using the dark orange color;

the green markers present the selected MC-based solutions which compose the population of

the best overall solutions found for the ST model, POST; the best solution of the population

POST, xo
ST

, is highlighted using the dark green color. The same scheme of colors are used to

show the results for both, Full, and SCI protocols. Finally, the notation •|SCI represents the sim-

ulation under the SCI protocol.

Statistical and sensitivity analysis

The fitting process involves a set of parameters and objective targets. However, as soon as the

size of the parameter set increases, it becomes more complicated to understand the correlation

between each parameter and the target outputs. Sensitivity Analysis is a tool that improves this

understanding. This process consists of checking how each parameter influences the outputs.

In this study, we perform a Sensitivity Analysis based on variances to understand how each

one of the 11 parameters (x0 up to x10) influences the fitness error F(x). For that, we calculate

the 1st-order, and the Total-order Sobol Sensitivity Index. The 1st-order sensitivity index

quantifies only the portion that an input parameter contributes directly to the total variance of

the quantity of interest. The Total-order index also considers the sensitivity generated by the

interaction between the parameters. For more details see [32]. To calculate these sensitivity

indexes, we used the Python library ChaosPy [33].

Results

Successful fitting of the new markov chain-based under full protocol—

Training

We proceed to show how the MC-framework explained in Section Markov chain-based model

can properly fit the output of the two models selected as guiding examples in our study: Ten

Tusscher and Panfilov [23] (TP model), and Stewart et al. [24] (ST model).

We perform a single execution of the DE algorithm (see Section Fitting algorithm) for each

of the two target models. We plot in Figs 4 and 5 the original traces for the Opening fraction of

the LCC, the ICaL current, the AP and the Calcium transient [Ca]i for the TP and the ST model

respectively. In each panel, the original output (black line) is plotted together with the results

of the population selection of the algorithm together with the best global fit of this population

(blue lines for the TP model, and red lines for the ST model). The parameter values obtained

from the optimization correctly reproduce the action potentials under normal (1 Hz) and

faster pacings. See S2 Appendix.

The selection of the population made by the DE execution is very good for both TP, and ST

cases. The key is not that there is a particular solution that fits almost perfectly the outcome,

but that the population spans remarkably the general surroundings of the model-space. We

can see in Table 1 a comparison of the key properties of the AP and [Ca]i for each original

model with the average and standard deviation values obtained from the selected populations

PLOS ONE Ensemble of parameters from a robust markov-based model

PLOS ONE | https://doi.org/10.1371/journal.pone.0266233 April 5, 2022 10 / 26

https://doi.org/10.1371/journal.pone.0266233


P•. These populations of solutions P• found under the Full protocol are perfectly fit with typical

errors around 0–1% except for the error in the peak of calcium of the ST model where it

reaches values close to 4%.

Another important fact is that the values achieved by the objective fitness function to mini-

mize Eq (6) are not close to zero. The best parameter fit for each model was Fðxb
TP
Þ ¼ 9% and

Fðxb
ST
Þ ¼ 13% for the TP and ST model, respectively. This indicates that the best parameters

cannot exactly reproduce the Full ICaL current. This is a typical case of model discrepancy, as

described before in [34]. In this case, a good practice is to accept solutions with a higher toler-

ance for the fitness value. In this direction, the average value of the objective function of the

ICaL current obtained by the solutions that compose the population PTP is around F = 13% ± 1,

and F = 15% ± 1 for the solutions that compose the population PST. It is the whole population

that is capable of providing a good ensemble. They are good enough to be in the population as

they reasonably fit the model outcome and, as we will see, give us the flexibility to fit intercellu-

lar or intermodel differences in the outcome. We proceed to show its usefulness discussing

first the limitation of taking only the best fit, xb
�
.

Limitation of the best fit in a protocol with suppression of the calcium

inactivation in the LCC

We proceed now to implement a protocol where we suppress all calcium dependence in the

LCCs. Now, the two models produce not only different ICaL currents but also slightly different

APD and very different calcium transient given the well-known effects of calcium transient in

Fig 4. Outputs generated by the population of solutions PTP simulated under the Full protocol. Traces obtained

using the best solution of the population PTP, xb
TP

(dashed blue line), alongside the traces obtained using the other

solutions that compose the population (light blue lines) compared with the original Ten Tusscher and Panfilov [23]

model (black line) simulated under the Full protocol. A: Opening fraction,O. B: ICaL current. C: Action Potential. D:

Intracellular Calcium concentration, [Ca]i.

https://doi.org/10.1371/journal.pone.0266233.g004
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the inactivation of the ICaL current. More specifically, the output gives larger currents and

larger calcium transients with the new protocol. The aim of this suppression of the calcium

inactivation (SCI protocol) is to mimic the results of an pathological condition associated with

proarrhythmic behavior. There were many options available but we think that a short-circuit

Fig 5. Outputs generated by the population of solutions PST simulated under the Full protocol. Traces obtained

using the best solution of the population PST, xb
ST

(dashed red line), alongside the traces obtained using the other

solutions of the population (light red lines) compared with the original Stewart et al. [24] model (black line) simulated

under the Full protocol. A: Opening fraction,O. B: ICaL current. C: Action Potential. D: Intracellular Calcium

concentration, [Ca]i.

https://doi.org/10.1371/journal.pone.0266233.g005

Table 1. Features for the AP and [Ca]i traces obtained by the simulations under Full protocol.

Full Protocol

Features TP Model ST Model

PTP TP MAPEa PST ST MAPEa

APD50
b 275.2 ± 4.9 273 1.62% 197.6 ± 9.3 195 4.03%

APD90
b 301.8 ± 4.8 301 1.33% 286.5 ± 7.0 292 2.53%

[Ca]iMin
c 0.1 ± 0.001 0.1 1.04% 0.1 ± 0.002 0.1 1.86%

[Ca]iPeak
c 0.8 ± 0.04 0.81 4.02% 0.79 ± 0.04 0.81 5.09%

Values of the features for the Action Potential (AP) and Intracellular Calcium concentration ([Ca]i) for the respective populations of solutions PTP found for the TP

model [23], and PST found for the ST model [24] in comparison with respective original models values simulated under Full protocol.
aThe errors are expressed as the Mean Absolute Percentage Error (MAPE) of the population. It can be computed as MAPE ¼ 100

n

Px
jFeaturex � Featuremj=Featurem,

where Featurex is the value of the feature obtained using the solution x, and Featurem is the value of the same feature obtained simulating the respective original model

m. The summation is calculated over all the n solutions that compose the population P•.
bValues are expressed inms.
cValues are expressed in μM.

https://doi.org/10.1371/journal.pone.0266233.t001
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of the calcium inactivation of the LCC is a perfect computational example of a pseudo-

experiment.

We can now compare how the average population behaves with the new protocol. We

check how our former best parameter fit solution, that we call xb
TP

for the TP model and xb
ST

for the ST model, fits the outcome of the new APD and calcium transients under the new pro-

tocol that suppresses calcium inactivation of the LCC. Table 2 shows the performance of the

average of the population for respective models for the same benchmarks used in the Full pro-

tocol. We can see how the average errors are larger. This makes perfect sense, since the popula-

tion P• was obtained using a different protocol (Full protocol). However, it is quite impressive

that these errors are not very large for APD and the minimum calcium level. The most relevant

differences appear in the calcium peak, where typical 20–30% errors are present. The reason is

clear: differences in the ICaL current do not affect the APD if they are not rather large, given

the presence of other currents that do not provide a significant feedback into the voltage-

dependence nature of the LCC. On the other hand, there is a strong feedback between the tran-

sient of calcium and the inactivation of the LCC, precisely because of the Calcium-Induced

Calcium-Release nature of the calcium release trigger.

In the SCI case, the population of solutions PTP|SCI gave an error of roughly 21% ± 3, while

the population of solutions PST|SCI obtained and error of 29% ± 7 when compared with the

respective original TP|SCI, and ST|SCI under the same conditions. So we can easily see that the

errors are more prominent for the SCI protocol when compared to the control or full protocol.

We must emphasize again that we are not finding a new population to fit the new protocol

data. We are just testing how the population we found in the previous section behaves when

the inactivation dependence of the LCC is suppressed.

In this sense, Figs 6 and 7 are particularly relevant. They show, respectively, the new traces

of the outputs generated using the population of solutions PTP|SCI compared to the model

TP|SCI TP|SCI, and the new traces of the outputs generated using the population PST|SCI com-

pared with the model ST|SCI. The blue dashed lines, and the red dashed lines highlight how the

best solutions, xb
TP
jSCI, and xb

ST
jSCI are clearly not the best solutions of each respective popula-

tions now.

We can observe in Figs 6 and 7 the relevance of having a broad population that can encom-

pass different experimental data or different protocol data. The population in the new protocol

Table 2. Features for the AP and [Ca]i traces obtained by the simulations under the SCI protocol.

SCI Protocol

Features TP Model ST Model

PTP|SCI TP|SCI MAPEa PST|SCI ST|SCI MAPEa

APD50
b 279.9 ± 5.4 282 1.62% 221.4 ± 29.1 248 13.56%

APD90
b 306.6 ± 5.3 311 1.78% 308.8 ± 28.3 343 11.52%

[Ca]iMin
c 0.11 ± 0.002 0.11 5.47% 0.11 ± 0.006 0.12 9.74%

[Ca]iPeak
c 0.86 ± 0.05 1.08 20.05% 1.0 ± 0.28 1.45 33.81%

Values of the features for the Action Potential (AP) and Intracellular Calcium concentration ([Ca]i) for the respective populations of solutions PTP found for the TP

model [23], and PST found for the ST model [24] in comparison with respective original models values simulated under SCI protocol.
aThe errors are expressed as the Mean Absolute Percentage Error (MAPE) of the population. It can be computed as MAPE ¼ 100

n

Px
jFeaturex � Featuremj=Featurem,

where Featurex is the value of the feature obtained using the solution x, and Featurem is the value of the same feature obtained simulating the respective original model

m. The summation is calculated over all the n solutions that compose the population P•.
bValues are expressed inms.
cValues are expressed in μM.

https://doi.org/10.1371/journal.pone.0266233.t002
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generally shifts on average away from the new outcome, but it is broad enough, as we will see

now, to be able to find a new best fit solution that encompasses the new input data.

Robustness of the population of solutions—generalization

We proceed to analyze whether the original populations P• were flexible enough to find a set of

parameters that can properly fit both the initial data and the new data obtained with the SCI

protocol. In the previous section we have shown how the best solutions for the models out-

come are not the most robust solutions under the addition of data from a new protocol. To

select the best overall solution for each target model, we considered the overall fit OF(x) as

described in Eq (7).

We calculate this overall fit for all the solutions that were already present in the population

selected in Section Successful fitting of the new markov chain-based under full protocol—

training. This is an important point. We do not need to go back and re-obtain a population

around this new minimization with a new objective function. If the population is robust and

broad enough, analyzing it should provide a reasonably good solution with a small overall

error. This is indeed the case. The new best solutions, xo
TP

, and xo
ST

, are plotted respectively as a

orange dashed line in Fig 6, and as a green dashed line in Fig 7. It is remarkably good.

Fig 8 shows the idea behind this selection. We do a scatter plot where each solution in the

population is placed with its two fitness functions, one for the normal output (X-Axis) and one

for the SCI protocol (Y-Axis). We can see the cloud of points indicating how the population

properly spans reasonable errors. However, the best fit of the full protocol (blue dot for the TP

Fig 6. Outputs generated by the population of solutions PTP simulated under the SCI protocol. Traces of the best

solution of the population PTP simulated under SCI protocol, xb
TP

(dashed blue line), and the best overall solution xo
TP

(dashed orange line) simulated under SCI protocol, alongside the traces generated by the simulation of the population

of solutions PTP|SCI (light blue lines) compared with the original Ten Tusscher and Panfilov [23] model (black line)

under the SCI protocol. A: Opening fraction,O. B: ICaL current. C: Action Potential. D: Intracellular Calcium

concentration, [Ca]i.

https://doi.org/10.1371/journal.pone.0266233.g006
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Model, and red dot for the ST Model) are not the best overall fit (orange dot for the TP Model,

and green dot for the ST Model). For example, in the TP model the best overall fit has a value

of OFðxo
TP
Þ ¼ 18% with Fðxo

TP
ÞjN around 15% and Fðxo

TP
ÞjSCI around 10%. This is a clear

improvement from the best solution when the new protocol was not taken into consideration.

Fig 7. Outputs generated by the population of solutions PST simulated under the SCI protocol. Traces of the best

solution of the population PST simulated under SCI protocol, xb
ST

(dashed red line), and the best overall solution xo
ST

(dashed green line) simulated under SCI protocol found for the [24] model, alongside the traces generated by the

simulation of the population of solutions PST|SCI (light red lines) compared with the original Stewart et al. [24] model

(black line) under the SCI protocol. A: Opening fraction,O. B: ICaL current. C: Action Potential. D: Intracellular

Calcium concentration, [Ca]i.

https://doi.org/10.1371/journal.pone.0266233.g007

Fig 8. Correlation between the Full and SCI protocols errors of the population of solutions P•. Values of the Full

protocol and SCI protocols errors, respectively F(x)|N and F(x)|SCI. A: The best Full protocol solution, xb
TP

(blue dot),

the best Overall solution xo
TP

(orange dot) alongside all the solutions that compose the population PTP (light blue dots)

found for the Ten Tusscher and Panfilov [23] model. B: The best Full protocol solution, xb
ST

(red dot), the best Overall

solution xo
ST

(green dot) alongside all the solutions that compose the population PST (light red dots) found for the

Stewart et al. [24] model. The other representations (gray dots) are the solutions that became out of the respective

population P•.

https://doi.org/10.1371/journal.pone.0266233.g008
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The xb
TP

solution has Fðxb
TP
ÞjN at 9% as indicated previously, but with the new protocol

Fðxb
TP
ÞjSCI is around 20%.

Remarkably, we observe exactly the same structure for the population obtained for the ST

data/model. We again find that the population is very robust and can produce an overall best

fit without the need of retraining. In this model, the penalty we encounter in order to move

from the original model output to the inclusion of the new protocol is way smaller than in the

TP model but we cannot achieve the same very low values of F(x)|SCI.

The clouds presented in Fig 8 also show that the selected populations of solutions P• have a

narrow range for F(x)|N, but spans a wider range for F(x)|SCI. This clearly reflects that the indi-

viduals of the populations P• were selected to account only for the smallest values of F(x)|N.

The characteristics of the population can be better understood in Fig 9 where we highlight

the different properties of the clouds in terms of the errors in AP and [Ca]i features for both

models. Once again, the clouds occupy more space in the upper side of the SCI protocol since

the objective function was to minimize the distance to the ICaL current between the model out-

put and our MC-based model. Nevertheless, we see that our population is flexible and robust

enough to find a subset of solutions that clearly manage to provide good values for the bench-

marks. Indeed, the best overall fits provide rather low errors for ICaL, AP and [Ca]i. In addition,

once we have the populations selected, we might focus on the ICaL current to obtain the best

overall fit as we have done until now and shown in Figs 6–9, or we can focus on any other par-

ticular feature that we might find more important or relevant, whether it is ICaL, AP or [Ca]i

related.

Learning from new data—Sensitivity analysis, identifiability, and multi-

objective function

So far we have performed the traditional steps of machine learning: 1) training a population of

solutions; and 2) testing how it generalizes to new data (SCI protocol). Fig 10 shows the case

where we assimilate the new data to create a new populations of solutions PO•, that comprises

the 300 solutions with smallest overall fitness, see Eq (7). A Pareto front [35] can be easily spot-

ted highlighting the compromise between the two different datasets. Figs 11 and 12 show how

these new populations evaluated under the SCI protocol, POTP|SCI, and POST|SCI, can better

reproduce the two different data for the TP|SCI, and ST|SCI cases, respectively.

Fig 13 presents the parameter ranges of the two populations of solutions P• and PO• for the

TP and ST cases. Some parameters have wide ranges of values, or high variances, such as x2, x3,

and x7. Others have small variances, such as x6, and x8. Furthermore, Fig 14 presents a Sensitiv-

ity Analysis done to check how each parameter influences the error function F(x). In this case,

we can see how the parameter x8, besides having a small variance, also produces a high sensi-

tivity in the MC-based model. So, these variances combined with the sensitivity analysis, can

clarify how each parameter is associated with the fitting process. High variances combined

with small sensitivity indices may indicate the parameters that have low influence on ICaL,

whereas small variances combined with high sensitivity indices may highlight the most impor-

tant parameters that affect the ICaL dynamics.

When we move from the control populations, PTP (blue bars), and PST (orange bars), to the

overall populations, POTP (red bars), and POST (green bars), we can observe what we have

learned with the assimilation of new data. For instance, for parameter x8 the new data shifted

its mean value and reduced its variance. In this case, the new data filtered or rejected some

solutions that belonged to P•. However, the new data also expanded the original population P•

with new solutions. This is the case for instance, for parameters x6 and x9. For these, the new
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Fig 9. Errors of the features of the AP and [Ca]i traces obtained by the population of solutions P•. The left column

shows the population of feasible solutions PTP (light blue dots) found for the Ten Tusscher and Panfilov [23], and

highlights the best solution xb
TP

(blue dot) alongside the best Overall solution xo
TP

(orange dots) found for the same

model. The right column shows the population of feasible solutions PST (gray dots) found for the Stewart et al. [24],

and highlights the best solution xb
ST

(red dot) alongside the best Overall solution xo
ST

(green dots) found for the same

model. A: TP Model APD50. B: ST Model APD50. C: TP Model APD90. D: ST Model APD90. E: TP Model [Ca]iMin. F:

ST Model [Ca]iMin. G: TP Model [Ca]iPeak. H: ST Model [Ca]iPeak. The errors were calculated using E|•(x) = |

Featurex−Featurem|/Featurem, where Featurex is the value of the respective features obtained simulating the solution x,

and Featurem is the value of the respective features obtained simulating the original models (or target models).

https://doi.org/10.1371/journal.pone.0266233.g009
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data shifted their mean values but rather increased their variances, i.e., wider parameter ranges

were needed to accommodate the two different datasets.

Therefore, there is no question we are really learning and improving our solutions by

assimilating the new dataset from the SCI protocol. Unfortunately, some parameters have not

Fig 10. Correlation between the Full and SCI protocols errors of the population of solutions PO•. Values of the

Full and SCI protocols errors, respectively F(x)|N and F(x)|SCI. A: The best Full protocol solution xb
TP

(blue dot), the

best Overall solution xo
TP

(orange dot) alongside all the solutions that compose the population POTP (light orange dots)

selected for the Ten Tusscher and Panfilov [23] model. B: The best Full protocol solution xb
ST

(red dot), the best Overall

solution xo
ST

(green dot) alongside all the solutions that compose the population POST (light green dots) selected for the

Stewart et al. [24] model. The other representations (gray dots) are the solutions that became out of the respective

populations PO•.

https://doi.org/10.1371/journal.pone.0266233.g010

Fig 11. Traces of the populations of fitting solutions PTP and POTP under SCI protocol. The light blue lines are the

300 best solutions considering the objective function F which compose the population PTP. The light orange lines are

the 300 best solutions considering the overall fitOF which compose the population POTP. Naturally, the solutions that

are present in both populations are shown as light green lines. Furthermore, the two dashed lines, the blue and the

orange one, represent the best solution xb
TP

and the solution xo
TP

respectively. The black line represents the Ten

Tusscher and Panfilov [23] model. A: Opening fraction,O. B: ICaL current. C: Action Potential. D: Intracellular

Calcium concentration [Ca]i.

https://doi.org/10.1371/journal.pone.0266233.g011
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changed when moving from P• to the PO• populations. See, for instance, the cases of parame-

ters x2 and x3. Together with the fact they have very large variances, these parameters are likely

to be unidentifiable. At least, if we use only the ICaL curve as data. However, it is worth noting

from Figs 11 and 12 that the propagation of the uncertainties in the parameters [36] have a

high impact on the waveforms of [Ca]i. Since both x2 and x3 are related to calcium-dependent

inactivation, it is worth including both ICaL and [Ca]i in a future work that uses multi-ojective

optimization tools, such as those described in [35, 37].

Discussion

We have employed DE algorithms to replace the HH Gate-based description of the channels

of two electrophysiology models of human cardiac cells Ten Tusscher and Panfilov [23], and

Stewart et al. [24], by a new MC-based model. We selected the new parameters to mimic the

dynamics of the original cardiac models, giving rise to two new models that fit the original AP

and calcium concentrations, among other model characteristics. We show the importance of

using the best fitting and an ensemble of a set of parameter values to reproduce a different sce-

nario that considers the suppression of the calcium inactivation.

The presence of MC structures in the cardiac models brings several possibilities of studies

capable of generating simulations over different scales, from subcellular up to tissue scale. This

possibility allows computational models to help investigate pathologies that have their cause in

the subcellular scale but can affect whole-cell and AP propagation. The use of MC-based

Fig 12. Traces of the populations of fitting solutions PST and POST under SCI protocol. The light red lines are the

300 best solutions considering the objective function F which compose the population PST. The light green lines are the

300 best solutions considering the overall fitOF which compose the population POST. Naturally, the solutions that are

present in both populations are shown as purple lines. Furthermore, the two dashed lines, the red and the green one,

represent the best solution xb
ST

and the solution xo
ST

respectively. The black line represents the Stewart et al. [24] model.

A: Opening fraction, O. B: ICaL current. C: Action Potential. D: Intracellular Calcium concentration [Ca]i.

https://doi.org/10.1371/journal.pone.0266233.g012
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Fig 13. Parameter ranges of the two populations of solutions P• and PO•. Descriptive measures of the values that

each fitting parameter assumed among the best feasible solutions for each respective model. The light blue and light

orange bars present, respectively, the solutions which compose the populations PTP and POTP. The light red and light

green bars present, respectively, the solutions which compose the populations PST and POST. A: Descriptive measures

obtained for the Ten Tusscher and Panfilov [23] fitting process. B: Descriptive measures obtained for the Stewart et al.

[24] fitting process.

https://doi.org/10.1371/journal.pone.0266233.g013

Fig 14. Sensitivity analysis. The Sobol 1st (red bar), and Total (blue bar) order sensitivity indexes calculated for the

11 fitting parameters (x0 up to x10) when analyzed the influence in the fitness function F(x). A: Sensitivity indexes

obtained for the Ten Tusscher and Panfilov [23] fitting process. B: Sensitivity indexes obtained for the Stewart et al.

[24] fitting process.

https://doi.org/10.1371/journal.pone.0266233.g014
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formulations has been widespread to simulate Ryanodine Receptors dynamics of different cells

and species. However, this approach was not too common for the ICaL dynamics, particularly

with respect to human cardiac models. In this direction, this study presented a new MC-based

ICaL model for two consolidated cardiac models for humans, Ten Tusscher and Panfilov [23],

and Stewart et al. [24]. The computational approach employed to generate the MC-based mod-

els is based on an Evolutionary and Population-based algorithm. From the fitting results, we

check that the newly proposed models, based on the fitting solutions, reproduce the Gate-

based original outputs properly. This means that the new MC-based models maintained the

original cell scale simulations. Furthermore, using the MC in the ICaL formulations opens the

possibility of simulating subcellular conditions and checking the response of the whole cell

and, eventually, cardiac tissue. Using a multi-objective algorithm combined with Uncertainty

Quantification analysis may improve our first findings and generate more reliable and consis-

tent models.

Standard electrophysiological models, for example Ten Tusscher and Panfilov [23] and

Stewart et al. [24], are usually fitted to a particular set of experiments. The resulting parameter

values of such models may not be robust to changes due to a particular pathological condition.

To overcome this issue, here we fit a population of Markov Chain-based models that conve-

niently fit the original experiments within a given tolerance that reflects both model discrep-

ancy and biological variability. We have shown that the same population of solutions

encountered by the DE was robust enough to reproduce a new set of experimental data associ-

ated with the SCI protocol. One may consider the SCI protocol discussed above as one limit

condition and analyze intermediate situations as presented in [38].

Populations of models have been successfully used to represent inter-patient variability of

cardiac electrophysiological data [3]. However, it is worth highlighting that the goals and tools

used here are different ones. Our main goal is to acknowledge the existence of model discrep-

ancy and identifiability issues, and use higher tolerances after the fitting process to avoid fitting

parameters overly precisely, i.e., overfitting. Moreover, the tool used for this was a Differential

Evolution algorithm based on evolutionary processes to select a population of parameters that

satisfy our error tolerance. It is worth mentioning that considering a sample of best solutions

instead of selecting only the best single one does not define a consolidated optimization tech-

nique to suppress the overfitting issue. In our study, we did not apply any consolidated tech-

nique during the DE process. Instead, we simply selected more solutions than the best one

found by the algorithm; then we analyzed how these samples of solutions performed when we

applied in a different condition. It is the simplest and computationally cheapest way to avoid

one overfitted solution in the possible solutions. Probably, using a consolidated technique

such as Early-stopping or Expansion of the set of data [39] in the evolutionary algorithm pro-

cess will provide more reliable no-overfitted solutions.

One limitation of our method is related to the size of the population of solutions. The choice

of the population size was arbitrary but driven by the acknowledgment of model discrepancy

[34] and the seek of model generalization. Therefore, we include all solutions with errors below

a certain level within the biological variability found in the experiments, 10 − 20%.

For the study presented here, the derived calibrated population was able to replicate new

experimental data. The population was calibrated with control data and reproduced different

data from pathological conditions (SCI protocol). Nevertheless, the population’s average error

of some biomarkers (see Table 1) increased from 4–5%, for the control case (or training data),

to 20–30%, for the new data (test data). In the case this new level of error is unacceptable, the

solution would be to repeat the calibration process including the new data via multi-objective

optimization tools, such as those described in [35, 37], and further speedup up the process

with emulators as described in [40].
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Our method allows us to relate any animal model with a Markov chain of the LCC that can

then be fitted to new experimental data with the limitation that possible structural intrinsic dif-

ferences between the HH Gate-based, used to generate the training and test data, and the MC-

based description of the channels can be present. Nevertheless, this difference generates a

model discrepancy that is very likely to happen in real-life experimental data. Therefore, we

believe this structural difference between the models has positively contributed to the study

and further supports our conclusions. It is also important to clarify that the use of our method

to link experimental and whole-cell models is restricted to those models where the ICaL formu-

lation can be arranged as ICaL = Imax × O, where Imax is the maximum current conductance;

and O represents the portion of the opening fraction of the ionic channels. Besides the TP and

ST models, the method can be applied in the models described in [41, 42]. On the other hand,

we can not apply the proposed methods in the models presented in [38, 43].

Besides the possibility of directly relating new experimental calcium whole-cell data with a

Markov model of the LCC, our method also opens a new line of research where direct links

between whole-cell model data and subcellular mechanism can be investigated. It is important

to remember that calcium is driven by subcellular interactions at the micron level where LCC

and RyR form couplons with different cluster size and important heterogeneity [44]. This

means that each couplon will have different probabilistic openings. The relation between the

local parameters of the Markov-chain that could reproduce the couplon behavior and the

parameters of the single Markov-model found with whole-cell data can now be addressed.

Analyzing how a single set of parameters in the Markov-model affects the probabilities of

openings depending on cluster size should be the focus of future investigations to entangle

how the local release probabilities affect the global calcium cycling of the cell.

In summary, we developed novel Markov Chain models for the L-type Calcium current

that reproduced the electrophysiology of two human models for the ventricular and Purkinje

cells. In addition, instead of presenting a single model, we presented a population of models

based on different solutions found by a robust fitting process. These models could properly

reproduce very different protocol data. In particular, we show the importance of using a popu-

lation of models to obtain proper results when considering a second protocol that mimics the

condition of Calmodulin mutations associated with long QT syndrome. The use of popula-

tions of solutions was crucial for addressing model discrepancy, identifiability issues, and

avoiding fitting parameters overly precisely, i.e., overfitting.

Supporting information

S1 Fig. Threshold used for the selection of the individuals. Representation of the threshold

(red dashed line) considered to select the individuals to be part of the population P• for the

respective (A) TP Model, and (B) ST Model. For both models, we selected the best 300 from

the 5000 possibilities (or 6% of all the individuals). The worst individual selected to compose

the population PTP, xw
TP

, obtained Fðxw
TP
Þ ¼ 15:1%. The worst individual selected to compose

the population PST, xw
ST

, obtained Fðxw
ST
Þ ¼ 16%. The light red area represents the solutions in

the rather linear relation. The light blue area represents the solutions in the rather exponential

relation.

(TIF)

S1 Appendix. New Markov chain-based rates. This appendix introduces the new ICaL MC-

based equations and rates.

(PDF)
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S2 Appendix. Frequency rate robustness. This appendix presents the outputs of the MC-

based versions of the TP and ST models simulated under different pacing rates.
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S3 Appendix. Model robustness. This appendix presents an analysis of robustness the MC-

based versions of the TP and ST models.

(PDF)

S1 Data.
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38. O’Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action

potential: model formulation and experimental validation. PLoS Comput Biol. 2011; 7(5):e1002061.

https://doi.org/10.1371/journal.pcbi.1002061 PMID: 21637795

39. Ying, X. An overview of overfitting and its solutions. Journal Of Physics: Conference Series. 1168,

022022 (2019)

40. Novaes GM, Campos JO, Alvarez-Lacalle E, Muñoz SA, Rocha BM, dos Santos RW. Combining poly-

nomial chaos expansions and genetic algorithm for the coupling of electrophysiological models. In:

International Conference on Computational Science. Springer; 2019. p. 116–129.

41. Kurata Y., Hisatome I., Imanishi S. & Shibamoto T. Dynamical description of sinoatrial node pacemak-

ing: improved mathematical model for primary pacemaker cell. American Journal Of Physiology-Heart

And Circulatory Physiology. 283, H2074–H2101 (2002) https://doi.org/10.1152/ajpheart.00900.2001

PMID: 12384487

42. Hund T. & Rudy Y. Rate dependence and regulation of action potential and calcium transient in a canine

cardiac ventricular cell model. Circulation. 110, 3168–3174 (2004) https://doi.org/10.1161/01.CIR.

0000147231.69595.D3 PMID: 15505083

PLOS ONE Ensemble of parameters from a robust markov-based model

PLOS ONE | https://doi.org/10.1371/journal.pone.0266233 April 5, 2022 25 / 26

https://doi.org/10.1098/rsta.2008.0283
https://doi.org/10.1098/rsta.2008.0283
http://www.ncbi.nlm.nih.gov/pubmed/19414454
https://doi.org/10.1152/ajpheart.00794.2003
https://doi.org/10.1152/ajpheart.00794.2003
http://www.ncbi.nlm.nih.gov/pubmed/14656705
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764
http://www.ncbi.nlm.nih.gov/pubmed/12991237
https://doi.org/10.5281/zenodo.3738182
https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/10.1145/1089014.1089020
https://doi.org/10.1016/j.yjmcc.2014.04.022
http://www.ncbi.nlm.nih.gov/pubmed/24816216
https://doi.org/10.1002/cnm.2755
http://www.ncbi.nlm.nih.gov/pubmed/26475178
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1098/rsta.2019.0349
http://www.ncbi.nlm.nih.gov/pubmed/32448065
https://doi.org/10.1016/j.jocs.2021.101375
https://doi.org/10.1098/rsta.2019.0335
https://doi.org/10.1098/rsta.2019.0335
http://www.ncbi.nlm.nih.gov/pubmed/32448070
https://doi.org/10.1371/journal.pone.0225245
https://doi.org/10.1371/journal.pone.0225245
http://www.ncbi.nlm.nih.gov/pubmed/31730631
https://doi.org/10.1371/journal.pcbi.1002061
http://www.ncbi.nlm.nih.gov/pubmed/21637795
https://doi.org/10.1152/ajpheart.00900.2001
http://www.ncbi.nlm.nih.gov/pubmed/12384487
https://doi.org/10.1161/01.CIR.0000147231.69595.D3
https://doi.org/10.1161/01.CIR.0000147231.69595.D3
http://www.ncbi.nlm.nih.gov/pubmed/15505083
https://doi.org/10.1371/journal.pone.0266233


43. Shannon T., Wang F., Puglisi J., Weber C. & Bers D. A mathematical treatment of integrated Ca dynam-

ics within the ventricular myocyte. Biophysical Journal. 87, 3351–3371 (2004) https://doi.org/10.1529/

biophysj.104.047449 PMID: 15347581

44. Weiss J., Nivala M., Garfinkel A. & Qu Z. Alternans and arrhythmias: from cell to heart. Circulation

Research. 108, 98–112 (2011) https://doi.org/10.1161/CIRCRESAHA.110.223586 PMID: 21212392

PLOS ONE Ensemble of parameters from a robust markov-based model

PLOS ONE | https://doi.org/10.1371/journal.pone.0266233 April 5, 2022 26 / 26

https://doi.org/10.1529/biophysj.104.047449
https://doi.org/10.1529/biophysj.104.047449
http://www.ncbi.nlm.nih.gov/pubmed/15347581
https://doi.org/10.1161/CIRCRESAHA.110.223586
http://www.ncbi.nlm.nih.gov/pubmed/21212392
https://doi.org/10.1371/journal.pone.0266233

