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ABSTRACT Although it has rapidly decreased since
the early 2000s, fowl typhoid still occurs in commercial
layer chickens, causing a significant economic loss in
Korea. There is growing concern about the emergence of
new pathogenic strains of the causative agent, Salmo-
nella Gallinarum, which is able to overcome vaccine
immunity. It has also been suspected that the poultry red
mite,Dermanyssus gallinae, which is commonly found in
layer chicken farms, may be an important cause of the
recurrence of fowl typhoid in the farms. This study was
conducted to examine changes in the virulence of recent
isolates of S. Gallinarum obtained from layer farms and
estimate the potential of the disease transmission of D.
gallinae in the farms. Clinical and environmental samples
and mites collected from layer farms affected by fowl
typhoid between 2013 and 2018 were tested for S. Gal-
linarum. The isolates were characterized by genotypic
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analyses and in vitro virulence assays with chicken-
derived cell lines. Vaccine protection against recent
isolates was examined in the chickens. A total of 45 iso-
lates of S. Gallinarum were collected and there was no
evidence of changes in their virulence. It has also been
demonstrated that the S. Gallinarum 9R vaccine strain
widely used in Korea is still effective in controlling fowl
typhoid if the susceptibility of birds to the disease is not
increased by stress. SalmonellaGallinarum isolated from
the outer and inner parts of D. gallinae, environmental
dust, and dead birds of the same farm showed the same or
closely related genotypes. Consequently, the present
study indicated that the horizontal transmission and
environmental persistence of S. Gallinarum and the
increased disease susceptibility of chickens in layer farms
could be mediated by D. gallinae, causing persistent
outbreaks of fowl typhoid.
Key words: Dermanyssus gallinae, Salm
onella, Gallinarum, fowl typhoid, layer
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INTRODUCTION

Fowl typhoid is a systemic disease in avian species,
primarily chickens and turkeys, caused by Salmonella
Gallinarum. The disease is of considerable economic sig-
nificance in many countries of Central and South Amer-
ica, Africa, and Asia including Korea (Shivaprasad,
2000; Jones et al., 2001). Fowl typhoid can be trans-
mitted not only horizontally, but also through eggs by
transovarial infections (Shivaprasad and Barrow,
2013). Most of all, infected birds (reactors and carriers)
are the most important means of the persistence and
spread of the organism (Shivaprasad and Barrow,
2013). Effective control measures for the disease are
accompanied by periodic monitoring of flocks and the
elimination of infected birds (Shivaprasad and Barrow,
2013). However, in many countries, vaccines and antimi-
crobial drugs are commonly used to prevent and treat
commercial layer chickens (Barrow and Freitas Neto,
2011).

Live vaccines based on attenuated S. Gallinarum
strains (i.e., SG 9R) were introduced in Korea to control
fowl typhoid in commercial layer chickens in the early
2000s (Kwon et al., 2010). The use of live vaccines,
together with a nationwide control policy for the eradi-
cation of the disease in breeder chicken flocks, has
rapidly decreased the incidence of the disease in Korea
(Kwon et al., 2010; Kang et al., 2012a). Nevertheless,
the disease still occurs in commercial layers causing sig-
nificant economic loss (Kang et al., 2012a). The high sus-
ceptibility of brown layers occupying most of the layer
population in Korea may have made the disease difficult
to control (Kwon et al., 2010). However, outbreaks of the
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disease in vaccinated chicken flocks raised concerns as to
whether new pathogenic strains of S. Gallinarum have
emerged to overcome the vaccine immunity.

In addition, the poultry red mite Dermanyssus galli-
nae is a serious problem in layer chickens worldwide
(Sparagano et al., 2014; George et al., 2015). This
blood-feeding ectoparasite has been considered to be a
potential vector implicated in the transmission of several
poultry diseases, including fowl typhoid (Valiente Moro
et al., 2009; Sparagano et al., 2014; Pugliese et al., 2019).
Recent reports showed that the rate of infested farms
reached more than 80% in some countries, such as the
Netherlands, Poland, China, and Japan in Europe and
Asia (Sparagano et al., 2014; George et al., 2015). Der-
manyssus gallinae is commonly found in layer farms in
Korea, as well, and has been suspected to be an impor-
tant cause of the recurrence of fowl typhoid in farms pre-
viously affected by the disease. Therefore, this study was
conducted to examine any changes associated with viru-
lence in the recent isolates of S. Gallinarum obtained
from layer farms and estimate the potential of the dis-
ease transmission mediated by D. gallinae in the farms.
MATERIALS AND METHODS

Samples and Bacterial Isolation

SalmonellaGallinarum was isolated from chicken clin-
ical samples submitted to the Animal and Plant Quaran-
tine Agency (APQA) in South Korea for diagnosis
between 2013 and 2018. The clinical (n 5 8) and
environmental (dust) (n 5 10) samples and D. gallinae
(n 5 10) were also collected from 20 layer farms affected
by fowl typhoid between 2017 and 2018 and were tested
for S. Gallinarum. All flocks surveyed were housed in
multitier cage systems and were infested with D. galli-
nae. Fowl typhoid was detected in the flocks within
the last 3 yr and the current flocks from which samples
were collected had been vaccinated with the SG 9R at
least twice.

For bacterial isolation, liver or spleen samples were
aseptically swabbed and cultured in tryptic soy broth
(BD Biosciences, Sparks, MD) at 37�C for 24 h. The cul-
ture was streaked onto MacConkey agar (BD Biosci-
ences) and Rambach agar (Merck, Darmstadt,
Germany) and incubated at 37�C for 24 h. Dust samples
were pre-enriched in buffered peptone water (BD Biosci-
ences) (1:10 ratio) at 37�C for 18 h and transferred to
tetrathionate broth (BD Biosciences) and Rappaport-
Vassiliadis broth (Merck). They were incubated at
42�C for 24–48 h. Then, the cultures were streaked
onto MacConkey agar and Rambach agar and incubated
at 37�C for 24 h. D. gallinae was sampled by collecting
the mite-containing dust from the cage environment in
plastic containers, and approximately 100 specimens
from each pooled sample were cleaned with sterile water,
and disinfected with 4% formaldehyde solution for 7 min
with agitation, and washed in sterile water as described
previously (Zeman et al., 1982). Disinfected and nondi-
sinfected specimens (approximately 100 bodies) from
the same pooled sample were ground in sterile mortars
and cultured in tetrathionate broth and Rappaport-
Vassiliadis broth at 42�C for 24–48 h. The cultures
were streaked onto MacConkey agar and Rambach
agar and were incubated at 37�C for 24 h.
Subsequently, suspected colonies were selected from

the plates and were subjected to conventional biochem-
ical tests (Ewing, 1986) or VITEK 2 (bioMerieux Inc.,
Hazelwood, MO) analysis to identify Salmonella. The
serotype and biotype of the isolates were determined by
the APQA following conventional methods (Ewing,
1986; Grimont andWeill, 2007) and polymerase chain re-
action using primers SG-L (50-GATCTGCTGCCAGCT-
CAA-30), SG-R (50-GCGCCCTTT-TCAAAACATA-30),
SGP-L (50-CGGTGTACTGCCCGCTAT-30), SGP-R
(50-CTGGGCATTGACGCAAA-30), 9R-L (50-CTTTA
CGGGCAAACCACAGT-30), and 9R-R (50-TGAGATG
GAAAAAGAGCAGCA-30) as described previously
(Kang et al., 2012b). Only one isolate per source per
case was included in this study.
Genotypic Analysis

Pulsed-field gel electrophoresis (PFGE) was per-
formed using the restriction endonuclease XbaI as
described previously (Ribot et al., 2006). The conditions
were as follows: separation in 1% SeaKem Gold agarose
gel (FMC Bioproducts, Rockland, ME) in 0.5 ! TBE
buffer (Novex, Carlsbad, CA) at 14�C and 6 V/cm for
18 h, with switch times from 2.2 to 63.8 s on a CHEF-
Mapper (Bio-Rad Laboratories, Hercules, CA). The gel
images were analyzed using Bionumerics software
(Applied Maths, Sint-Martens-Latem, Belgium). A
dendrogram was generated from the Dice coefficients of
similarity by the unweighted pair group method using
average linkages.
Multilocus variable-number tandem-repeat analysis

(MLVA) was performed with 4 loci (SGTR1 to
SGTR4) as described previously (Kang et al., 2011).
The MLVA profiles were determined using character
data based on the number of repeated units and a mini-
mum spanning tree was constructed using Bionumerics
software.
In Vitro Virulence Assays

The virulence of the isolates was tested using infection
experiments with the chicken hepatocellular carcinoma
epithelial cell line (LMH) and the chicken macrophage
cell line (HD11) as described previously with some mod-
ifications (Barrow and Lovell, 1989; Chadfield et al.,
2003). For the host cell invasion assay, LMH cells were
seeded in a 24-well tissue culture plate coated with
0.1% gelatin in Waymouth’s MB 752/1 medium (Life
Technologies, Carlsbad, CA) supplemented with 10%
fetal bovine serum (FBS) at 105 cells/well and grown
overnight at 37�C in a 5% CO2 atmosphere. The cells
were inoculated with bacteria at a multiplicity of infec-
tion of 10. The plates, including the bacteria and cells,
were incubated for 2 h at 37�C in a 5% CO2 atmosphere



DERMANYSSUS GALLINAE & FOWL TYPHOID IN LAYERS 6535
and then each well was washed three times with
phosphate-buffered saline (PBS). Waymouth’s medium
with 10% FBS-containing amikacin (100 mg/mL) was
added to the wells and the cells were incubated for
another 1.5 h at 37�C with 5% CO2 to kill the extracel-
lular bacteria. Then, each well was washed three times
with PBS and the cells were lysed with 0.1% Triton
X-100 in PBS. The released bacteria were quantified
by plating on LB agar (Life Technologies) to determine
the percentage invasion (% survival) relative to the inoc-
ulated bacteria. The data were analyzed based on 2 inde-
pendent experiments.
For the survival assay in the HD11 cell line, HD11 cells

were seeded in a 24-well tissue culture plate with Iscove’s
Modified Dulbecco’s Medium (Sigma Aldrich, MO) con-
taining 10% FBS and 150 mmol L-glutamine at 105 cells/
well and grown overnight at 41�C in a 5% CO2 atmo-
sphere. The log-phase bacterial culture was opsonized
with 10% chicken serum at 37�C for 30 min. The opson-
ized culture was added to the HD11 cells at a multiplic-
ity of infection of 10. The bacteria were incubated with
cells for 1 h, and then the medium was replaced with
Iscove’s Modified Dulbecco’s Medium with 10% FBS
and 150 mmol L-glutamine containing amikacin
(100 mg/mL) and incubated for 1 h to kill the extracel-
lular bacteria. The cells were then washed three times
with antibiotic-free medium. The initial intracellular
bacterial count (1-h survival) was made by lysing the
cells with 0.1% Triton X-100 in PBS and then plating
the lysate on LB agar. To determine the persistence of
bacteria, the cells were maintained in medium contain-
ing amikacin (10 mg/mL). At 4 and 24 h after infection,
the monolayers were washed three times with PBS and
the cells were lysed with 0.1% Triton X-100 in PBS.
The released bacteria were quantified to determine the
percentage recovery (% survival) relative to the inocu-
lated bacteria. The data were analyzed based on three
independent experiments.
Assessment of Vaccine Protection

Hy-Line Brown chickens were purchased from a farm
known to be free from Salmonella. The chickens were
maintained in wire cages and verified as Salmonella-
free by bacterial culture and serology (serum plate agglu-
tination and enzyme-linked immunosorbent assay). For
examining the protective effect of vaccination against
the recent isolates of S. Gallinarum, the chickens were
divided into 10 groups of 10 birds each. All birds were
vaccinated with S. Gallinarum live vaccine (Nobilis SG
9R; MSD Animal Health, Boxmeer, the Netherlands)
at 4 wk old. Five groups were orally administered corti-
costerone (20 mg/L) every day starting at 4 wk old to
establish a stress-induced depression model
(Post et al., 2003). Then, each set of 4 groups with or
without corticosterone administration was orally chal-
lenged with each of three recent isolates (N17SG007,
N17SG014, and N18SG003), which were different in
their genotypes and geographic origins, and one known
virulent strain (SG06Q110) (Kang et al., 2012a) at a
dose of 108 cfu/chicken at 7 wk old. All chickens of 8
challenged groups and 2 control groups were euthanized
at 9 wk old. At the postmortem examination, the liver,
spleen, and cecum, and cloacal swabs were collected
from each dead bird and the other live birds euthanized
14 d after the challenge. Tissue samples of the liver and
spleen were cultured as described above, and the cecal
contents and cloacal swabs were cultured as described
for environmental samples above.

Statistical Analysis

Differences in mortality and the bacterial isolation
rates between the groups of chickens were assessed by
the chi-square test. The percentage survival data were
analyzed using the Student t test. The results with
P , 0.05 were considered to be statistically significant.

Ethics Statement

All procedures involving animals were performed with
the permission of the Animal Ethics Committee in the
APQA (permission number 2018-972), Korea.
RESULTS

Isolation of S. Gallinarum From Chickens
and D. Gallinae

A total of 45 isolates of S. Gallinarum were obtained
from the clinical and environmental samples and D. gal-
linae from chicken farms affected by fowl typhoid in this
study. Twenty-seven of the isolates were obtained from
the clinical samples (the liver and spleen) of the chicken
flocks (14 layer, 11 broiler, and 2 broiler breeder flocks)
diagnosed with fowl typhoid by the APQA between
2013 and 2018. In addition, 18 of the isolates were
collected from 4 liver and three spleen samples, one
house dust sample, and five D. gallinae samples (both
outer and inner parts of 4 samples and the outer part
of one sample) from 20 layer farms where fowl typhoid
recurred between 2017 and 2018 in seven provinces
(Gyeonggi, Chungbuk, Chungnam, Gyeongbuk,
Gyeongnam, Jeonbuk, and Jeju) of Korea (Table 1).

Genotypic Characteristics of S. Gallinarum
Isolates

Forty-five isolates of S. Gallinarum were genotyped
using PFGE and MLVA. Pulsed-field gel electrophoresis
analysis showed a total of 17 patterns, which were group-
ed into six groups based on 85% similarity (Figure 1). In
particular, isolates from the inside (internal) or surface
(external) of D. gallinae (N17SG004 and N17SG005)
based on external disinfection, dust (N17SG006), and
the internal organs (liver and spleen) of dead chickens
(N17SG007 and N17SG008) derived from the same
farm were grouped together into a small group. In the
MLVA analysis, a total of 21 profiles were identified
(Figure 2). In addition, most isolates from D. gallinae



Table 1. Distribution of Salmonella Gallinarum in clinical and environmental samples and
Dermanyssus gallinae collected from layer chicken farms (n 5 20) affected by fowl typhoid
between 2017 and 2018.

Province Farm Sample Treatment

Bacterial isolation1

S. Gallinarum Other Salmonella

Gyeonggi 17F03 D. gallinae External disinfection 2 2
None 2 2

17F04 Dust None 2 2
17F08 Dust None 2 2
17F11 D. gallinae External disinfection 1 2

None 1 2
Dust None 2 1
Liver None 1 2
Spleen None 1 2

17F14 Spleen None 1 2
Jeonbuk 17F05 Dust None 2 2

17F06 Dust None 2 2
17F07 Dust None 2 2
18F04 Dust None 2 1
18F06 D. gallinae External disinfection 2 –

None 2 2
Gyeongnam 17F01 D. gallinae External disinfection 2 2

None 2 2
Liver None 2 2

17F09 D. gallinae External disinfection 1 2
None 1 2

Dust None 2 2
Chungnam 17F02 D. gallinae External disinfection 2 2

None 2 2
Liver None 1 2

17F10 D. gallinae External disinfection 1 2
None 1 2

Liver None 1 2
Spleen None 1 2
Dust None 1 2

18F03 Liver None 2 2
Chungbuk 17F13 D. gallinae External disinfection 1 2

None 1 2
Dust None 2 2

17F15 Spleen None 1 2
18F01 D. gallinae External disinfection 2 2

None 1 2
Jeju 17F12 Liver None 1 2

Spleen None 1 2
Gyeongbuk 18F02 D. gallinae External disinfection 2 2

None 2 2

1‘1’ 5 positive; ‘2’ 5 negative.
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with and without external disinfection, dust, and the in-
ternal organs of dead chickens derived from the same
farm (17F10, 17F11) were the same type, although
some isolates from the same farm were different but
closely related types (Figure 2).

In Vitro Virulence of S. Gallinarum Isolates

Fifteen representative isolates were selected based on
their genotypes, sources, and temporal and geographic
origins (Figure 1) and tested for their virulence using
in vitro models with LMH and HD11 cells. The isolates
were able to invade the LMH cells with variation, but
there was no significant difference in invasion between
the isolates from different sources and origins
(Figure 3). In addition, the isolates inoculated into the
HD11 cells were examined for their survival rate period-
ically. However, no significant difference was found
between the isolates (Figure 4).
Vaccine Protection Against Recent Isolates
of S. Gallinarum

Of the vaccinated groups challenged with three recent
isolates (N17SG007, N17SG014, and N18SG003), which
belonged to different genotypic groups, and the known
virulent strain (SG06Q110), the group challenged with
SG06Q110 showed 10% (1/10) mortality until 14 d after
the challenge (Table 2). No mortality was observed in
the other vaccinated groups, indicating that no signifi-
cant increase in virulence was observed in recent isolates
compared with the existing pathogenic strain (Table 2).
Of the vaccinated and stressed (corticosterone-treated)
groups challenged with the same isolates as above, the
mortalities were 20%, 40%, and 30% in the three groups
challenged with N17SG007, N17SG014, and SG06Q110,
respectively. Isolation of the challenge strains from the
liver, spleen, cecum, and cloaca of the dead and live
ducks was performed on the day of death and 14 d after
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Figure 1. Pulsed-field gel electrophoresis patterns of 45 Salmonella Gallinarum isolates from chickens, Dermanyssus gallinae, and environmental
samples. Pulsed-field gel electrophoresis analysis shows a total of 17 patterns, with six groups based on 85% similarity. Isolates from the inside (inter-
nal) or outside (external) of D. gallinae (N17SG004 and N17SG005), dust (N17SG006), and the internal organs (liver and spleen) of dead chickens
(N17SG007 and N17SG008) from the same farm belonged to a single group.
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the challenge. The isolation rates of the challenge strains
in the liver, spleen, and cecal contents were not signifi-
cantly different between the groups and between the
vaccinated groups and the vaccinated and stressed
groups (Table 2). The isolation rates of the challenge
strains from the cloacal swabs were significantly lower
in the vaccinated groups than in the vaccinated and
stressed groups (P , 0.05) (Table 2).
DISCUSSION

The present study characterized S. Gallinarum iso-
lated from various samples collected from recent cases
of fowl typhoid. The isolates showed a variety of geno-
typic groups based on PFGE patterns and MLVA pro-
files, indicating the occurrence of multiple clones in
chicken flocks. The S. Gallinarum isolates originating
from the same farm were the same or closely related ge-
notypes, regardless of the sample types. In particular, it
was found that all farms sampled between 2017 and 2018
were infested with D. gallinae.
The impact of D. gallinae has increased in Korea over

the past decades because the use of synthetic acaricides
in farms has been restricted due to the increase in eco-
friendly farms certified by the government since the
2000s. In addition, climate warming may have facilitated
the proliferation of D. gallinae in farms as described in
many other countries (Skuce et al., 2013; Sigognault
Flochlay et al., 2017). It has been shown that D. gallinae
can act as a mechanical or biological vector by carrying
and transmitting a variety of pathogens on poultry pre-
mises (Valiente Moro et al., 2007, 2009; Huong et al.,
2014). Dermanyssus gallinae was also reported to act
as a reservoir of S. Gallinarum and was implicated in
the persistence of the pathogen in farms (Zeman et al.,
1982; Pugliese et al., 2019). In the present study, S. Gal-
linarum was isolated from the outside and inside of D.
gallinae, as well as from environmental dust, and shared
common genotypes with clinical isolates from dead birds
of a farm. This finding indicates that D. gallinae is
involved in the transmission of S. Gallinarum within
farms mechanically and potentially biologically, in addi-
tion to its role as a reservoir of S. Gallinarum. This is
consistent with previous reports and strongly supports
that D. gallinae infestation can be an important factor
resulting in persistent outbreaks of fowl typhoid in layer
chicken flocks.

Recent isolates of S. Gallinarum representing geno-
types, sources, and temporal and geographic origins
were tested for their virulence in in vitro models using
chicken hepatocytes and macrophages in this study.
The invasion of host cells and survival in macrophages



Figure 2. Genotypic relationships between 45 Salmonella Gallinarum isolates from chickens, Dermanyssus gallinae, and environmental samples
based on MLVA profiles. A minimum spanning tree was constructed using BioNumerics software (Applied Maths). A total of 21 allelic profiles
were identified and their relationships are presented in the tree. Each circle denotes an MLVA type and its color presents the number of isolates
with a particular MLVA type. The ovals include MLVA types of isolates from each farm indicated next to them. MLVA, multilocus variable-
number tandem-repeat analysis.

LEE ET AL.6538
are essential features in the virulence of Salmonella in the
host (Chadfield et al., 2003; He et al., 2012). The in vitro
virulence assays with chicken cell lines in this study did
not show any increase in virulence distinguishing recent
isolates of S. Gallinarum regardless of sources and tem-
poral and geographic origins.
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Dermanyssus gallinae sucks the blood of chickens and
causes stress, such as skin irritations and restlessness,
anemia, and death in the affected birds, as well as facil-
itating the potential spread of diseases (Shivaprasad and
Barrow, 2013; George et al., 2015). Consequently, infes-
tation with D. gallinae can cause significant economic
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Figure 4. Intracellular survival of 15 recent isolates of SalmonellaGallinarum in HD11 cells. The bars represent the percentage survival (the ratio
(%) of intracellular bacteria to inoculated bacteria) that was determined based on three independent experiments, and the error bars indicate the SEs.
The isolates inoculated into the HD11 cells were examined for their survival rate at 4 and 24 h after internalization. However, no significant difference
was found between the isolates of different genotypes, sources, and temporal and geographic origins at the indicated time points.
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losses in the chicken industry because of a poor feed con-
version ratio, a drop in egg production, a higher suscep-
tibility to diseases, and an increased mortality rate
(Sigognault Flochlay et al., 2017; Sleeckx et al., 2019).
All layer chicken flocks, which were recently confirmed
to be affected by fowl typhoid in this study, were infested
with D. gallinae. Therefore, the constant stress posed by
these infestations may have increased the susceptibility
of the flocks to fowl typhoid. In the present study, we
tried to examine the effect of stress on the infection
with S. Gallinarum in vaccinated chickens using a
chicken stress model produced by the administration of
corticosterone as described previously (Post et al.,
2003). The chickens were vaccinated with a live S. Gal-
linarum vaccine (SG 9R), which was most commonly
used in Korea, and experimentally challenged by recent
isolates of S. Gallinarum. In addition, a duplicate vacci-
nated group was continuously stressed by the stress-
related hormone corticosterone and was challenged in
the same way. As expected, the stressed groups showed
higher mortality and bacterial isolation rates compared
Table 2. Effect of immune stress on vaccine-induced prote

Group1 Strain Stress (Corticosterone)2 Mortality

1 N17SG007 2 0/10 (0)
2 N17SG007 1 2/10 (20
3 N17SG014 2 0/10 (0)
4 N17SG014 1 4/10(40
5 N18SG003 2 0/10 (0)
6 N18SG003 1 0/10 (0)
7 SG06Q110 2 1/10 (10
8 SG06Q110 1 3/10 (30
9 None 2 0/10 (0)
10 None 1 0/10 (0)

1Vaccinated with SG9R (MSD) at 4 wk old and then inoculat
2Corticosterone (20 mg/L): orally administered every day sta
3P , 0.05 (normal vs. stressed).
with the unstressed groups, indicating the increased sus-
ceptibility to S. Gallinarum infection in stressed
chickens. In this stressed chicken model, there were no
significant differences in virulence between the recent
isolates and an old control isolate of S. Gallinarum
within the vaccinated groups and the vaccinated and
stressed groups. This finding also supports the lack of ev-
idence on the emergence of new pathogenic S. Gallina-
rum strains with increased virulence. Instead, chickens
can be more susceptible to fowl typhoid by stress
induced by D. gallinae infestations, although they were
appropriately vaccinated against the disease.

Concern about the impact of D. gallinae infestations
has been growing in many countries, including Korea.
Conventional cage housing systems for layer chicken
flocks favor the proliferation and infestation of D. galli-
nae (Hamidi et al., 2011; Sigognault Flochlay et al.,
2017). In addition, the climate is changing rapidly as a
result of global warming, providing an environment
more favorable for the proliferation of D. gallinae
(Skuce et al., 2013). Restriction on the use of synthetic
ction against fowl typhoid in chickens.

(%)

Recovery of Salmonella Gallinarum (%)

Liver Spleen Cecum Cloaca3

6/10 (60) 9/10 (90) 6/10 (60) 0/10 (0)
) 6/10 (60) 8/10 (80) 9/10 (90) 2/10 (20)

2/10 (20) 8/10 (80) 3/10 (30) 0/10 (0)
) 8/10 (80) 10/10 (100) 8/10 (80) 4/10 (40)

5/10 (50) 9/10 (90) 6/10 (60) 0/10 (0)
4/10 (40) 4/10 (40) 6/10 (60) 1/10 (10)

) 6/10 (60) 9/10 (90) 4/10 (40) 1/10 (10)
) 7/10 (70) 9/10 (90) 7/10 (70) 3/10 (30)

0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0)
0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0)

ed at 7 wk old (108 cfu/chicken); euthanized at 9 wk old.
rting at 4 wk old.
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acaricides has led to the increased application of natural
products, such as plant-derived extracts and essential
oils (Maurer et al., 2009; Lee et al., 2019). A variety of
other control strategies, including vaccination and bio-
logical and physical control measures, have also been
described (Maurer et al., 2009; Sparagano et al., 2014).
However, it is known that no single treatment method
is sufficient for controlling D. gallinae. The use of inte-
grated pest management, which is a combined process
including the prevention, monitoring, and control of
D. gallinae, and a high level of biosecurity are considered
to be the best approach to solve the pest problem
(Sparagano et al., 2014; Sylejmani et al., 2016). Such
successful control and management measures for D. gal-
linae are necessary to prevent diseases including fowl
typhoid on infested farms.

As mentioned above, the findings of the present study
strongly support that the recurrent and persistent out-
breaks of fowl typhoid can be mediated by D. gallinae
in the infested farms. Nevertheless, a previous study
showed that the vaccination of chicks prevented the
recurrence of fowl typhoid although theD. gallinae infes-
tation persisted (Pugliese et al., 2019). They suspected
that the high level of antibody to S. Gallinarum in vacci-
nated chickens might have impaired the circulation of
the pathogen and reduced its contamination level in
D. gallinae (Pugliese et al., 2019). Indeed, there are
some differences in the properties of live S. Gallinarum
vaccines available worldwide. In Korea, the live vaccine
strain, SG 9R, has been most commonly used to control
fowl typhoid in commercial layer chickens, although the
S. Gallinarum SR2-N6 vaccine strain has also been used
(Lee et al., 2007; Kang et al., 2012b). All layer chicken
farms surveyed in this study were also vaccinated with
SG 9R. The 2 vaccine strains have altered lipopolysac-
charide, resulting in semi-rough colony morphology
and a low-level serological response (Silva et al., 1981;
Cho et al., 2015). The low level of antibody in the
chickens vaccinated with lipopolysaccharide-defective
vaccine strains may have some limitations in preventing
the circulation of S. Gallinarum in D. gallinae and the
exposure of birds to the mite-harboring pathogen,
although this needs further confirmation.

The persistent outbreaks of fowl typhoid, even in vacci-
nated chicken flocks, are a significant challenge and pose a
substantial economic burden in the chicken industry. The
present study indicated that the horizontal transmission
and environmental persistence of S. Gallinarum in layer
farms could be mediated by D. gallinae. This study also
demonstrated that the stress induced byD. gallinae infes-
tation might negatively affect the protective efficacy of
S. Gallinarum vaccines. Overall the findings suggest
that widespread infestations of D. gallinae in layer farms
can cause persistent outbreaks of fowl typhoid, even in
vaccinated birds. Effective monitoring and control mea-
sures for D. gallinae should be established to prevent
and eliminate the contamination on farms, thus prevent-
ing fowl typhoid. In addition, specific studies are needed
to confirm the antibody-mediated reduction of S. Gallina-
rum contamination in D. gallinae and estimate the
protective efficacy of different types or combinations of
S. Gallinarum vaccines in chicken flocks infested with
D. gallinae.
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