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A B S T R A C T   

Background: Laryngeal squamous cell carcinoma (LSCC) is a kind of common and aggressive 
tumor with high mortality. The application of molecular biomarkers is useful for the early 
diagnosis and treatment of LSCC. 
Methods: The expression and clinical information were obtained from The Cancer Genome Atlas 
(TCGA) database. Principal components analysis (PCA) was used to discriminate between LSCC 
and normal samples. The hub genes were screened out through univariate and multivariate cox 
analyses. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curve was used to 
validate the predictive performance. The single sample gene set enrichment analysis (ssGSEA), 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used 
to determine the enrichment function. Protein-Protein Interaction (PPI) network was constructed 
in STRING. The immune analysis was performed by ESTIMATE, IPS and xCELL. The drug 
sensitivity was identified with GSCA database. 
Results: We identified that 47 extracellular matrix (ECM) genes were differentially expressed in 
LSCC compared with normal group. Univariate and multivariate cox analysis determined that 
leucine-rich glioma-inactivated 4 (LGI4), matrilin 4 (MATN4), microfibrillar-associated protein 2 
(MFAP2) and fibrinogen like 2 (FGL2) were closely related to the disease free survival (DSS) of 
LSCC. ROC curve determined that the risk model has a good predictive performance. PPI network 
showed the top 100 genes with high correlation of hub genes. The ssGSEA, GO and KEGG 
enrichment analyses determined that immune response was significantly involved in the devel-
opment of LSCC. Immune infiltration analysis showed that most immune cells and immune 
checkpoints were inhibited in high risk score group. Drug sensitivity analysis showed that 
MATN4, FGL2 and LGI4 were negatively related to various drugs, while MFAP2 was positively 
related to many drugs. 
Conclusion: We established a risk model constructed with four ECM-related genes, which could 
effectively predict the prognosis of LSCC.   

1. Introduction 

Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor all over the world, and it has a high incidence 
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among all cancers ranked sixth [1]. Laryngeal squamous cell carcinoma (LSCC) is a common and aggressive tumor of HNSC and derives 
from the laryngeal mucosal epithelium, which has high mortality [2–4]. At present, the treatments extensively applied to LSCC include 
surgical resection, chemotherapy and radiotherapy [5]. Although these methods could be controlled with high probability, patients 
with LSCC are usually diagnosed in an advanced stage [6,7]. Meanwhile, immunotherapy is becoming a promising treatment for 
numerous cancers including LSCC [8]. Thus, identifying novel biomarkers is vital for the diagnosis and treatment of LSCC. 

Extracellular matrix (ECM) consists of fibrillar and structural proteins, proteoglycans, integrins and proteases, and it is a 
noncellular component of the tumor microenvironment (TME) [9]. Besides, ECM plays a key role in maintaining organizational 
structure and function [10]. Moreover, more and more studies claimed that ECM was involved in the development of tumors [11]. On 
the one hand, the abundance changes of ECM components frequently result in the alteration of tissue density and stiffness, which 
affects the migration of tumor cells through regulating mechanosensing and angiogenesis [12,13]. On the other hand, ECM is a re-
pository for growth factors and cytokines which could promote the development of tumor cells, and the degradation of ECM may cause 
the release of growth factors and cytokines [14]. It indicates that the degradation of ECM generally accompanies the growth and 
development of tumors [15,16]. Additionally, ECM is also involved in the regulation of signal pathways through interactions between 
numerous components and receptors [17,18]. It has been proven that the signal pathways induced by ECM stiffening are related to the 
growth and metastasis of tumors through activation of angiogenesis, promotion of immune evasion and alteration of drug resistance 
[19]. As the function of ECM was identified in drug sensitivity, ECM related genes could be a valuable target for clinical treatment [20]. 
Recently, Zhang et al. identified that the downregulated expression of matrix metallopeptidase 1 (MMP1), a core gene of ECM, led to 
the inhibition of cell proliferation and migration in HNSCC, especially in hypopharyngeal cancer (35426219). Moreover, some pre-
vious studies claimed that the ECM-related risk model could effectively predict the prognosis in non-small cell lung carcinoma and 
bladder cancer (36404344, 35450397). However, there were few studies about the biological significance of ECM genes in LSCC, and 
the predictive value of ECM in LSCC was not reported. 

Thus, in this study, we first tried to establish a prognosis model based on ECM-core genes. After we determined the prognosis value 
of this model, we explored the potential internal correlation of risk score in the aspect of signal pathways, immune response. 
Furthermore, we further analyzed the drug sensitivity of hub genes, which could improve the theoretical basis for the treatment of 
LSCC. 

2. Methods 

2.1. Data collection 

The mRNA expression profile and corresponding clinical information of LSCC were collected from The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov) and GEO (https://www.ncbi.nlm.nih.gov/geo/) databases. Besides, ECM genes were deter-
mined in Matrisome Project (http://matrisomeproject.mit.edu/ecm-atlas/), and 239 ECM core genes were used for the further ex-
periments. The genes differentially expressed in different groups were determined by R package limma (version 3.40.6). 

2.2. Principal components analysis (PCA) 

The R software package stats (version 4.2.2) was used for the analysis of PCA. In detail, we first carried out z-score on the expression 
profile, and then the prcomp function was used for dimensionality reduction analysis to obtain the dimensionality reduced matrix. 

2.3. The identification of differentially expressed genes (DEGs) 

To identify the differentially expressed ECM core genes in LSCC in comparison with the normal group, the t. test function was 
performed with the R software, and the intersection of these genes in TCGA and GEO datasets was screened out. 

2.4. The construction and validation of the risk model 

At first, the hub genes were determined by univariate and multivariate cox analysis in SPSS 25. The univariate cox analysis was 
performed to identify the prognosis genes with p < 0.05. Then, these genes were further screened out through multivariate cox analysis 
with p < 0.05 Next, we constructed the risk model based on the regression coefficient of multivariate cox analysis. Then, we calculated 
the risk score according to the gene expression and corresponding regression coefficient. Furthermore, R package pROC (version 
1.17.0.1) was used to calculate the area under the curve (AUC), and the roc function of pROC was used to validate the predictive 
efficiency of the risk model at 1-, 3- and 5-year survival. 

2.5. Survival analysis 

The Kaplan–Meier (K-M) curve with hazard ratio (HR) and 95% confidence interval (CI) was used to evaluate the prognosis be-
tween two risk groups. Firstly, we calculated the optimal truncation value of risk score using the maxstat of the R package, and the 
cases of LSCC were divided into two groups according to the value. Then we assessed the difference between the two groups in the 
prognosis using the survfit function of the R package. 
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2.6. Single sample gene set enrichment analysis (ssGSEA) 

The c2. cp.kegg.v7.4. symbols.gmt subset was obtained from the Molecular Signatures database. The expression and phenotype 
were integrated and loaded in R software. The R package GSVA was applied to calculate the enrichment score of every sample. 

2.7. Protein-protein interaction (PPI) network 

The PPI network of hub genes was established in STRING. The cut-off value of the interaction score was 0.4. Besides, the number of 
1st shell and 2nd shell was no more than 50 interactors. 

2.8. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis 

The related genes determined by the PPI network were used for the enrichment analysis. The gene set c2. cp.kegg.v7.4. symbols and 
c5. go.v7.4. symbols were respectively used for the KEGG and GO analysis using the R package clusterProfiler (version 3.14.3). The 
minimum gene was set to 5 and the maximum gene was set to 5000. The p-value<0.05 was considered statistically significant. The 
results were visualized by R package GOplot. 

Fig. 1. The identification of the ECM core gene. (A) The expression of ECM core genes in LSCC compared with normal. (B) The normal and tumor 
samples were distinguished by PCA according to ECM core genes. (C) Venn diagram of differentially expressed ECM core genes in the TCGA, 
GSE127165 and GSE142083 datasets. 
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2.9. Immune analysis 

The R package IOBR was performed to calculate the immune enrichment score. The algorithm of ESTIMATE was used to calculate 
the immune and stromal scores of every sample. IPS was performed to assess the enrichment scores after the immune genes were 
divided into four types, namely effector cells (EC), suppressor cells (SC), major histocompatibility complex (MHC) molecules, and 
checkpoint (CP). Additionally, the xCELL algorithm was applied to evaluate the enrichment score of every sample in 64 cells. 

2.10. Drug sensitivity 

Gene Set Cancer Analysis (GSCA) is an integrated platform for the analysis of gene expression, immune response, mutation and 
drug sensitivity. We assessed the relationship between gene expressions and drug sensitivity in GSCA according to the Genomics of 
Drug Sensitivity in Cancer (GDSC) and The Cancer Therapeutics Response Portal (CTRP) database. 

2.11. Statistics 

In this study, all data were analyzed in SPSS 25. The independent sample t-test was used to calculate the difference between the two 
groups, while one-way analysis of variance (ANOVA) was used to determine the difference among multiple groups followed by post- 
hoc comparisons. The survival difference between the 2 groups was evaluated by the log-rank test, and the correlation analysis was 
identified by the Pearson test. p < 0.05 was considered a significant difference. 

3. Results 

3.1. The identification of DEGs related to ECM 

As shown in Fig. 1A, the expression levels of 39 ECM core genes were notably increased, while 17 genes expression were notably 
decreased in LSCC compared with normal tissues according to the TCGA dataset. Additionally, the results of PCA showed that the ECM 
core genes could differentiate LSCC from normal tissues, which suggested that ECM core genes play a vital role in the development of 
LSCC. Besides, the ECM core genes differentially expressed in GSE127165 and GSE142083 were determined by limma with p < 0.05. 
Then, 47 common ECM core gene set was derived with the use of Venn diagram based on the intersection of TCGA, GSE127165 and 
GSE142083. 

3.2. The identification of hub genes 

In addition, univariate cox analysis on 47 genes identified that 16 genes were closely related to disease free survival (DSS) in LSCC 
(p < 0.05). Then, multivariate cox analysis was performed to further determine the prognosis genes. The result demonstrated that four 
hub genes, namely leucine-rich glioma-inactivated 4 (LGI4), matrilin 4 (MATN4), microfibrillar-associated protein 2 (MFAP2) and 
fibrinogen like 2 (FGL2), could be closely associated with the DSS of LSCC (p < 0.05) (Table 1). Therefore, a four-signature risk model 
was constructed. Risk score = (− 0.53 × LGI4) + (− 0.62 × MATN4) + 0.678 × MFAP2 + (− 0.31 × FGL2). Furthermore, samples were 
grouped into high and low risk group according to the optimal truncation value, and we explored the prognosis value of risk score 
through survival analysis. The K-M results showed that low risk score group had a better prognosis compared with high risk score 
group (Fig. 2A). Additionally, the receiver operating characteristic (ROC) curve was applied to evaluate the accuracy of risk model. As 
presented in Fig. 2B, the AUC of 1-, 3- and 5-year survival was respectively 0.77, 0.88 and 0.85, which suggested that the four sig-
natures model could steadily and effectively predict the DSS time of LSCC. From Fig. 2C, it was obvious that the survival time of 
patients decreased following the increase in risk score. 

3.3. The association between risk score and clinical characteristics in LSCC 

Next, we analyzed the effect of clinical characteristics on the risk score (Fig. 3A–G). Because the number of patients diagnosed with 
T1 stage and pathological stage I was too few, we combined patients from T1 and T2 or stage I and II group into one group. From 
Fig. 3A–D, F-G, there was no significant difference of risk score among different age, gender, M stage, T stage, pathological stage and 

Table 1 
The univariate and multivariate cox analysis of ECM core genes.  

Variables Univariate cox analysis  Multivariate cox analysis   

95% of HR   95% of HR   

HR lower upper p-value HR lower upper p-value 
LGI4 0.53 0.36 0.78 0.01 0.61 0.41 0.90 0.001 
MATN4 0.60 0.40 0.90 0.001 0.54 0.37 0.79 0.02 
MFAP2 1.52 1.07 2.16 0.001 1.97 1.32 2.94 0.02 
FGL2 0.73 0.55 0.97 0.04 0.70 0.50 0.98 0.03  
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smoking history. However, the risk score was obviously affected by N stage, and the patients diagnosed with N3 stage had the highest 
risk score (Fig. 3E). 

3.4. The interaction of risk score with signal pathways 

To explore the potential mechanism of signatures in LSCC development, the ssGSEA was executed. As shown in Fig. 4, it was clear 
that risk score was negatively and remarkably correlated with many signal pathways, including the T cell receptor signaling pathway, 
B cell receptor signaling pathway, toll like receptor signaling pathway and natural killer cell mediated cytotoxicity, which were 
involved in the immune process. It suggested that signatures may be closely correlated with immunoreaction. 

3.5. The construction of the PPI network and function analysis of DEGs 

Besides, to explore the mechanism of four signatures in the aspect of protein, we first constructed a PPI network, and the top 100 
genes with the highest interaction score were screened out (Fig. 5). According to the mRNA expression profile, differentially expressed 
genes were screened out and used for the enrichment analysis. The GO enrichment analysis showed that these genes were involved in 
cell adhesion, immune system process, response to stress, immune response and cell differentiation in terms of biological process (BP) 
(Fig. 6A). In the aspect of cellular component (CC), the results displayed that DEGs were enriched in the extracellular region, cell 

Fig. 2. The construction and identification of risk model. (A) The survival curve between risk score and DSS time in LSCC. (B) The time-dependent 
ROC analysis of risk score and DSS time in LSCC. (C) The distribution of risk score, survival time, survival status and four signatures in DSS time 
in LSCC. 
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Fig. 3. The risk score in LSCC with different clinical subgroups. (A) age, (B) gender, (C) M stage, (D) T stage, (E) N stage, (F) pathological stage, (G) 
smoking history. 

Fig. 4. The relationship between signal pathways and risk scores based on ssGSEA. *<0.05, **<0.01, ***<0.001, ****<0.0001.  
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surface, extracellular space, protein-containing complex and vesicle (Fig. 6B). Additionally, cell adhesion, molecule binding, signaling 
receptor binding, protein-containing complex binding and signaling receptor activity RNA binding were enriched in molecular 
function (MF) analysis (Fig. 6C). The KEGG enriched signal pathway contained ECM-receptor interaction, focal adhesion, 
Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)- protein kinase B (AKT) signaling pathway, notch signaling pathway and toll- 
like receptor (Fig. 6D), and some of them were involved in the immune process. 

3.6. The immune landscape of risk score 

To confirm the function of the risk score in the immune process, immune infiltration analysis was performed. From Fig. 7A, it was 
obvious that the immune score and ESTIMATE score were significantly higher in high risk score group than low risk score group. 
Furthermore, IPS analysis exhibited that MHC and EC level were significantly upgraded, while SC and CP level were significantly 

Fig. 5. The PPI network was established based on four signatures.  
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downgraded (Fig. 7B). Next, the xCELL were used to determine the relationship between risk score and various immune cells. The 
results revealed that risk scores were significantly and positively correlated to 23 immune cells but negatively related to smooth muscle 
(Fig. 7C). Besides, From Fig. 7D, it can be observed that the levels of 21 immune checkpoints were decreased in high risk score group, 
while ULBP1 was increased in high risk score group in comparison with low risk score group. 

3.7. The drug sensitivity of signatures in GDSC and CTRP databases 

To explore the function of four signatures in chemotherapy, the expression of four signatures and drug sensitivity were integrated 
through GDSC and CTRP databases. According to CTRP database, we found MFAP2 was positively related to some drugs including 
GSK525762A, GW-405833 and I-BET151, while MATN4, LGI4 and FGL2 were negatively and significantly related to numerous drugs, 
such as AT13387, BIX-01294 and BMS-345541 (Fig. 8A). Meanwhile, the analysis of GDSC database demonstrated that LGI4 were 
significantly and negatively correlated to PD-0325901 and phenformin, which was respectively opposed to MATN4 and MFAP2 
(Fig. 8B). Moreover, MFAP2 was positively related to most drug sensitivity in GDSC database, while MATN4 and FGL2 were negatively 
related to most drug sensitivity (Fig. 8B). Taken together, MFAP2 mainly played a positive role in drug sensitivity, while the effect of 
MATN4, LGI4 and FGL2 were negative on drug sensitivity. 

4. Discussion 

Previous studies identified that ECM played a crucial role in the growth and development of various tumors [21]. In our study, the 
expression profile and PCA analysis suggested that ECM-core genes to a great extent contributed to the progress of LSCC. Thus, on the 
basis of differentially expressed ECM-core genes in TCGA and GEO datasets, we constructed a 4-gene prognosis model with high 
stability and effectiveness. Moreover, four genes, namely MATN4, FGL2, MFAP2 and LGI4, and risk scores had an independent pre-
dicting value in the DSS time of LSCC. 

Numerous genes played essential roles in the complex progress of cancer [22]. MATN4 is an adaptor protein of ECM, but the 
function of MATN4 was reported by few studies [23,24]. Uckelmann et al. identified that MATN4 was upregulated in hematopoietic 
stem cells (HSC) and silencing MATN4 resulted in promoting the proliferation of HSC after acute stress [25]. It indicated that MATN4 is 
a tumor suppressor in HSC. FGL2 is a transmembrane protein with 439 amino acids distributed in ECM and originated from T lym-
phocytes [26,27]. Some studies identified that FGL2 had a promoting function in the development of some cancers, including glioma 
stem cells and cutaneous squamous cell carcinoma [28,29]. In vitro experiments, silencing FGL2 could cause cell cycle arrest in 

Fig. 6. The GO and KEGG analysis of DEGs in LSCC. (A) The BP of GO analysis, (B) The CC of GO analysis, (C) The MF of GO analysis, (D) 
KEGG term. 
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hepatocellular carcinoma cells, which had a negative effect on the proliferation of tumor cells [30]. Costa et al. determined that 
upregulated LGI4 could promote the development of breast cancer cells [31]. Besides, Luo et al. found that LGI4 could be an inde-
pendent predicting factor for the overall survival in colon cancer [32]. LGI4 is a member of the LGI family [33], and most researchers 
focus on the function of LGI4 in the nervous system [34,35]. 

Moreover, ECM was also involved in tumor development through affecting immune response and signal pathways [36]. MFAP2 is a 
member of MFAPs, which play a role in regulating the growth factor signal transduction [37]. Yao et al. identified that MFAP2 was 
involved in the regulation of cancer development through activating the ERK1/2 signal pathway in gastric cancer [38]. Additionally, 
Chen et al. found that MFAP2 regulated the metastasis of melanoma through mediating the WNT signal pathway [39], which plays a 
crucial role in immune response [40]. Besides, Zhu et al. claimed that the positive effect of MFAP2 on the development of hepato-
cellular carcinoma cells may depend on the interaction with immune factors [41]. Furthermore, FGL2 also performed a vital role in the 
immune response. Previous studies identified that FGL2 could induce immune response through polarizing macrophages and 

Fig. 7. The comparison with high and low risk score group in immune infiltration. The red group indicated high risk score; the blue group indicated 
low risk score. (A) ESTIMATE analysis, (B) IPS analysis, (C) The immune cell (D) The immune checkpoints expression in tumor and normal group. a: 
aDC, b: B-cells, c: CD4+ memory T-cells, d: CD4+ naïve T-cells, e: CD4+ T-cells, f: CD8+ T-cells, g: CD8+ Tcm, h: CD8+ Tem, i: cDC, j: class-switched 
memory B-cells, k: DC, l: iDC, m: mast cells, n: megakaryocytes, o: memory B-cells, p: monocytes, q: naïve B-cells, r: neutrophils, s: NK cells, t: pDC, 
u: plasma cells, v: platelets, w: smooth muscle, x: Tgd cells, y: Th1 cells, z: Tregs. 

Fig. 8. The correlation of four signatures and multiple drugs based on (A) GDSC and (B) CTRP database.  

X.-f. Jiang and W.-j. Jiang                                                                                                                                                                                           



Heliyon 9 (2023) e19907

11

promoting the proliferation of Treg cells and upregulating the expression of PD-1 [42,43]. Although the functions of MATN4 and LGI4 
in tumor development were not clear at present, FGL2 and MFAP2 were closely related to the immune response. In this work, ssGSEA 
analysis revealed that the risk score had a high correlation with immune-related progress and signal pathways. Besides, GO and KEGG 
analysis revealed that genes related to four signatures were enriched in immune progress and some signal pathways which was 
involved in the immune progress. These results indicated that four signatures were closely related to the immune response. The further 
results showed that risk score was negatively and significantly related to most immune cells and immune checkpoints. It further 
suggested that signatures may inhibit the development of LSCC cells through activating immune cells. Similarly, Zhao et al. identified 
that the risk score constructed by 6 ECM-related genes was positively and closely related to immune cells, and the prediction model 
combined 6 hub genes with age, grade and stage had higher predictive efficiency in BLCA (35450397). Besides, Ahluwalia et al. 
constructed a risk model based on 12 ECM-related genes in clear cell renal clear cell carcinoma, and the high risk score group with 
ECM-rich had a high infiltration of T-regulatory and macrophages (33828127). It also indicated that ECM-related genes play a vital 
role through mediating immune response. In addition, they also demonstrated that the risk score was affected by age and TNM stage. In 
our study, we found that the risk score was only remarkably affected by N stage, which suggested that this risk model was more steadily 
for the clinical diagnose. 

At present, ECM had been considered a key factor of drug resistance in tumor treatments [44,45]. Previous studies determined that 
ECM stiffness could affect drug sensitivity through various mechanisms [19]. On the one hand, ECM stuffiness could affect the 
sensitivity of tumor cells to numerous drugs through mediating signal pathways, such as c-Jun N-terminal kinase (JNK) and nonca-
nonical nuclear factor-kappaB (NF-κB) signal pathways [46]. In this study, we identified that MFAP2 was positively related to the 
sensitivity of some drugs, while FGL2, LGI4 and MATN4 was negatively associated with the sensitivity of many drugs. It indicated that 
the better choice of drug in clinical treatment could be determined according to the correlation between expressions of signatures and 
drug sensitivity. 

In conclusion, we constructed a four-genes risk model which showed a great prognosis value in the DSS of LSCC. Besides, we found 
these genes were closely related to the immune response through affecting the activation of immune cells and immune checkpoints. 
Furthermore, we identified the relationship between signatures and many drugs, which could improve the chemotherapy and targeted 
therapy for LSCC patients. Unfortunately, because of the lack of LSCC dataset with survival information, we could not validate the 
efficiency of risk model using independent datasets. But it is the first time that ECM-related risk model was used in the prognosis of 
LSCC, and our risk model was not affected by most clinical characteristics, which meant this model could be effectively and widely 
applied for most patients with LSCC. We believe that these results could provide a theoretical basis for further research and clinical 
treatment in the future. 
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