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Abstract
In structural equation modeling, several corrections to the likelihood-ratio model test statistic have been developed to coun-
ter the effects of non-normal data. Previous robustness studies investigating the performance of these corrections typically 
induced non-normality in the indicator variables. However, non-normality in the indicators can originate from non-normal 
errors or non-normal latent factors. We conducted a Monte Carlo simulation to analyze the effect of non-normality in fac-
tors and errors on six different test statistics based on maximum likelihood estimation by evaluating the effect on empirical 
rejection rates and derived indices (RMSEA and CFI) for different degrees of non-normality and sample sizes. We considered 
the uncorrected likelihood-ratio model test statistic and the Satorra–Bentler scaled test statistic with Bartlett correction, as 
well as the mean and variance adjusted test statistic, a scale-shifted approach, a third moment-adjusted test statistic, and 
an approach drawing inferences from the relevant asymptotic chi-square mixture distribution. The results indicate that the 
values of the uncorrected test statistic—compared to values under normality—are associated with a severely inflated type 
I error rate when latent variables are non-normal, but virtually no differences occur when errors are non-normal. Although 
no general pattern regarding the source of non-normality for all analyzed measures of fit can be derived, the Satorra–Bentler 
scaled test statistic with Bartlett correction performed satisfactorily across conditions.

Keywords  Structural equation modeling · Non-normal multivariate data · Source of non-normality · Monte Carlo 
simulation · Corrections to the test statistic

A crucial issue in structural equation modeling (SEM)—as 
in any statistical modeling technique—is the reliable eval-
uation of model fit to assess how well a particular model 
describes the data. In the context of SEM, the likelihood-
ratio model test (LRT) statistic based on maximum likeli-
hood (ML) estimation comparing the fit of the investigated 
model against the saturated model is the most widely used 
(Savalei & Kolenikov, 2008). The LRT statistic is derived 
based on the assumption that the observed variables fol-
low a multivariate normal distribution. In case of non-nor-
mality, however, the type I error rates of the LRT statistic 
are—sometimes grossly—inflated (e.g., Curran et al., 1996; 
Maydeu-Olivares, 2017; Nevitt & Hancock, 2004). Given 
that the assumption of normally distributed data rarely holds 

in substantive research (e.g., Blanca et al., 2013; Cain et al., 
2017; Micceri, 1989), several corrections to the LRT statistic 
have been developed aiming at modifying the test statistic 
to more closely follow the asymptotic chi-square distribu-
tion under conditions of non-normality (e.g., Asparouhov 
& Muthén, 2010; Lin & Bentler, 2012; Satorra & Bentler, 
1994).

The performance of these corrections has been inves-
tigated in numerous robustness studies (e.g., Chou et al., 
1991; Curran et al., 1996; Fouladi, 2000; Nevitt & Hancock, 
2004; Maydeu-Olivares, 2017; Satorra & Bentler, 1994; 
Savalei, 2010; Tong & Bentler, 2013). Some of these studies 
suggest that the Satorra–Bentler scaled test statistic (Satorra 
& Bentler, 1994) in particular closely follows the underlying 
chi-square distribution. Nevertheless, tendencies to overre-
ject a fitting model could be observed in small samples (e.g., 
Nevitt & Hancock, 2004; Maydeu-Olivares, 2017; Savalei, 
2010; Tong & Bentler, 2013). However, applying the Bartlett 
(1950) correction to the Satorra–Bentler scaled test statis-
tic seems to result in substantial improvements when only 
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a few observations are available (e.g., Nevitt & Hancock, 
2004; Savalei, 2010). Other simulation studies suggest that 
mean and variance-adjusted test statistics are a reasonable 
choice to deal with non-normal data in SEM: Whereas the 
mean and variance adjusted test statistic introduced by Aspa-
rouhov and Muthén (2010) seems to perform satisfactorily 
across a wide range of conditions (Maydeu-Olivares, 2017), 
the Satorra–Bentler adjusted test statistic (Satorra & Bentler, 
1994) appears to be recommendable in small samples (Fou-
ladi, 2000; Savalei, 2010).

Nevertheless, as the abovementioned studies focus on 
manipulating the distribution of the observed indicator vari-
ables (often relying on the approach by Vale and Maurelli, 
1983), they omit an important aspect: The genuine factor 
analytic structure of SEM defines the indicator variables 
as the sum of the weighted latent factors and error terms 
X = Λξ + ε, with X containing the indicator variables, Λ col-
lecting the loadings of the latent factors ξ and ε contain-
ing the error terms. Correspondingly, non-normality in the 
indicator variables can originate from non-normally distrib-
uted latent factors or from non-normally distributed errors 
(Auerswald & Moshagen, 2015). This distinction between 
non-normal latent factors and errors has been addressed 
by asymptotic robustness theory (Amemiya & Anderson, 
1990; Browne, 1987; Browne & Shapiro, 1988; Mooijaart 
& Bentler, 1991; Shapiro, 1987), which specifies conditions 
under which normal theory test statistics asymptotically 
follow a chi-square distribution if the sample size N → ∞, 
even if the normality assumption is violated. For example, 
Amemiya and Anderson (1990) considered the following 
model:

For 1 ≤ i ≤ N, xi is the observable p × 1 random vector, μ is 
a p × 1 parameter vector, Λ is a p × h loading matrix, fi is 
an h × 1 unobservable factor vector, and ui is a p × 1 unob-
servable error vector. In this case, normal theory test sta-
tistics are asymptotically chi-square distributed if the fi are 
independently and identically distributed (i.i.d.) with any 
distribution with finite variance, if the ui are i.i.d. with any 
distribution with finite variance, and the p components of ui 
are independent.

However, it is important to note that asymptotic robust-
ness theory only guarantees that the test statistics follow a 
chi-square distribution asymptotically, so that the actual dis-
tribution in finite (and realistic) samples might diverge sub-
stantially. Whereas few simulation studies have investigated 
the effect of the underlying multivariate distribution on the 
manifest variables by generating data based on non-normal 
latent factors (e.g., Molenaar et al., 2010; Schmitt et al., 2006), 
these did not systematically compare the effect of non-normal 
latent factors versus non-normal errors. An exception is a 

(1)xi = � + �f i + ui.

small simulation study by Auerswald and Moshagen (2015), 
where data were generated based on non-normally distributed 
latent factors as well as on non-normally distributed errors, 
respectively. This study provided evidence that the source of 
non-normality has an important effect on the uncorrected as 
well as on the Satorra–Bentler scaled test statistic in finite 
samples. Specifically, they found that the type I error rates 
of these statistics are inflated in the case of non-normal latent 
variables but not in the case of non-normal errors. However, 
these sources of non-normality were commonly confounded in 
previous simulation studies. To gain a more profound under-
standing of how the multivariate distribution (i.e., the distri-
bution of latent factors and errors) affects corrections to the 
test statistics in finite samples, we thus extended the study 
of Auerswald and Moshagen (2015), which was limited by 
investigating the behavior for one sample size (N = 500) and 
by considering only one degree of non-normality. The present 
study relies on more comprehensive analyses including several 
test statistics correcting not only the mean but higher-order 
moments (see below for details) and investigates the effects 
of different extents of non-normality in sample sizes that are 
commonly encountered in substantive research.

The present study thus aims to answer the question to which 
extent the results from previous robustness studies are valid 
if the source of non-normality is considered. To this end, we 
relied on the NOTAMO (NOrmal To Arbitrary MOments) 
algorithm (Auerswald, 2017), which can be used to generate 
marginal distributions (i.e., the distribution of the indicator 
variables) sharing prespecified central moments that never-
theless differ in their multivariate distributions. NOTAMO 
induces non-normality in latent factors or errors, so the source 
of non-normality can be manipulated. We investigated the 
effect of the source of non-normality on the uncorrected LRT 
statistic based on normal theory ML estimation as well as on 
several corrections adjusting different central moments. This 
is of particular interest given that NOTAMO allows one to 
manipulate the source of non-normality while holding the cen-
tral moments of the marginal distributions constant. Beyond 
considering moment-corrected test statistics, we also investi-
gated an approach that directly estimates the underlying limit-
ing chi-square mixture distribution to draw inferences.

The test statistic to evaluate the overall model fit in SEM 
depends on the sample estimate of the minimum of the fit 
function F̂ = F

(
S,�

(
�̂
))

, where the parameter estimates �̂ are 
determined in such a way that they minimize the discrepancy 
between the model-implied variance-covariance matrix �

(
�̂
)
 

and the empirical variance-covariance matrix S (for details, 
see Bollen, 1989). ML estimates can be obtained based on the 
weighted least squares (WLS) fit function

(2)F̂WLS =
(
s − �

(
�̂
))�

W−1
(
s − �

(
�̂
))
,
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where s and �
(
�̂
)
 represent a vector with the unique ele-

ments of S and �
(
�̂
)
 , respectively, and W denotes a weight 

matrix. When the unique elements of �
(
�̂
)
  are used as 

weights, the WLS estimates are asymptotically equivalent 
to the estimates obtained based on ML estimation given by

with p indicating the number of manifest variables (for 
details see Bollen, 1989; Browne, 1974). That means that 
although the fit functions in Eqs. 2 and 3 differ, both can 
be used to obtain ML estimates. Note that both fit functions 
refer to models without mean structure (see e.g., Hayashi 
et al., 2007 for details regarding fit functions for mean and 
covariance structures).

Given the validity of a set of assumptions, the asymptotic 
distribution of the (Wishart) LRT statistic TML = F̂ML(N − 1) 
under the null hypothesis (i.e., the population variance-
covariance matrix equals the model-implied variance-
covariance matrix) follows a chi-square distribution with df 
= p∗ − q degrees of freedom with p∗ = p(p+1)

2
 and q as the 

number of free model parameters (for details, see Bollen, 
1989). If the asymptotic robustness condition holds, TML also 
follows the same chi-square distribution as N → ∞. More 
generally, the test statistic can be shown to follow a weighted 
mixture distribution of independent chi-square variables 
with 1 degree of freedom each

where wj denotes the weights (Satorra & Bentler, 1994). The 
weights are the non-null eigenvalues of UΓ, where U is the 
residual weight matrix defined as

with � = �(�) =
��

���
 denoting the p∗ × q Jacobian matrix and 

Γ referring to the asymptotic variance-covariance matrix of 
the distribution of 

√
(N − 1)

�
s − �

�

�
 , where σ0 is a vector 

with the unique elements of the population variance-covar-
iance matrix, Σ0 (Browne, 1984; Satorra & Bentler, 1994).

As is immediately evident from Eq. 4, the actual distri-
bution of TML can only be appropriately described by an 
unweighted chi-square distribution when all weights are 
equal to one. If the weights disperse around one, as happens, 
for instance, when the normality assumption is violated (Bro-
sseau-Liard et al., 2012; Satorra & Bentler, 1994), the test 
statistic follows a chi-square weighted mixture distribution. 
In such cases, drawing inferences from an unweighted refer-
ence chi-square distribution leads to incorrect conclusions.

Based on this observation, the core idea of many corrected 
test statistics is to rely on the (unweighted) chi-square refer-
ence distribution to draw inferences but to adjust TML by the 

(3)F̂ML = ln | �(�̂)| − ln |�| + tr[� �(�̂)
−�
] − p

(4)TML

L
→

df∑
j=1

wj�
2(1)

(5)U = W−1
−W−1

�
(
�
�W−1

�
)−1

�
�W−1

estimated weights, so that certain moments of the distribu-
tion are asymptotically equal to the respective moments 
of the unweighted reference chi-square distribution. The 
Satorra–Bentler scaled chi-square test statistic TM adjusts the 
mean of the test statistic leading to an approximate chi-square 
distribution with asymptotically correct mean (i.e., the degrees 
of freedom of the test statistic):

with the scaling factor c = tr(Û�̂ )
df

 and tr
(
Û�̂

)
 as the expected 

value of the asymptotic distribution of the test statistic (Satorra 
& Bentler, 1994). As issues regarding the performance of TM 
in small samples have been reported in the literature (e.g., Nev-
itt & Hancock, 2004; Savalei, 2010), we applied the Bartlett 
(1950) correction to TM leading to TMB given by

where h represents the number of latent factors.
Rather than just adjusting the mean, the Satorra–Bentler 

adjusted chi-square test statistic TMV1 given by

results in an approximate chi-square distribution of the test 

statistic with d =

[
tr(Û�̂)

]2

tr
[
(Û�̂)

2
] degrees of freedom and asymptoti-

cally correct mean and variance (Satorra & Bentler, 1994).
A related correction scales and shifts the underlying distri-

bution (Asparouhov & Muthén, 2010). This correction leads 
to a test statistic with df degrees of freedom and asymptotically 
correct mean (i.e., df) and variance (i.e., 2 df). The corrected 
test statistic is defined as

Beyond correcting the mean and variance, the third moment 
adjusted test statistic TMS (Lin & Bentler, 2012) adjusts the 
mean and the skewness of the test statistic via

where v =
tr
[
(Û�̂)

2
]3

tr
[
(Û�̂)

3
]2 . The corrected test statistic TMS asymp-

totically follows a chi-square distribution with v degrees of 

(6)TM =
TML

c

(7)TMB = TM

(
1 −

[
2p + 4h + 5

6(N − 1)

])
,

(8)TMV1 =
d

tr
(
Û�̂

)TML

(9)TMV2 = TML

√√√√√√
df

tr

[(
Û�̂

)2
] + df −

√√√√√√√√
df
[
tr
(
Û�̂

)]2

tr

[(
Û�̂

)2
] .

(10)
TMS =

v

tr
(
Û�̂

)TML,
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freedom and shares its mean and skewness values with the 
unweighted reference chi-square distribution.

Instead of correcting TML by adapting particular standard-
ized moments so that it more closely follows the expected 
unweighted chi-square reference distribution, an alternative 
procedure is to rely on the uncorrected TML, but to draw 
inferences from the proper asymptotic weighted mixture 
distribution as defined in Eq. 4. The weighted chi-square 
mixture distribution can be estimated using the (non-null) 
eigenvalues of Û�̂ as weights wj. The resulting weighted 
mixture distribution has an expected value of tr

(
Û�̂

)
 and a 

variance of tr
[(

Û�̂
)2

]
 (for details, see Satorra & Bentler, 

1994). However, by constructing the mixture distribution 
using all weights, the resulting distribution should approxi-
mate the actual distribution of TML concerning all higher 
order moments, rather than just the mean, variance, and/or 
skewness. Throughout this paper, we refer to this test statis-
tic as Tmix. Note that Tmix has the same chi-square value as 
TML; however, the p-value of the former might differ from 
that of the latter because of the different reference distribu-
tions involved.

Finally, we also considered derived fit indices, i.e., the 
root mean square error of approximation (RMSEA; Steiger, 
2016; Steiger & Lind, 1980) and the comparative fit index 
(CFI; Bentler, 1990). To maintain comparability with pre-
vious robustness studies, we additionally simulated control 
conditions directly manipulating the distribution of the indi-
cator variables by means of the Vale–Maurelli (VM; Vale & 
Maurelli, 1983) approach for non-normal data and by means 
of eigendecomposition for multivariate normal data.

Based on previous findings, we expected the uncorrected 
test statistic to perform best under conditions of multivariate 
normality and to observe inflated type I error rates with an 
increasing degree of non-normality, in particular when non-
normality arises from non-normal latent variables. Whereas 
the corrections under scrutiny are expected to recover the true 
population value more closely regardless of the degree of non-
normality (e.g., Curran et al., 1996; Tong & Bentler, 2013), we 
also expect an effect of the source of non-normality on these 
outcomes as indicated by Auerswald and Moshagen (2015).

Methods

We created various experimental conditions to assess the 
effect of the source of non-normality on different test statis-
tics by considering three non-normality conditions (latent, 
where non-normality in indicator variables originated from 
non-normal latent factors; error, where non-normality in 
indicator variables originated from non-normal errors; and 
marginal, where non-normality was directly induced in the 

indicator variables), four sample sizes (N = 200, 400, 600, 
and 1000), six test statistics (one uncorrected, four with cor-
rected moments, and one estimating the limiting weighted 
mixture distribution), three degrees of kurtosis (k = 3, 10, 
and 17), and two specification statuses of the model (cor-
rect versus incorrect). We considered different measures of 
model fit, namely the rejection rates of the LRT statistic as 
well as the RMSEA and the CFI, as both depend on the LRT 
statistic and are thus affected by the analyzed corrections. 
Data generation and analysis were performed with the open-
source software R (R Core Team, 2020) using the package 
lavaan (version: 0.6-6; Rosseel, 2012) for model estimation 
and the package distrEx (version 2.8.0; Ruckdeschel et al., 
2019) to estimate the weighted mixture distribution.

Population and analysis models

We defined a factor analytic model in the population with 
three latent factors and p = 15 indicator variables. Data 
generation was based on the variance-covariance matrix 
in the population Σ0 given by Σ0 = ΛΦΛ′ + Θ, where Λ′ 
represents the transposed matrix of loadings and Φ is the 
variance-covariance matrix of the latent factors. The ele-
ments of the diagonal residual matrix Θ were defined such 
that the respective squared loadings of Λ summed up with 
the respective residual term to one. We defined a correlated 
three-factor model with six nonzero secondary loadings

and a variance-covariance matrix between the factors of

In conditions involving correctly specified models, all 
secondary loadings were freely estimated, whereas a con-
firmatory factor analysis model with three factors and no 
secondary loadings was estimated in conditions consider-
ing misspecified models. The conditions involving mis-
specifications were associated with a population minimum 
of the fit function of F0 = 0.328. Table 1 further shows the 
expected power (Jobst et al., in press; Moshagen & Erd-
felder, 2016) of the LRT statistic as well as the population 
values of descriptive indices of model fit.

Data generation

Based on the population model described above, we drew 
1000 random samples each (only valid solutions that 

�
�
=

⎛⎜⎜⎜⎝

.7 .7 .5 .45 .40 0 .25 0 0 0 0 0 −.25 0 0

0 −.25 0 0 0 .80 .65 .55 .50 .40 0 0 0 .25 0

0 0 .25 0 0 0 0 0 −.25 0 .70 .60 .55 .50 .45

⎞⎟⎟⎟⎠

� =

⎛⎜⎜⎝

1

.3 1

.2 .3 1

⎞⎟⎟⎠
.
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converged were considered) with N = 200, 400, 600, and 
1000 observations, respectively, mimicking common sample 
sizes in psychological research using factor analytic methods 
(e.g., DiStefano & Hess, 2005; Jackson et al., 2009).

All generated observed variables Xi with 1 ≤ i ≤ p had a 
kurtosis of either k = 3, 10, or 17 representing values that 
were observed in substantive research (e.g., Blanca et al., 
2013; Cain et al., 2017). We specified the distribution of the 
indicator variables by either manipulating the multivariate 
distribution—based on non-normal errors or non-normal 
latent factors—or by directly drawing samples from mar-
ginal distributions with the respective kurtosis. In conditions 
with k = 10 and k = 17, respectively, the VM approach was 
used to induce non-normality in the marginal distributions. 
Moreover, we generated a multivariate normal control condi-
tion based on eigendecomposition (marginal condition with 
k = 3). Note that a marginal kurtosis of three and a skewness 
of zero can arise when data are multivariate normal, which 
we realized in the marginal condition for k = 3. Neverthe-
less, it is also possible to obtain multivariate non-normal 
data exhibiting the same values regarding skewness and 
kurtosis as a multivariate normal distribution (i.e., skew-
ness of zero and kurtosis of three) but differing in higher 
order moments, which we realized in conditions with k = 3 
under latent and error non-normality. This setup thus allows 
for the comparison between both multivariate normal and 
multivariate non-normal data sharing their skewness and 
kurtosis values.

Non-normality based on the multivariate distribu-
tion was created relying on the NOTAMO framework 
(Auerswald, 2017). Within this framework, the indicator 
variables Xi are defined as the sum of two random variables 
Li and Ei. All Li are correlated amongst each other, whereas 
all Ei are independent from all other Ei as well as from all 
Li. Depending on the particular non-normality condition, 
the distributions of Li and Ei vary: In conditions with non-
normal latent variables, all Li follow a non-normal distribu-
tion and all Ei are standard normally distributed. In condi-
tions with non-normal errors, all Li are standard normally 
distributed, but all Ei follow a non-normal distribution. 
Non-normal Li and Ei, respectively, were generated with 
the NORTA algorithm (Cario & Nelson, 1997) requiring an 
inverse cumulative distribution function F−1 as input. We 
used NOTAMO to identify a suitable inverse cumulative 

distribution function for each random variable Xi that com-
plied with the prespecified central moments. NOTAMO 
defines the target inverse cumulative distribution function 
F−1 as a weighted sum described by the following quantile 
mixture distribution:

with β1, …, βl as positive weights and 
∑l

m=1
�m = 1. Depend-

ing on the experimental condition, we varied the input 
inverse cumulative distribution functions F−1

m
 across condi-

tions. In conditions with k = 3 and non-normal latent factors, 
we used a t-distribution with 4.1 degrees of freedom and a 
uniform distribution on the interval [0, 1]. For k = 3 and 
non-normal errors, a cubic standard normal distribution, a 
uniform distribution on the interval [0, 1], and a standard 
normal distribution were used to define F−1. In conditions 
with k = 10 and non-normal errors as well as non-normal 
latent factors, we used a log-normal distribution with a mean 
of zero and standard deviation of one, as well as an expo-
nential distribution with a rate of one, as input functions. 
The same two inverse cumulative distribution functions were 
used in conditions with k = 17 and non-normal latent fac-
tors. In conditions with non-normality in errors and k = 17, 
the input functions for the quantile mixture were a stand-
ard normal distribution and a mixture distribution based 
on a log-normal distribution and a negative log-normal  
distribution.

Study outcomes

We used the percentage of empirical p-values equal or 
smaller than the nominal significance level of .05 (i.e., the 
empirical rejection rates) of the LRT statistic as an indicator 
of type I error when estimating correctly specified models 
and as an indicator of the actually achieved power when 
estimating misspecified models. Moreover, we evaluated the 
performance of the RMSEA and the CFI, because both fit 
indices directly depend on the LRT statistic. For both fit 
indices, we used the median across the 1000 replications as 
the respective point estimate. The RMSEA in the population 
is defined as

(11)F−1 =

l∑
m=1

�mF
−1

m
,

Table 1   Misspecification in the population, expected power, and population values of fit indices under misspecification

Expected power Fit indices in the popula-
tion under misspecification

Misspecification in the 
population

N = 200 N = 400 N = 600 N = 1000 RMSEA0 CFI0

F0 = 0.328 0.986 > 0.999 > 0.999 > 0.999 0.061 0.884
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with F0 indicating the population discrepancy and thus setting 
the minimum of the fit function in relation to the degrees of 
freedom of the model (Steiger, 2016; Steiger & Lind, 1980). 
The CFI (Bentler, 1990) expresses the proportional reduction in 
misfit by comparing the minimum of the fit function based on 
a null model (nm)—where all covariances equal zero—against 
the minimized fit function of the hypothesized model leading to

We obtained sample estimates for the uncorrected test 
statistic TML based on

and

The RMSEA and CFI of Tmix were also computed based on 
Eqs. 14 and 15, respectively, but df was replaced by tr

(
Û�̂

)
 . 

Table 2 provides the sample formulas of both fit indices con-
sidering the moment-based corrections to TML. The uncorrected 
as well as the corrected sample estimates approximate the popu-
lation values as in Eqs. 12 and 13, respectively (for details, see 
Brosseau-Liard et al., 2012; Brosseau-Liard & Savalei, 2014; 
Savalei, 2018). Within any one condition, the underlying cor-
rection approach was also applied to the null model.

Results

To maintain scope and increase clarity, we only present an 
illustrative subset of the results. The complete data and fur-
ther results are available as supplementary materials in the 

(12)RMSEA0 =

√
F0

df

(13)CFI0 =
Fnm − F0

Fnm

.

(14)RMSEA =

√
max

(
0,

TML − df

(N − 1)df

)

(15)CFI = 1 −
TML − df

Tnm − dfnm
.

open science framework (OSF) repository at https://​osf.​io/​
fxnsu/.

Effect on empirical rejection rates and empirical 
power

We relied on the liberal robustness criterion suggested by 
Bradley (1978) deeming rejection rates within the interval 
[α ± 0.5α] acceptable (i.e., [2.5%, 7.5%] based on a signifi-
cance level α of .05). The underlying multivariate distribu-
tion revealed no relevant effect in conditions with k = 3. 
The rejection rates of most test statistics were close to the 
nominal level of 5.0% (see Fig. 1). Exceptions pertained 
to TML and TMS in small samples, where the rejection rates 
were above the robustness criterion for TML and below the 
robustness criterion for TMS.

With an increasing extent of non-normality (i.e., k > 3), 
TML showed increasing empirical rejection rates regardless 
of sample size—in particular in conditions with latent non-
normality—with empirical rejection rates up to 36.8%. By 
contrast, the rejection rates were much lower under error 
non-normality and were above the robustness criterion only 
when k = 17, but decreased with increasing sample size. TMB 
yielded adequate rejection rates and exhibited only a slight 
tendency to overreject a fitting model when k = 17 in the case 
of latent non-normality for N = 1000 and under marginal 
non-normality for N = 200. There were only minor differ-
ences between the remaining test statistics, which tended to 
underreject models in all conditions when k > 3. Whereas 
TMS indicated a too optimistic fit across conditions, all 
remaining corrected test statistics showed acceptable rejec-
tion rates with increasing sample size if only a medium extent 
of non-normality was present. However, they exhibited rejec-
tion rates below the robustness criterion in conditions with 
k = 17, especially under error and marginal non-normality.

Based on the misspecification in the population, the 
expected power to reject the models was at least 0.986 (see 
Table 1). As summarized in Table 3, TML and TMB closely 
recovered the expected power across all conditions. When N 
= 200, TMS was associated with very low power regardless of 

Table 2   Sample formulas of fit indices regarding corrections to TML

Test statistic RMSEA sample formula CFI sample formula

TMB
√

max

(
0,

c(TMB−df )
(N−1)df

)
  

1 −max

(
0,

c(TMB−df )
cnm(TMBnm

−df nm)

)
  

TMV1
√

max

(
0,

b(TMV1−d)
(N−1)d

)
 with b =

tr(ÛΓ̂)
d

  
1 −max

(
0,

b(TMV1−d)
bnm(TMV1nm

−dnm)

)
  

TMV2
√

max

(
0,

a(TMV2−df )
(N−1)df

)
 with a = 

√
tr
[
(ÛΓ̂)

2
]

df

1 −max

(
0,

a(TMV2−df )
anm(TMV2nm

−df nm)

)
  

TMS
√

max

(
0,

g(TMS−v)
(N−1)v

)
 with g =

tr(ÛΓ̂)
v

  
1 −max

(
0,

g(TMS−v)
gnm(TMSnm

−vMSnm )

)
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the extent of kurtosis. The remaining test statistics yielded a 
power close to the expected values in small samples when k 
= 3, but too few rejections occurred with an increasing extent 
of non-normality, in particular under latent and marginal non-
normality. As the sample size increased, the empirical power 
was generally adequate. Thus, the results concerning power 
generally mirror the results concerning the empirical rejec-
tion rates of correctly specified models by suggesting that all 
approaches other than TML and TMB show a tendency to retain 
an incorrect model as non-normality increases.

Effect on RMSEA

To summarize (see supplement for details), no effect of 
the multivariate distribution occurred for k = 3, whereas 

in conditions with k > 3 the point estimates of all test sta-
tistics were larger under marginal and latent non-normality 
compared to error non-normality. In general, the approxima-
tion of the population RMSEA0 improved in larger samples 
across test statistics and sources of non-normality.

In misspecified models (Fig. 2), the point estimates of 
RMSEAML, RMSEAMB, RMSEAMV2, and RMSEAmix 
closely recovered RMSEA0 with a maximum difference 
between 0.008 and 0.011 depending on the involved test 
statistic. In contrast, the maximum difference was 0.06 for 
RMSEAMV1 and 0.147 for RMSEAMS. Again, no effect of 
the source of non-normality was evident in conditions with 
k = 3. However, RMSEAMV1 and RMSEAMS distinctly dif-
fered from the population value and although this difference 
diminished with increasing sample size, the point estimates 
still exhibited a positive bias even in the largest sample size 
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Fig. 1   Empirical rejection rates. Note. The dashed line illustrates the nominal significance level of 5.0% and the dotted lines illustrate the robust-
ness criterion of 2.5% and 7.5%.
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condition. When k = 10, the effect of the source of non-
normality was rather small, yet a more pronounced pat-
tern could be observed in conditions with k = 17: Whereas 
RMSEAML was virtually unaffected by the source of non-
normality, the remaining test statistics yielded larger values 
in error non-normality conditions compared to both other 
sources of non-normality.

Effects on CFI

Similar to empirical rejection rates and the RMSEA, no 
effect of the source of non-normality on the CFI in cor-
rectly specified models occurred in conditions with k = 
3 (see supplement for details). In conditions with larger 
kurtosis, all test statistics exhibited smaller point estimates 
under latent and marginal non-normality than under error 
non-normality, especially in small samples.

In misspecified models (see Fig.  3), the maximum 
difference between the CFI point estimate and CFI0 was 
−0.017 for CFIML, −0.006 for CFIMB, 0.012 for CFIMV2, 
and −0.014 for CFIMV1, CFIMS, and CFImix, respectively. 
The effect of the source of non-normality became visible 
in small samples when k > 3: CFIML, CFIMV1, CFIMS, 
CFImix provided a closer approximation of CFI0 under 
error non-normality than under latent non-normality. 

However, the observed bias diminished with increasing 
sample size. In contrast, CFIMB was virtually unaffected 
by the source of non-normality across conditions. A dif-
ferent pattern occurred for CFIMV2, where larger values 
were observed under marginal and latent non-normality 
than under error non-normality. As the point estimates 
increased with increasing sample size, this led in turn to 
a close approximation of CFI0 under marginal and latent 
non-normality in small samples and to virtually unbi-
ased point estimates under error non-normality in larger 
samples.

Discussion

Non-normal data regularly occur in substantive research, 
so yielding valid test statistics and descriptive indices of 
model fit under such conditions is of particular impor-
tance. Whereas a number of corrections to the LRT statistic 
(and hence, derived fit indices) has been proposed, previ-
ous robustness studies usually created non-normality by 
manipulating the marginal distributions only and thus did 
not consider the source of non-normality. The present study 
provides evidence that the uncorrected test statistic, four cor-
rected test statistics, and one test statistic based on both the 

Table 3   Empirical power in %

To avoid redundancies, empirical power for larger sample sizes was not displayed as the values were close to 100% across conditions—except for 
TMS in conditions with N = 600 and k = 17 under latent non-normality, where the observed power was 90.9%.

Test statistic k N = 200 N = 400

Source of non-normality Source of non-normality

Latent Error Marginal Latent Error Marginal

TML 3 98.7 99.1 98.5 100.0 100.0 100.0
10 98.9 99.0 98.9 100.0 100.0 100.0
17 99.0 99.8 99.5 100.0 100.0 100.0

TMB 3 98.2 98.4 98.0 100.0 100.0 100.0
10 95.9 98.7 98.1 100.0 100.0 100.0
17 95.6 99.7 98.3 100.0 100.0 100.0

TMV1 3 96.9 97.5 97.6 100.0 100.0 100.0
10 87.5 94.0 91.7 99.9 99.9 100.0
17 81.1 95.3 83.4 99.4 99.4 99.7

TMV2 3 96.9 97.5 97.6 100.0 100.0 100.0
10 89.3 94.6 93.1 99.9 99.9 100.0
17 83.4 95.9 86.3 100.0 99.5 99.9

TMS 3 86.9 90.7 92.7 99.4 100.0 100.0
10 37.4 65.5 54.7 90.0 95.9 97.0
17 26.8 63.8 28.8 78.9 90.5 87.3

Tmix 3 96.7 97.2 97.3 100.0 100.0 100.0
10 85.2 93.4 91.2 99.9 99.9 100.0
17 79.0 94.7 81.0 99.4 99.4 99.6
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weighted chi-square mixture distribution and the derived fit 
indices are affected by the source of non-normality in finite 
samples, even when the manifest variables exhibited the 
same levels of kurtosis. Note that the manipulation of other 
standardized moments such as skewness would also induce 
non-normality in manifest variables. However, studies indi-
cate that psychological variables exhibit a larger range of 
kurtosis values compared to skewness values. Addition-
ally, these variables show a wider range of kurtosis values 
regarding leptokurtic distributions compared to platykurtic 
distributions (Blanca et al., 2013; Cain et al. 2017). Hence, 
we decided to investigate non-normality conditions based 
on leptokurtic data allowing for the generation of data sets 
distinctly differing in the extent of non-normality but still 

representing values that can be observed by substantive 
researchers (see e.g., Curran et al., 1996).

In line with previous robustness studies (e.g., Curran 
et al., 1996; Nevitt & Hancock, 2004), the uncorrected ML 
test statistic was associated with inflated type I error rates in 
the case of non-normally distributed data. However, when 
considering the source of non-normality, we showed that 
non-normal errors do not lead to increased rejection rates, 
which is consistent with the findings of Auerswald and 
Moshagen (2015). Thus, the uncorrected ML test statistic 
appears to be robust in finite samples when non-normality 
arises from non-normal errors but not when non-normality 
arises from non-normal latent variables.
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Fig. 2   RMSEA in misspecified models per source of non-normality. 
Note. Each boxplot includes the values observed in 1000 replications. 
Values larger than 0.260 are not displayed, leading to 2762 non-dis-

played values (53 values for RMSEAMV1 and 2709 for RMSEAMS). 
The dashed line illustrates the population RMSEA0.
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All corrected test statistics were also affected by 
the source of non-normality, albeit to a smaller extent 
as compared to the uncorrected TML. In particular, the 
Satorra–Bentler scaled test statistic with Bartlett correction 
(TMB) performed well across conditions by closely recov-
ering the nominal significance level in correct models and 
closely approximating the expected power to reject incorrect 
models. By contrast, all remaining corrections under scru-
tiny showed rejection rates below the nominal significance 
level and a lower statistical power than expected. Marginal 
non-normality showed both of these effects, whereas the 
former was especially apparent in conditions of error non-
normality and the latter occurred primarily under latent 
non-normality.

Correcting TML by the first standardized moment (i.e., 
mean) greatly improved its performance, whereas cor-
recting further moments generally led to a tendency to 
retain models. This is unexpected as—from a theoreti-
cal point of view—corrections of higher-order moments 
should result in further improvements. A similar pattern 
of results was also evident for the approach to draw infer-
ences from the estimated limiting mixture distribution. 
As this approach does not correct for particular stand-
ardized moments but directly estimates the underlying 
weighted mixture distribution, we expected a superior 
performance. The results, however, show that correc-
tions of higher order moments, and especially the esti-
mated weighted chi-square mixture distribution—where 
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Fig. 3   CFI in misspecified models per source of non-normality. Note. 
Each boxplot includes the values observed in 1000 replications. The 
dashed line illustrates the population CFI0. Values smaller than 0.830 
and larger than 0.930 are not displayed, leading to 9732 non-dis-

played values (1708 values for CFIML, 1642 values for CFIMB, 1489 
values for CFIMV2, and 1631 non-displayed values each for CFIMV1, 
CFIMS, and CFImix).
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all moments should be correct, as the underlying distri-
bution is directly estimated—generally were associated 
with an underestimation tendency, thus leading to an 
inadequate type I error control and a lack of statisti-
cal power. A possible explanation for the comparatively 
poor performance of all approaches attempting to cor-
rect for additional moments beyond the mean might lie 
in unreliabilities regarding the estimation of the weights 
via the eigenvalues of Û�̂ . The estimation errors of these 
weights have more severe consequences in non-linear 
corrections (such as the corrections for higher order 
moments) than in linear corrections (such as the correc-
tion for the first standardized moment), so the correction 
applied in TMB might be less affected by incorrectly esti-
mated weights, in turn leading to the observed superior 
performance.

Beyond the LRT statistic itself, we also investigated 
derived descriptive fit indices computed from the respec-
tive uncorrected or corrected test statistics. Concerning 
the RMSEA in correctly specified models, the source of 
non-normality had an effect on all versions of RMSEA 
but its magnitude varied across the analyzed test statis-
tics. In misspecified models, all RMSEA based on cor-
rected test statistics were affected by the source of non-
normality by yielding larger values in error non-normality 
conditions than both other sources of non-normality; 
however, the observed bias was generally small to mod-
erate. Exceptions pertain to RMSEAMV1 and RMSEAMS, 
which strongly overestimated the population RMSEA0 
leading to a too negative fit evaluation.

Concerning the CFI in correctly specified models, 
smaller point estimates occurred under marginal and 
latent non-normality compared to error non-normality, 
especially in small samples, regardless of the underlying 
test statistic. An effect of the source of non-normality also 
became evident in misspecified models, where CFIML, 
CFIMV1, CFIMS, and CFImix showed a stronger bias under 
latent compared to error non-normality. Nevertheless, 
with increasing sample size the bias diminished for all 
test statistics except for CFIMV2, whose bias depended on 
the sample size and the source of non-normality.

Conclusion

To assess model fit in substantive research, it is recom-
mended to not rely on a single criterion but to consider 
various measures of fit (for an overview, see West et al., 
2012). Whereas we showed that TML is virtually unbiased 
when non-normality arises from non-normal errors, the 
source of non-normality is unknown in practice. In case of 
non-normal data, we thus recommend relying on the 
Satorra–Bentler scaled (i.e., mean-corrected) test statistic 

with Bartlett correction (TMB), which performed satisfac-
torily throughout conditions regardless of the particular 
source of non-normality. Generally, all remaining correc-
tions considered herein (TMV1, TMV2, TMS, Tmix) revealed 
systematic biases in at least some conditions, in particular 
when latent variables were non-normal. Thus, we recom-
mend against their use. This general recommendation also 
extends when considering RMSEA or CFI as descriptive 
indices of fit, because indices based on TMV1, TMV2, TMS did 
not perform well, whereas RMSEA and CFI based on TMB 
performed satisfactorily overall. The results also indicate 
that a better approximation can be obtained when using 
the degrees of freedom as obtained by tr

(
Û�̂

)
 , as we have 

done for the Tmix approach. In general, we encourage 
researchers to consider distributional information such as 
the expected value and use unbiased sample estimates of 
descriptive fit indices.

To summarize, we demonstrated that the source of non-
normality has an effect not only on the uncorrected but 
also on corrected test statistics, which is especially rele-
vant as these corrections are used to deal with non-normal 
data. No general pattern could be identified because the 
particular effects on measures of fit depend on variables 
like the applied test statistic or the specification status of 
the model. However, the present work shows that some 
test statistics are rather robust regarding the source of 
non-normality, whereas others are strongly affected by 
non-normal latent factors but are not necessarily affected 
by non-normal errors. Although the six investigated test 
statistics showed varying patterns across the analyzed con-
ditions, TMB seems suitable to correct for non-normality 
regardless of the extent or source of non-normality and 
thus appears to be a reasonable choice to evaluate model fit 
in the presence of non-normal data. Concerning RMSEA 
and CFI as descriptive indices of fit, we suggest relying 
on robust versions based on TMB approximating the same 
population value as versions of these indices based on the 
uncorrected ML LRT statistic.
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