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Mathematical Musings on the External Anatomy of

the Novel Coronavirus®

Part 2: Chasing After Quasi-Symmetry

Jyotirmoy Sarkar and Mamunur Rashid

What is the shape of the novel coronavirus which has turned
our world upside down? Even though it looks dull, unattrac-
tive, and even disgusting under a microscope, creative artists
have attributed to it bright colors, made it look pretty, and
depicted it as a thing of beauty. What can a mathematician
contribute to this effort? We take a purist’s point of view by
imposing on it a quasi-symmetry and then deriving some con-
sequences. In an idealistic world, far removed from reality
but still constrained by the rules of mathematics, anyone can
enjoy this ethereal beauty of the mind’s creation, beckoning
others to join in the pleasure.

Our musings are split into four parts. We fondly hope while
readers wait for the future parts to appear, they will indulge
in their own musings, tell others about them, and propagate
the good virus of mathematical thinking.

Gist of Part 1!

The general shape of the n-Cov is a sphere with various proteins
protruding out of the sphere. Therefore, we mused on the proper-
ties of a sphere—volume and surface area of caps and pedestals,
and geodesics between two points—presenting easy proofs and
computational formulas. Having seen a plethora of 2D and 3D
representations of the external anatomy of the n-Cov, we posed
the challenge of determining which depiction is closer to the truth
and which has taken an artistic license to deviate from the truth.
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Inverting the problem
often facilitates finding a
solution.

A demand for perfect
symmetry reduces the
number of options.

“The five Platonic solids
correspond to the five

elements of nature.”
— Plato

4. How Many S-Proteins and Where?

Faced with the dilemma of not knowing the number of S-Proteins
for sure, in this part, we create a mathematical model that will
support our choice of the number of S-Proteins, as well as lo-
cate them on the sphere. Construction of our model proceeds by
first inverting the problem to a new one—an oft-used tool in the
mathematician’s toolbox.

4.1 The Inverse Problem

Convex Hull Problem: Given all points on the surface of a spher-
ical n-CoV through which the S-proteins emerge; what shape is
formed by taking their convex hull?

When we attempt to impose symmetry on the above-mentioned
convex hull, we achieve a stark reduction in the number of viable
answers to the original question of how many S-proteins there
are on the n-CoV. A demand for perfect symmetry requires that
the convex hull be a regular polyhedron, which is defined as a
3D object bounded by identical regular polygonal faces (plane
regions bounded by (at least 3) sides of equal length that make
all angles equal) such that equal number of faces (at least 3) meet
at each vertex. Such a three-dimensional object is called a Pla-
tonic solid in honor of the Greek philosopher Plato (428/427 or
424/423-348/347 BCE), who theorized that these objects repre-
sent elements of nature: earth, water, fire, air, and ether. Hence-
forth, when we talk about a polyhedron in this article, we assume
that it is regular. We state and prove an ancient gem of a mathe-
matical result. See Wikipedia [2].

Theorem 2.1. There are exactly five Platonic solids as shown in
Figure 1.

Proof. A Platonic solid must satisfy three properties:

(a) On a regular n-gonal face, each angle measures 180°
circ(n —2)/n (with n > 3);
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Tetrahedron Cube Octahedion Dodecahedion  Icosahedron
Figure 1. The five Platonic
solids.

Each m At each Total Name of Number of Number of Number of
angle vertex meet angle solid faces vertices edges

3 60° 3 3triangles 180°  Tetrahedron 4 4 6

3 60° 4 4triangles 240°  Octahedron 8 6 12

3 60° 5 5triangles 300°  Icosahedron 20 12 30

4 90° 3 3squares 270°  Hexahedron 6 8 12

5 108° 3 3pentagons 324° Dodecahedron 12 20 30

(b) At each vertex there meet exactly m faces (with m > 3); and

Table 1. Enlisting all (n, m)

of Platonic solids.

(c) Total angle at each vertex is strictly less than 360°.

We document in Table 1 the solutions one by one, starting from

small values of n and small values of m. We identify five solids

(shown in Figure 1) and list their number of faces, number of

vertices, and number of edges.

For each n < 5, the next higher value of m satisfying Properties (a)

A systematic search

pairs that lead to formation

yields five solutions, and

only five solutions.

and (b), fails to satisfy Property (c). For n > 6, even the smallest

value of m = 3 fails to satisfy Property (c). This completes the

proof of the theorem. O
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Duals are like dance
partners.

increase the locations
of S-proteins, we will
allow vertices,

face-centers, and maybe

some more points.

It cannot be,” says
Theorem 1.

4.2 Duality of Platonic Solids

Any Platonic solid can be enclosed in a circumscribing sphere. A
fascinating property of these five Platonic solids is duality: Given
any Platonic solid, locate the centers of all its faces, which are
regular polygons. Then the convex hull of these face-centers lives
strictly inside the given Platonic solid and is also a Platonic solid,
called the dual of the given Platonic solid. In fact, a tetrahedron
is its own dual, a hexahedron (cube) and an octahedron are duals
of each other, and so are a dodecahedron and an icosahedron.

Clearly, none of the five Platonic solids have enough vertices to
account for all the S-proteins we see on the diagrams in Figure 1
in Part 1. Therefore, we must settle for something less than per-
fect symmetry. We conjecture that the S-proteins are not only
located at the vertices but also at the face-centers (or rather at
their radial projections or their shadows on the sphere when a
point source of light is placed at the center of the circumscrib-
ing sphere). Then, for the five Platonic solids, there would be
altogether 8, 14, and 32 locations, as one can see by adding the
second last and the third last columns of Table 1. None of these
values are large enough to model the majority of the depictions
of n-CoV we have come across. We need more locations for S-
proteins!

Consequently, we also conjecture that S-proteins are located at
the mid-points of the edges of the Platonic solids (or rather at
their shadows on the circumscribing sphere under a radial projec-
tion). If both conjectures hold, then adding the last three columns
of Table 1, we note that for a tetrahedron, there would be 14 lo-
cations; for an octahedron or a hexahedron, 26 locations; and for
a dodecahedron or an icosahedron, 62 locations. This last option
appears to be promising since it fits within the range of various
estimates of the number of S-proteins obtained from Figure 1 in
Part 1. Although the convex hull of these 62 points on the sphere
is not a Platonic solid, this is what we propose as a model for a
‘quasi-symmetric’ distribution of locations for the S-proteins. Al-
ternatively, the reader can work with an octahedron and impose a
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third conjecture to include more points for S-proteins.

We will consider the locations of M- and E-Proteins in Part 4 of
the series.

4.3 Neighbors of S-Proteins

Looking carefully at the 3D diagrams in Figure 1 of Part 1, if we
focus on any one S-protein and then identify all its near-neighbor
S-proteins, taking a 360° panoramic view, though they may not be
equally far, we notice an over-abundance of spherical hexagons
and frequent appearances of spherical pentagons formed by the
near-neighbors. Indeed, our proposed model mimics this feature
and exhibits a few more features, as depicted in Figure 2. The
actual distances alluded to in these features will be revealed to-
wards the end of Subsection 6.3 in Part 3. So will be the angles
mentioned in Figure 2(c). Here we simply remark on their rel-
ative magnitudes. All line segments in Figure 2 represent the
corresponding tangents to the geodesics between the points.

(a) Each of the 12 locations originally at the vertices of the icosa-
hedron (or at the face centers of the dodecahedron) has five near-
neighbors on the edge-centers (solid lines). Once you remove
these near neighbors, there is a different set of five near-neighbors
at the face-centers (along dotted lines) of the icosahedron (or at
the vertices of the dodecahedron). Moreover, these two sets of
neighbors alternate and constitute regular angular intervals of 36°.

Figure 2. When viewed
directly from above an
S-protein, located at (a) a
vertex (V), (b) a face-center
(F), and (c) an edge-center
(E) of an
two/three

icosahedron,
sets of near-
neighbor S-proteins appear
at regular/quasi-regular

angular intervals.

Just as hexagons and
pentagons are seen on a
soccer ball.

Recall that a geodesic is
the shortest path along a
great circle.
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We are imagining a lot.
But not as much as some

stargazers do!

Readers, please figure
out the interior angles.

This is our model for the

number and locations of

the S-proteins.

(b) Likewise, each of the 20 locations originally at the face-centers
of the icosahedron (or at the vertices of the dodecahedron) have
three very-near-neighbors on the edge centers (gray lines) and
three near-enough-neighbors (along dotted lines) at the vertices
of the icosahedron (or at the face centers of the dodecahedron);
and the two types keep alternating as we turn around at regular
angular intervals of 60°.

(c) Finally, each of the 30 locations originally at the edge-centers
of the icosahedron (or of the dodecahedron) has a pair of very-
near-neighbors on the face-centers of the icosahedron (gray lines),
and the next pair of near-neighbors (along solid lines) are orthog-
onal to the first pair. Once these four neighbors are removed,
there is still another batch of four neighbors that form a rectan-
gle whose sides are parallel to the two pairs just removed (though
not in the same plane). These four points, when matched with
the nearest member of the first pair, subtend an angle of 31.71°
at the edge-center, and when matched with the second pair, sub-
tend an angle of 58.78° at the edge-center. One can also say that
the second pair and the third quadruplet together form a quasi-
regular hexagon with one pair of opposite sides equal, and the
other four equal sides are slightly smaller than these two. We
leave it to the reader to figure out the interior angles of this
hexagon. The hexagon exhibits vertical- and horizontal reflection
symmetry (and hence a 180° rotation symmetry).

These features of our adopted model align well with the 3D de-
pictions in Figure 1 in Part 1, and thereby they provide a strong
mutual support. Affirmed by this evidence, let us proceed to study
our model shape of the n-CoV in more detail.

5. Our Model for the Shape of the n-CoV

In subsection 4.2, we have proposed as a model for the S-proteins
on the n-CoV, a radial projection of an icosahedron and its dual
dodecahedron. Note that the shadows of the edges of each poly-
hedron bisect the shadows of the edges of the other orthogonally.
The S-proteins protrude from the shadows of the 12 vertices of
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the icosahedron, 20 vertices of the dodecahedron, and the 30 bi-
section points of the edges of these two polyhedra. Thus, our
model accommodates 62 S-proteins in total.

For all computations henceforth, we start with an icosahedron,
circumscribe it with a sphere, and then inscribe in it the dual do-
decahedron. We evaluate the parameters of our proposed model
and describe its mathematical properties in three subsections. We
leave it to the reader to repeat the computations starting with a
dodecahedron, superposing a sphere, and then inscribing its dual
icosahedron.

5.1 Circumscribe an Icosahedron by a Sphere

Consider a unit icosahedron; that is, all its edges measure 1 unit.
Circumscribe a sphere around it; that is, consider the smallest
sphere inside which the unit icosahedron fits tightly, as shown in
Figure 3. A natural question is how large is the sphere? Suffices
it to find the circumradius R. Indeed, the following result holds.

Theorem 2.2. The radius of the sphere circumscribing the unit
icosahedron (whose all sides are of unit length) measures

R= \/5 +8‘/§ = 0.9510565

In particular, R is constructible using only the Euclidean geomet-

ric tools of straightedge and compass.

Proof. Refer to Figure 4, which shows selected elements of the
icosahedron and its circumscribing sphere. Without explicitly
stating it, we shall use the Pythagorean theorem repeatedly.

Imagine that one of the vertices of the unit icosahedron is at the
North Pole N. Its five nearest neighboring vertices A, B,C, D, E,
form a regular pentagon (which lives entirely inside the icosahe-
dron, except for the five boundary points on the sphere, and hence
is not visible). These five neighboring vertices are co-planer,
which is parallel to the equator and intersect the circumscribing

A natural question
deserves to be asked and
answered.

With a mathematician’s
eyes, we can see through
the opaque icosahedron.
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Figure 3. A transpar-
ent sphere circumscribing
an opaque unit icosahedron,
or an opaque icosahedron
inscribed in a transparent
sphere.

Figure 4. When a sphere

. . .. N
circumscribes a unit icosa-
hedron, the radius of the 1 P 1
sphere is found by calcu- 8
lating several intermediate % =A%, ’, 2 A
quantities. 1}/ /0 TR
{32 |
i1 9 2h
R 1 R
th
RN - sy lie AR
L M
sphere to form a circle circumscribing the pentagon, having cen-
ter / and radius r. The midpoint of each side of the pentagon is s
units away from /, and the pentagon itself is ¢ units away from the
North Pole N and 4 units away from the center O of the sphere of
radius R. We sequentially compute the quantities r, s, ¢, h, R.
Join vertex D to the center / of the circle circumscribing pentagon
ABCDE, and join the midpoint J of side CD to I. From the right
862 WW RESONANCE | May 2022
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triangle /JD so formed, we note that
1/2
ﬁn(z):—l—. (1)
5 r

In Figure 5, starting from a right triangle ABC whose legs mea-
sure 1 unit and 2 units respectively, we demonstrate how to draw
an angle BAE measuring 7/5 using straightedge and compasses,
and then construct ¢ as the perpendicular from B to AE. Hence,
we evaluate sin(rr/5) = ¢/2 . Next, using (1), we can construct
r = 1/q and evaluate it.

In Figure 5, note that the area of triangle ABE, with side lengths
2,2, V5 - 1, can be calculated using two different pairs of base
and altitude. As a result, 2¢g = (V5 — 1)p. However, from right
triangle AF B, we have

e (B - o - S

Hence, g = \/52_1 p = ‘/52_1 \/5+2‘/§ = 5_2‘/5. Therefore, from
right triangle AGB, we evaluate

. (T ¢ 5-15
—|l==<= = 0.587785
Sm(s) 2 8
and from (1), we getr = 1/g = 5_%5 = 5+1—85 = 0.850651.

Figure 5. To draw an angle
measuring /5 and compute
sin(rr/5). In fact, one-fourth
of AL is the radius R of the
sphere that circumscribes a
unit icosahedron.

Glory to the Pythagorean
theorem!
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equals the reciprocal of

Dis

The depth of the cap

the sphere’s diameter.

tance between cutting

planes equals the radius.

The cross-sectional
circle is 4/5 the great
circle.

Returning to Figure 4, from right triangle //D, we evaluate /J as

1 [3+15 5+245
— 2 _ I = =
s=Ar2-1/ 2,/5_ 7 \/ 5 0.688191,

from right triangle NIA, we evaluate NI as

Py S € Sl SR Rk R,
5- 5 10

and from right triangle JKL, we evaluate KL as

3 2 5+ 15
= _— — 2: = =
2h ,/4 (r—s) 1/5_\/5 \/ T 0.850651.

Finally, we can find the radius of the circumscribing sphere as

\3- V5+ V12
R = NI+IO = t+h = - \/5 +8‘/§ ~ 0.951057.

5-45

Next, in Figure 5, we can extend BC to L until CL = CA = \/5,

and construct AL = +/2(5 + V5) = 4R using only Euclidean

geometric tools. The proof is therefore complete. O

The proof of Theorem 2.2 reveals several fascinating properties:

(1) Algebra shows that in Figure 5, AL = \/(22 +(V5+1)?) =
4R, is twice the diameter of the circumscribing sphere. Also, one
can verify that 2Rt = 1; that is, ¢, the depth of the spherical cap,
is the reciprocal of the diameter of the circumscribing sphere.

(2) Rectangle AKLM is exactly twice as wide as it is tall, since
2h = r. That is, the planar cut through the five neighboring ver-
tices of the North Pole is parallel to the planar cut through the five
neighboring vertices of the South Pole; and the distance between
these two cutting planes equals the radius of their cross-sectional
circles.

(3) Since 2h = r, from the right triangle AKL, we have 5r% = 4R?;
or equivalently, 4 = r/2 = R/ V/5. That is, the area of the cross-
sectional circle of the spherical cap is 4/5 of the area of the great

864
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circle. Likewise, the area of the curved surface of the spherical
cap is 2Rt = m, which is R™2 = 2(1 — 1/V5) = 1.105573 times
the area of the great circle.

(4) The volume of the spherical cap is 7(2R+h)(R-h)?*/3 = n(R—
t/3)t*, which is 1/2 — 7 \/5/50 = 0.1869505 times the volume of
the circumscribing sphere.

Property (2) is a pleasantly surprising result, which mathemati-
cians like to call beautiful because of its unexpected simplicity.
A priori there was no hint for it!

5.2 An Application

Here is its application to Art and Design: Suppose that two sculp-
tors are given a sphere and asked to slice out the largest icosa-
hedron out of it. They can split their workload evenly between
themselves: One sculptor will cut out the cap, and the other will
cut out another identical cap from the bottom side of the pedestal
using a parallel cut, leaving a slab in between. (In fact, they can
do so simultaneously: They should tilt the NS line to become hor-
izontal; then, the cuts will be parallel vertical planes. Moreover,
cutting vertically is more efficient than cutting horizontally.) The
important thing to remember is that the slab should be as thick as
the radius of the cutting circle.

Thereafter, each sculptor can work with one cap each, and they
can work together on the slab. They each will draw regular pen-
tagons on the two cut surfaces, being extremely careful that the
pentagons on the opposite planar faces of the slab are rotated by
exactly 180° (also 36° or 108° will do). Then they will make five
planar cuts on each cap using the pentagon and the top of the cap,
and they will make ten planar cuts on the middle portion, going
from an edge of the pentagon on one face of the slab to the vertex
on the opposite face, each cutting five times. When they are done,
they can reassemble the three pieces into a unit icosahedron. In-
cidentally, a total of 22 planar cuts are involved. Can the reader
do with fewer?

Beauty emerges from
unexpected simplicity.

The slab should be as

thick as the radius of the

cutting circle.

Can you do it with fewer

than 22 cuts?
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What to Expect in Future Parts?

We shall build our model for the n-Cov as the superposition of
an inscribed icosahedron and an inscribed dodecahedron within a
sphere. Then we shall study the properties of spherical triangles.
These are essential steps towards settling the challenge posed in
Part 1, namely which diagrams within Figure 1 in Part 1 are closer
to truth and which are far-fetched. Stay tuned.
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