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Quantitative and systems pharmacology (QSP) is increasingly being applied in pharmaceutical research and development.
One factor critical to the ultimate success of QSP is the establishment of commonly accepted language, technical criteria, and
workflows. We propose an integrated workflow that bridges conceptual objectives with underlying technical detail to support
the execution, communication, and evaluation of QSP projects.
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Mathematical modeling of systems dynamics has a long his-
tory in the mathematics and engineering disciplines, from
basic research in nonlinear dynamical systems to application
in chemical, mechanical, and electrical process control.
These methodologies were subsequently applied to study
how biological systems respond to input conditions and per-
turbations, including pharmaceutical agents, and even to
optimize treatment approaches.1 As efforts converged with
developments in pharmaceutical sciences and systems biol-
ogy and with advances in analytical and computational capa-
bilities, the discipline of quantitative systems pharmacology
(QSP) emerged at the intersection of these fields. QSP has
been described as the “quantitative analysis of the dynamic
interactions between drug(s) and a biological system that
aims to understand the behavior of the system as a whole.”2

QSP approaches typically share several attributes that, taken
together, highlight how the discipline integrates the drug and
treatment outcome considerations of pharmaceutical scien-
ces; the first-principles mechanistic modeling and dynamical
analysis of engineering and applied mathematics; and the
complex biological network science of systems biology
(adapted from ref. 3).

Common features of QSP approaches

• A coherent mathematical representation of key biological connections in
the system of interest, consistent with the current state of knowledge.

• A general prioritization of necessary biological detail over parsimony,
potentially including detail at various physiological scales.

• Consideration of complex systems dynamics resulting from biological
feedbacks, cross-talk, and redundancies.

• Integration of diverse data, biological knowledge, and hypotheses.
• A representation of the pharmacology of therapeutic interventions or

strategies.
• The ability to quantitatively explore and test hypotheses and alter-

nate scenarios via biology-based simulation.

The increasing interest in QSP in pharmaceutical research

and development is evidenced by the convening of an

National Institutes of Health (NIH) working group on QSP

and its issuance of a whitepaper4,5 and the recent use by

the US Food and Drug Administration (FDA) in review of a

biological license application.6 Yet, as an emerging field,

QSP faces challenges to its ultimate broader success.7–9

One need is adoption of commonly understood language,
technical criteria, and workflows to allow communication and
assessment by peers, collaborators, and reviewers. This is a
challenge given the variety of QSP approaches and applica-
tions, including gene/protein/metabolomics regulation net-
works, metabolic flux analysis, signal transduction, cellular
interactions, tissue dynamics, disease platforms, and more.
Different conceptual workflows have been proposed in the lit-
erature for model development or qualification in QSP7,10 and
are similar to those in systems biology.11,12 Other efforts have
focused on particular technical methodologies (e.g., ref. 13).
In this study, we present a conceptual workflow, consistent
with those previously proposed, integrated with underlying
technical detail in order to support robust application of QSP
(Figure 1). Illustrative examples are provided, although these
are by no means exhaustive and do not encompass all areas
of the QSP field. The workflow is presented as a staged pro-
gression, although there is invariably iteration and interaction
between stages. The following sections describe the workflow
and address efforts, insights, and caveats at each stage. The
workflow offers a framework that can be tailored to a broad
variety of projects and also addresses common questions and
criticisms facing QSP efforts, discussed in the Summary. Illus-
tration of the application of the overall workflow in two pub-
lished examples is provided in the Supplementary Table S1.

STAGE 1. PROJECT NEEDS AND GOALS

The first step of any project is consideration of problem
context and goals. We briefly comment on high priority con-
siderations in QSP.

Interaction with collaborators
The success of any modeling and simulation effort depends
on clear identification of high priority questions for which
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results are likely to have valuable contributions. It is also
important to identify time constraints on when answers are
needed (e.g., drug development decision points). Regular
interaction is important in all collaborative work, and espe-
cially so in QSP in which the models themselves are multi-
disciplinary, predicated on a mathematical representation of
complex biology, and thus requiring cross-education on the
biology and the modeling. These interactions also foster a
“co-ownership” of the model goals, assumptions, hypothe-
ses, implementation, and results. The first stage of the pro-
ject must establish these collaborations and achieve
agreement on feasible modeling goals, as well as identify
individual responsibilities for data generation and sharing,
modeling, discussion, and review should be established at
project initiation.

Technical considerations
Pragmatic considerations on whether to initiate a QSP

effort include: sufficient data/knowledge available to inform

the modeling; the question best addressed by QSP vs.

other experimental or modeling approaches; sufficient

resources to allow timely execution; and how robust do

predictions need to be to provide value? Even a limited

analysis of data and project feasibility at this stage can set

expectations for reasonable project goals and rough

resource requirements subject to revision during more

extensive scoping in Stage 2.

OUTCOMES

The desired outcomes of Stage 1 are:

• Specification of and agreement with any collaborators on questions
of interest

• Identification of potential project goals, including any timeline and
resource pressures

• Definitions of roles and responsibilities of collaborators

Figure 1 A six-stage iterative workflow for quantitative systems pharmacology (QSP) project execution, including the conceptual objec-
tive of each stage (blue text) and the corresponding technical objective (red text). The workflow is iterative and model-based insights of
different nature and degrees of robustness can be obtained at each stage.
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STAGE 2. REVIEWING THE BIOLOGY: DETERMINING

THE PROJECT SCOPE

A necessary step in planning a QSP effort is the identifica-

tion of the biological scope a model must encompass and

behaviors it must recapitulate in order to make predictions

to support the specific project goals. Scope decisions are

guided by the project goals and available data, knowledge,

and hypotheses of interest.

Model scale
One consideration in scoping is the breadth and depth of

detail and the biological scales to include (intracellular, mul-

ticellular, tissue, organ, and whole body). Disease or biol-

ogy platforms and multiscale models are models that span

multiple subsystems, pathways, and biological scales; these

models are typically larger in scope and can be used to

address multiple questions and the interaction of the sub-

systems. Platform models have been used to compare and

evaluate diverse targets or across a wide range of contexts

involving common biology.14,15 However, the development

of these models tends to be resource intensive. Focusing

on specific targets, compounds, or signaling or biological-

interaction pathways, possibly in greater depth (e.g., refs.

16–18), can limit scope while allowing for later expansion to

other applications. Another aspect of scale is the impor-

tance of spatial and temporal effects (i.e., time-scales

of interest and the importance of spatial heterogeneity).

These considerations help determine a suitable modeling

approach.

Information and data collection
One must also consider what features and components to

address (or exclude) in the model, namely:

• Species: what molecular, cellular, or physiological entities to
consider

• Relationships: how do the species interact (chemical transforma-
tions, regulatory mechanisms, etc.)

• Inputs and outputs: what are the conditions and phenotypic
responses of interest

• Data types: what data will be used in the modeling

This involves aggregation and analysis of information

from disparate sources, as outlined in Table 1.

Expert knowledge. Discussion with biology, drug develop-

ment, and clinical experts provides a valuable source of

knowledge. In these discussions, it is important to clearly

identify what aspects of the biology are robustly established

in the field, what is contentious, and what are the open

questions and working hypotheses in the field. Continued

partnership with subject matter experts helps ensure that

the model maintains relevance throughout the effort.

Public literature. Numerous publicly available sources pro-

vide information on the underlying biology, key biological

components, experimental systems, knowledge gaps, and

prior art. Review articles on the disease or biology are a

good starting point. Clinical literature and updates on

ongoing studies from sources, such as clinicaltrials.gov,

conferences, and abstracts, provide information on patient

phenotypes, drug response patterns, the competitive land-

scape, and unmet medical needs and open problems. Infor-

mation on direct mechanistic cellular or molecular pathways

and interactions are most commonly described in preclinical

studies (e.g., direct effects of mediators on specific cell

types). Public literature is often also a valuable source of

datasets useful for model development, calibration, and

testing.
Identifying and reviewing these resources can be a

momentous undertaking. Natural language processing and

text mining algorithms and tools are available to parse bio-

medical literature to read context, compile specific meas-

urements, and construct molecular interaction networks.19

These capabilities are progressing rapidly, but application

to mechanistic interpretation still requires significant user

curation. Efforts, such as DARPA’s “Big Mechanism” pro-

gram (DARPA-BAA-14-14, http://www.ncbi.nlm.nih.gov/

pubmed/26178259), are underway to advance this field.

Until such tools become efficient, literature review remains

a bottleneck in the scoping process and focusing on key

aspects becomes critical.
The review of public domain material for relevant mathe-

matical models and prior work is also important. Some

Table 1 Data types and sources for QSP model-based development and research

KOLs & area experts Literature & abstracts Databases “In-house” data

General understanding Disease, biology, & clinical experts Review articles Summary material

(presentations, etc.)

Mechanistic understanding

and data

Disease, biology, & target experts In vitro and in vivo studies Pathway DBs In vitro, in vivo,

& clinical studies

Pharmacology understanding

and data

Pharmacology & drug development

experts

In vitro, in vivo, & clinical

studies

In vitro, in vivo,

& clinical studies

Clinical understanding

and data

Clinical experts Clinical reports & experience,

study results

Molecular DBs, aggregated

trial DBs,& deidentified

patient data DBs

Summary data &

patient-level data

Modeling approaches QSP, PK-PD & pharmacometric,

bioinformatics, and statistics

experts

Prior art Model repositories Parallel or prior PK-PD &

statistical models

DBs, Databases; KOLs, key opinion leaders; PK-PD, pharmacokinetic-pharmacodynamic; QSP, quantitative systems pharmacology.
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journals, such as CPT:PSP, publish core models associated
with the research articles. Systematic reviews of existing
models in a given disease or biological area also support
the reuse, repurposing, and extension of prior work (e.g.,
ref. 20). Although one may not find a model or set of equa-
tions that can be used directly, prior work can provide ideas
or a starting place for subsequent efforts.

Databases and repositories. Different kinds of databases
can provide information for the construction of a QSP
model (Supplementary Table S2). Pathway databases
codify signal transduction, metabolic, gene regulatory, or
even disease pathway interactions. However, these curated
representations of even well-established pathways, such as
“epidermal growth factor receptor (EGFR) signaling”21 can
differ greatly, in part because of the different scope and
granularity used in defining the pathway and other biomo-
lecular interactions.22 Molecular databases contain cellular/
molecular data from in vitro, in vivo, and/or clinical settings.
For example, full molecular profiles are now publicly avail-
able for 1,0001 immortalized cancer cell lines with in vitro
proliferative responses to 1001 anticancer agents,23,24 and
The Cancer Genome Atlas (TCGA) project hosts molecular
profile data on thousands of primary tumor samples from
many cancer indications.25 Such data can be used to help
quantify model species and assess frequencies of molecu-
lar events (mutations or gene expression patterns) within
and between populations of interest. Pharmacological (e.g.,
ChEMBL, DrugBank) and pharmacogenomic databases
(e.g., PharmGKB) include data on compound bioactivity
and how individual genetic profiles influence drug pharma-
cokinetic (PK) and downstream effects, and can help eluci-
date mechanism and identify different patient profiles.
Clinical databases from individual or multiple clinical trials
are available from public consortia or private sources.
Finally, repositories that include published models in stand-
ardized formats (CellML and SBML) also exist. Widespread
use of such repositories has been hindered26 by the nonun-
iformity of QSP model formats and software packages, as
compared to PK/pharmacodynamic (PD) models, which
typically use standard packages (e.g., NONMEM, Phoenix,
ADAPT, SIMCYP, or PKSim). However, provided adequate
specifications, the models can be recreated in the software
of choice.

Data management
Data aggregation. Collecting, extracting, analyzing, and
documenting available data is a complex task. Once in
hand, spreadsheets and databases are useful for organiz-
ing the extracted information and enabling subsequent
analysis. For example, while developing a QSP model of
type 1 diabetes in the nonobese diabetic (NOD) mouse,27

Shoda et al.28 performed a comprehensive review and anal-
ysis of response to interventions tested in the animal
model, ultimately providing broader insight on timing, dose,
and mechanism related patterns for researchers in the field.
In aggregating information, it is important to document any
debate about the data, concerns about its relevance, or
inconsistencies between datasets that must be considered
in selecting “reliable” data or testing alternate hypotheses
(e.g., upregulation vs. downregulation of gene X by protein

Y). Recording statistical variation within and among
datasets supports later exploration of variability. Formal
meta-analyses or simpler approaches, such as weighted
averaging by sample size, can be used for cross-study data
aggregation.29

Data generation. Any additional data acquisition is dictated
by gaps in current knowledge and available data. Generally,
parameter estimation for dynamical systems requires “cue-
signal-response” experiments30; that is, perturbation of the
system with relevant environmental “cues” (e.g., biological
stimuli, mutations, and drugs) and measurement of result-
ing “signals” (e.g., protein or gene expression, and cellular
processes) and phenotypic “responses” (e.g., in vitro prolif-
eration, in vivo, or clinical response). To enable parameter
estimation, conditions should be selected that induce
orthogonal, or at least diverse, changes.

Data analysis. Preliminary analysis of the available data can
be highly informative. For large datasets, hierarchical cluster-
ing and Principal Components Analysis (PCA) can reveal
patterns that are not obvious in raw data. Analysis based on
measurement covariation or statistical interaction networks
(i.e., Bayesian or Mutual Information) can be compared
against canonical knowledge of the system to assess consis-
tency or novelty. Multivariate regression methods, such as
partial least squares (PLS), can help identify input-output
relationships and reveal underlying mechanisms or variables
that are/not strongly predictive of clinical behavior.31,32 For
aggregated clinical data, meta-analyses can be used to
compare responses to different interventions or understand
interstudy variability (e.g., refs. 29, 33). Ultimately, these
analyses enable structural model development.

Visual note-taking
Visual mapping of the biology is useful for recording interac-
tions identified during scoping efforts. Diagrams enable easy
representation, interpretation, and revision of the biological
understanding associated with a mathematical model. Fur-
thermore, they support cross-disciplinary communication
with collaborators. A visual diagram can also serve as a
starting point for technical specification of model topology.

In simple cases, one can use nontechnical software with
drawing capability (e.g., Microsoft PowerPoint) to generate
these diagrams. User-friendly software designed to encode,
visualize, and analyze networks allow efficient generation
and modification of diagrams of greater complexity.34

Figure 2 shows one example of a signaling network dia-
gram in Cytoscape, a freely available network construction
and analysis platform. This and other software are also
compatible with standardized graphical and computational
notations for representing, importing, and exporting biologi-
cal pathways.36–38 One consideration in selecting a tool is
the ease of transition from the scoping effort to later model
implementation. Network analysis software designed for
systems biology/omics data does not usually enable
dynamic modeling and simulation; however, they can be
integrated with modeling software via user-developed scripts
or “apps.” For example, in their work on intracellular signal-
ing, Saez–Rodriguez et al.35 developed apps to link Cyto-
scape with mathematical capability in R.39 Other graphical
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user interface (GUI) based diagramming software, including

JDesigner, CellDesigner, and SBML’s Qualitative Models

Package,40 can be integrated with mathematical tools, such

as the Systems Biology Workbench or SBML-compatible

modeling software. Some biological systems modeling soft-

ware, such as the MATLAB SimBiology package, integrate

the diagrammatic and mathematical aspects through a GUI-

based interface to an underlying simulation engine, although

with less flexible and more technical network visualization.

Many more system’s visualization and modeling tools exist

or are in development.

Model development, qualification, and research plan
The literature review, expert consultation, data assessment,

and biological network diagramming are used to develop a

plan for execution of the project. Friedrich10 has presented

an approach to documenting this and supporting the project

moving forward. A comprehensive plan includes details of

what biology will be modeled and what will be excluded,

assumptions, behaviors of interest, questions to be

addressed, and hypotheses to be explored. It also includes

documentation of the information reviewed and how avail-

able data will be used to develop the model. It is important

to identify in advance which data will be used to inform

model generation and calibration (e.g., in vitro and clinical

data), which data will be reserved to test model predictivity

(e.g., additional therapeutic responses), and which data will

be used to support subsequent exploration (e.g., novel

compound PK or biomarker data). This ensures proper use

of data and clear communication of what will qualify the

model as “fit for purpose.”
Specification of calibration and testing datasets and suc-

cess criteria requires careful consideration. Calibration must
constrain the relevant biological mechanisms sufficiently to

have confidence in subsequent predictions. Testing datasets
must probe biology that was already constrained in calibra-

tion and that is relevant to future prediction. Educating col-
laborators on the proposed approach and gaining agreement

on chosen qualification criteria is essential, or later results
may be discounted. Explanation of the strategy is also
important as these procedures often differ between QSP

and traditional data-driven pharmacometrics.35,40

OUTCOMES AND INSIGHTS

The primary outcome of this stage is identification and doc-

umentation of intended model scope and project plan,
including:

• Visual mapping of biology
• Organized summaries or repositories of data collected and reviewed
• Documentation of key opinion leader input, data, analyses, hypothe-

ses, assumptions
• Specified qualification criteria and project execution plan (including

data use)

Integrated analysis of aggregated data often provide fun-
damental insight, identifying potential unanticipated topolog-
ical connections, or areas of poor data availability and

knowledge gaps in the field. These insights can provide
both qualitative and quantitative value to collaborators and

the broader community. Whereas results of data analysis
can be quantitatively robust, proposed novel topology
should be quantitatively explored in subsequent stages for

confidence in its consistency with all data and its relevance
to predictions.

STAGE 3. REPRESENTING THE BIOLOGY:
DEVELOPING THE MODEL STRUCTURE

Capturing system behaviors requires specification of model

topology and mathematical formulation in a manner consist-
ent with biological understanding and capable of capturing

salient features of the relevant data.

Model topology
“Model topology” is defined here as the set of species and

their connections as represented in the quantitative model,
although the nature of specifying the topology will differ

among different mathematical approaches. A visual map of
the topology plays an important role in development, revi-

sion, and communication of the model. Visual note-taking
diagrams generated in the scoping phase can serve as the
starting point for topological specification of the mathemati-

cal model.

Specification of model topology. Different technical
approaches exist for specification of the model topology.

Figure 2 Signaling pathway diagram generated in Cytoscape
software. Visual properties of nodes and edges are user-speci-
fied. Diagrams can be generated for any network directly in GUI
or through text/tabular file specification of nodes and
connectivity.

A Six-Stage Workflow for Robust Application of Systems Pharmacology
Gadkar et al.

239

www.wileyonlinelibrary/psp4



Fully supervised approaches have been widely used in
QSP efforts ranging from signaling models42 to disease
platforms.14,15 In these efforts, model topology is based on
prior understanding and includes representation of: biologi-
cal connections based on current or expert understanding;
competing hypotheses that have been proposed; and addi-
tional mechanisms needed to qualitatively capture observa-
tions and data. Supervised approaches are well suited to
the integration of disparate, diverse, and/or sparse datasets
and to relatively well understood (or hypothesis-driven) biol-
ogy. However, alternate a priori unappreciated topologies or
hypotheses consistent with available data are likely to be
missed. In contrast, unsupervised approaches reconstruct
model topology from qualitative network analysis or
quantitative data analysis. Larger datasets with coordinated
measurements of numerous modeled species under
different conditions enable network reconstruction. These
“network inference” and “reverse engineering” methods rely
on statistical analyses to elucidate model topology. Several
techniques, including correlation-based methods, Boolean
networks, Bayesian networks, and model-based methods
have been utilized for inference of metabolic networks from
metabolomics data,43 signaling networks from proteomic
data (e.g., refs. 44, 45) and gene regulatory networks from
expression data,46 and in deducing connectivity between
gene expression and clinical measurements in disease.47

Unsupervised approaches are largely drawn from prior art
in systems biology. Combinations of supervised and unsu-
pervised strategies can also be used to leverage the bene-
fits of each approach.48,49 The choice of approach depends
on the data and prior mechanistic understanding; regard-
less, the resulting topology should be reviewed to verify bio-
logical plausibility.

Alternate model topologies. Alternate model topologies
address qualitative mechanistic uncertainty. Automated
approaches, such as those developed by Saez–Rodriguez
et al.,35 can be used to generate and test alternate topolo-
gies. In cases in which the mechanisms are believed to be
well understood, one can focus instead on topologies
reflecting preidentified alternate hypotheses. Even so, the
possibility of alternate structures should be considered and
documented as a potential uncertainty with associated cav-
eats for predictions.

Graphical network analysis. Proposed topologies can be
analyzed using graph theory to identify degree of connec-
tivity of nodes (states/entities), node-node interactions
(number of paths, path length, direction of connectivity;
positive vs. negative relationships), and more. This informa-
tion can be used to identify critical sensor nodes, network
hubs, submodules, feedback loops, redundancies, and the
“proximity” of different biological entities, all of which can
shed light on the biology and suggest potential quantitative
model behaviors and experimental data needs.50–52 Various
algorithms and software, including Cytoscape, enable
graphical analysis.

Mathematical modeling formalisms
Representation of the biology includes formulation of math-
ematical equations describing the interactions in the topo-

logical network. Application-specific considerations guide
the selection of a modeling formalism appropriately as
follows:

• Kinetic data availability: Are rich time-course data or biological
understanding of mechanistic kinetics available?

• Data types: Are experimental measurements derived from unified
larger datasets or from smaller disparate datasets?

• Time-scales: Will the model include dynamics on widely different
time-scales? Can faster processes be assumed as steady state?

• Spatial heterogeneity: Is there a need to capture spatial heterogene-
ity, or will a coarse or lumped representation of spatial effects
suffice?

• Deterministic vs. probabilistic: How important are random/stochastic
effects?

Here, we highlight some of the more commonly used
approaches (Table 232,53–56), which have been discussed
in greater detail in prior reviews,57–59 although various other
formalisms exist. These include data-driven approaches
(common in systems biology), ordinary differential equa-
tions (common in PK and PD and engineering), and
approaches that include spatial effects (derived from
engineering).

Statistical and data-driven systems models. For rich
measurement sets obtained with multiple perturbations,
data-driven approaches, such as PCA, PLS, discriminant
analysis, and Bayesian inference, are not only useful in
analyzing data and identifying topology, but also to quantita-
tively specify the connections. These systems biology
approaches are often used in QSP models of gene and
protein networks.61,62 They are also useful in linking clinical
biomarkers with outcomes in disease as in the Archimedes
Model of clinical outcomes in diabetes and cardiovascular
disease.63,64

Logic-based models. Logic models are useful when the
detailed kinetics of the system are not well-characterized or
less important for the questions at hand, or where the rela-
tionships between inputs to a state and the state itself are
only qualitatively understood. These approaches use logic
rules (“and,” “or,” “not” statements, for example) to relate
entities and have been applied especially to models of cell
signaling or fate.65 In Boolean or discrete logic, nodes
assume one of two or more discrete values; this approach
is useful for analyzing system states or state transitions,
but does not address continuous dynamics. In fuzzy logic
approaches,60 states including time can take on a continu-
ous range of values to enable simulation of continuous
behaviors and dynamics. Logic models can also be con-
verted to differential equation models to address
dynamics.53

Temporal differential equations. Models based on determin-
istic ordinary differential equations (ODEs) are common in
QSP. The equations simulate continuous time-course
behaviors by explicitly accounting for kinetic processes.
However, appropriate parameterization of these models
requires rich kinetic understanding or data, or rate parame-
ters must be assigned or tuned based on physiological
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assumptions. Additionally, explicit inclusion of both compa-
ratively rapid and slow kinetics can lead to numerical stiff-
ness and slower simulation times even with stiff-solver
algorithms. Random effects can be addressed in QSP mod-
els with stochastic differential equations (SDEs; e.g., ref.
66). In their simplest form, these can be random or proba-
bilistic effects incorporated into ODEs, although numerous
other SDE forms exist.

Spatiotemporal differential equations. Describing continuous
spatial effects requires alternate approaches. Partial differen-
tial equation (PDE) models address both temporal and spa-
tial dynamics and can be solved using numeric methods,
such as finite differences or finite elements. These
approaches have been used to investigate pharmacological
effects on bone structure and fracture risk7 and fluid dynamic
effects on drug distribution in the eye.55 Again, stochastic
PDEs can be used to account for random effects.

Agent-based and cellular automata models. Agent-based
models (ABMs) and cellular automata (CA) capture interac-
tive and emergent behaviors of discrete agents (molecules,
cells, virions, and individuals) and address spatial effects in
a nondeterministic manner.67 These techniques represent
interactions and fates of numerous discrete entities that
drive the evolution of the system. The behavior of each
agent depends on rules for decision-making that can
include stochastic or statistically driven effects. Spatial
effects can be treated continuously or using lattices. Monte
Carlo approaches are used for simulation of system evolu-
tion, including statistical predictions of variability. Both
approaches have been used to study cell or organism inter-
action and spatial or morphological pattern behavior, espe-

cially for tumor growth, immune cell interactions, and

infectious agent dynamics.60,68–70

Hybrid and integrated models. Models in which different for-

malisms are integrated are valuable when the requirements

for capturing spatial and dynamic behaviors differ among

submodules. This is often the case in multiscale models,

especially when dealing with spatial heterogeneity. In model-

ing tumor immunology, Mallet and De Pillis71 superimposed

a CA model of cellular interactions with a PDE reaction-

diffusion model of soluble mediator distribution to reproduce

different patterns of tumor growth; Kim and Lee72 integrated

ABM for tumor dynamics with delay differential equation rep-

resentation of lymph node dynamics to explore questions

related to cancer vaccines. PK models (including physiologi-

cally based PK (PBPK) and population PK) can serve as

inputs into models of downstream biology (e.g., refs.

60,73,74). PBPK approaches can themselves be considered

QSP given the mechanistic detail included. The core struc-

ture of such a model is generally preserved and extension is

typically needed to represent downstream biology and drug

effects. QSP models that predict PD biomarkers can also be

integrated with statistical models that link these biomarkers

to clinical outcomes. The specific combination of approaches

must be tailored to the subsystems and questions of interest.

OUTCOMES AND INSIGHTS

The desired outcomes of this stage are:

• Diagram of biology including one or more topologies

Table 2 Common modeling formalisms in QSP

Modeling approach Mathematical form Strengths Potential drawbacks Example & software/language

Statistical data-driven Algebraic 1 probabilistic

equations

� Data-driven biology � Less mechanistic

� Best for coordinated measurement

of numerous variables

Apoptosis signaling32

Logic-based Rule-based interactions � Intuitive rules � Less kinetic richness

� Best for coordinated measurement

of numerous variables

Kinase pathway crosstalk56

(MATLAB Fuzzy Logic

toolboxa);

Myeloma cell-line

pharmacodynamics53

(MATLAB ODEfy54)

Differential equations Temporal ODEs or SDEs � Continuous temporal

dynamics

� Random effects, if SDEs

� Potential stiffness

� Requires rich kinetic data

NGF signaling pathway

and targets16

(MATLAB Simbiologya)

Spatiotemporal PDEs

or SDEs

� Continuous spatial and

temporal dynamics

� Random effects, if stochastic

SDEs

� Computational expense

� Spatial information needed

Ocular drug dissolution

and distribution55 (ANSYSb)

Cellular automata &

agent-based models

Interaction and evolution

rules for collection of

“agents”

� Intuitive rules

� Spatial and temporal

dynamics

� Random effects &

emergent behaviors

� Computational expense

� Spatial information needed

� Link to higher level behaviors

TB granuloma & inhaled

treatment response56

(C11)

ODEs, ordinary differential equations; PDEs, partial differential equations; QSP, quantitative systems pharmacology; SDEs, stochastic differential equations.
aMathworks, Natick, MA. bANSYS, Canonsburg, PA.

A Six-Stage Workflow for Robust Application of Systems Pharmacology
Gadkar et al.

241

www.wileyonlinelibrary/psp4



• Mathematical formulation of the model
• Results of any topological analyses
• Description of any model-based insights or changes

In a collaborative setting, an important goal of this stage is
to foster understanding, agreement, and buy-in with collabo-
rators on the technical implementation and assumptions.

Construction of a model can help identify novel biological
connections and mechanistic behaviors, including insights
such as connections that could result in biphasic kinetics or
redundancies and feedback. However, because at this point
the model is generally not calibrated or tested, these find-
ings are at best semiquantitative and must be subsequently
tested for consistency with parameter ranges and data.

STAGE 4: CAPTURING BEHAVIORS & BUILDING
CONFIDENCE: CALIBRATING “REFERENCE”
SUBJECTS

To verify that the specified model structure can capture
behaviors of interest, it is important to develop initial cali-
brations for representative scenarios and build confidence
in the model “functionality.” After initial specification of rea-
sonable parameter ranges for exploration, model analyses,
including parametric sensitivity analysis, dynamical analy-
sis, and model reduction, can be used along with formal
parameter estimation to identify “reference” calibrations.
The order of these efforts is not critical and they can be
conducted iteratively depending on project needs.

Parametric and structural model analysis
Identification of feasible parameter ranges is an initial step
in the quantitative exploration and calibration process. This
typically involves review of the experimental variability
around given data and mechanisms and any physiology-
based insight into feasible ranges.

For a given model structure and associated parameter
ranges, different analyses can be used to gain greater
understanding of the model prior to or iteratively with calibra-
tion and parameter estimation efforts. These analyses also
enable correction of structural or parametric limitations of the
model in reproducing desired behaviors and outcomes.

Sensitivity analysis. One analysis of 17 models revealed
that systems models often include many “sloppy” parame-
ters whose values do not strongly influence the system
behaviors of interest.75 Performing a sensitivity analysis
(SA) prior to parameter estimation enables the identification
of parameters in the model that most influence the outputs
and thus require more careful consideration, especially in
large models in which simultaneous optimization of all
parameters is challenging. Local sensitivity analysis evalu-
ates changes in model outputs in response to parameter
variations around a particular point in the parametric space;
the results are relevant only in the local space around that
point. Local SA is thus most commonly used as a means of
evaluating relative importance after model parameters have
already been estimated; for example, local SA was used to
evaluate the impact of alternate targets in ErbB-driven PI3K
signaling.18 In contrast, global SA methods consider the

entire range of the parametric space, giving a composite

measure of changes in the output over the space. In addi-

tion to identifying key parameters that influence outputs of

interest, global SA also reveals whether the desired range

of output values is achievable for the specified parametric

space or whether model revision is needed. Parameter opti-

mization can also be used for to verify this, but requires

optimization for each desired output profile; furthermore,

failed optimization might reflect an inadequate optimization

approach rather than a model liability. Zhang et al.13 and

Marino et al.76 reviewed common global SA methods, high-

lighting their relative advantages and disadvantages. Zhang

et al.13 favored the Sobol SA method, illustrating its applica-

tion to their model of vascular endothelial growth factor

receptor (VEGFR)-mediated endothelial biology. Sobie77

used an approach in which multivariate regression coeffi-

cients for outputs vs. parameters provided global sensitiv-

ities of the outputs to the parameters. For the cardiac

electrophysiology models used in this work, the regression

models were quite accurate despite the nonlinearities in the

model.

Dynamical analysis. Based on the model topology and the

mathematical formulation, dynamical analysis can be used

to evaluate potential system behaviors for specified ranges

of parameter values. Although not frequently considered,

this is a valuable approach to identify dynamical features of

the system, such as the stability of steady states, the exis-

tence of bifurcations and alternate steady-states, hystere-

sis, oscillations, and instabilities. Dynamical analysis of the

multistep mitogen-activated protein kinase (MAPK) phos-

phorylation cascade correctly predicted ultrasensitivity of

MAPK phosphorylation to stimuli and identified situations in

which it can exhibit bistability/hysteresis or oscillatory

behavior.78–80 A list of tools that support dynamical systems

analysis is currently available through the Dynamical Sys-

tems website (http://www.dynamicalsystems.org/sw/sw/).

Model reduction. Model reduction can improve the effi-

ciency of QSP efforts by simplifying the model without

sacrificing its ability to recapitulate specific emergent prop-

erties and address the prioritized question(s). Model reduc-

tion techniques have been efficiently used in the

engineering disciplines81 and can broadly be classified as

lumping methods, SA-based techniques, and time-scale-

based techniques. In the lumping methods, model compo-

nents are aggregated or eliminated based on expert super-

vision or systematic analyses, such as correlation between

variables and simplification of mathematical forms to main-

tain original model behaviors. For example, Schmidt et al.82

developed a method whereby rate expressions repeatedly

used in metabolic network models are lumped into a simpli-

fied form, reducing the number of model parameters. How-

ever, lumped parameters can be difficult to interpret

biologically. In SA-based approaches, subsections of the

model that do not influence the outputs of interest are elimi-

nated. Time-scale-based approaches are useful if the proc-

esses in the model vary over multiple time scales, such

that faster processes can be assumed to be quasisteady.

Schmidt et al.83 demonstrated a time-scale-based model
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reduction of a published bone metabolism model. Reduc-

tion can render models identifiable and eliminate the impact

of parameter uncertainty, accelerate simulations, reduce

the parameter space for exploration and optimization,

reduce combinatorics of parameter or pathway exploration,

and focus interpretation and communication of results on

the most relevant aspects.

Parameter estimation
Once the parameter space for exploration is specified,

parameter estimation is typically used to calibrate the model

to data on responses to specified stimuli or conditions and

build confidence that the model structure and the parameter

space are suitable for describing the data. Initial calibration of

simple model subsystems can be performed as a first step,

either informally (hand-tuning) or using parameter estimation.

For example, a cell turnover subsystem of a larger disease

model can be calibrated to biomarker data on cell numbers

and proliferative and apoptotic markers. Subsystem calibra-

tion can verify that the structure can capture the relevant

data, provide good initial parameter estimates, and make sub-

sequent integrated model calibration more tractable.

Specification of major phenotypes. As a first step, one can

define a limited number of representative profiles correspond-

ing to mean results for phenotypes of interest (e.g., different

cell lines or clinical disease severities). Different model

parameterizations can then be estimated to capture each of

these profiles. At this stage, we focus on an initial parameter-

ization for each phenotypic profile, which we term a reference

virtual subject (VS). For either underspecified systems or

alternate biological hypotheses, alternate reasonable parame-

terizations and structures must also be explored via alternate

VSs. We defer discussion of this process until Stage 5

(Figure 3), although these alternate solutions can be explored

in parallel rather than starting with a reference VS.

The objective function. Parameter estimation involves optimi-

zation of model predictions relative to data selected for cali-

bration. This is achieved by minimizing an objective function

that quantifies the divergence between simulation results and

calibration data. Log or linear normalization of output values

between 0 and 1 in the objective function helps ensure equal

weighting of each output in the optimization. The objective

function can then be represented as a sum of square errors

across all the data, or different weightings can be applied to

outputs of greater priority. Other metrics, such as time to

peak measurement, can also be used in the objective func-

tion. Specifying an appropriate objective function is nontrivial

and may require iteration. The objective function may also

include a component that is utilized for model selection crite-

ria where, essentially, a penalty is imposed for increasing

model complexity and/or deviations of parameter values from

prior values. Kearns et al.84 and S�ebastien85 have reviewed

different algorithms utilized for model selection.

Optimization algorithms. Optimization methods can broadly

be classified into local and global methods. Local

approaches search for minima of the objective function in

the vicinity of initial parameter estimates. These methods

are recommended when one is confident that the optimal

solution is “close” to the initial guess and that the objective

function is smooth and convex over the parameter range

explored. Global optimization methods search for minima

over the entire parameter space. Deterministic global opti-

mization methods guarantee that the global minimum is

achieved, but are computationally expensive and might

sometimes be unfeasible. In contrast, stochastic global opti-

mization methods can reach the global or near-global min-

ima and are typically more computationally efficient.

Repeated execution of stochastic approaches can yield

alternate parameter sets with similar objective function val-

ues, which can be considered alternate VSs. In most

cases, these algorithms can currently be executed in hours

on standard multiprocessor laptops, although parallelization

or computer clusters/servers can accelerate the process.

Various review articles have discussed optimization meth-

ods suitable for QSP models,86–88 including those listed in

Table 3.89,90 Hybrid approaches that apply global optimiza-

tion along with deterministic local optimization methods are

also frequently used; for example, Rodriguez–Fernandez

et al.89 proposed an approach that combines the Scatter

Search algorithm with local search methods, applying it to

three smaller nonlinear biochemical systems models.

Finally, comparison of optimized parameter values to

literature-based prior estimates can provide a useful consis-

tency check with the literature, and a large divergence can

suggest a biologically implausible solution. Divergence of

optimized parameter values from prior estimates can even

be incorporated as a penalty in the objective function, as

done by Lu et al.90 in their work on lipid metabolism and

kinetics. Many algorithms have been successfully applied in

QSP research; the “best” choice and relative performance

Figure 3 Schematic for use of virtual subjects in quantitative
systems pharmacology (QSP) research. Reference subjects are
developed to represent major phenotypes of interest (here,
responder vs. nonresponder patients to a specified therapy). For
each phenotype, starting with the reference subject, numerous
alternate virtual subjects are generated to address parametric
uncertainty and variability. Finally, a virtual cohort represents the
combination of numerous virtual subjects of interest, potentially
including prevalence weighting to capture statistical measures of
population outcomes to create a virtual population.
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will depend on the specific application, and modified or new

approaches may be required for challenging problems.

Reference calibration testing and exploration
Reference VSs that capture representative behaviors of

phenotypes of interest can be used for initial testing. If sim-

ulations recapitulate critical features of data not used for

calibration, it increases confidence in the model develop-

ment. Note that this need not be formal validation, but

rather the degree of “testing” judged sufficient to build con-

fidence in the reference VSs as a reasonable starting point

for future exploration. Because only a few among many

possible VS parameterizations are tested here, close quan-

titative agreement might be an unrealistically high bar.

Instead, critical features of the data to be reproduced

should be prespecified, and could include for example:

behavior within specified deviation from mean or median

data; correct relative ranking of impact of different perturba-

tions; or appropriate parameter/mechanism sensitivity.
Simulation with the reference VSs can also be used for

preliminary exploration of questions of interest. However,

this should be accompanied with caution as the reference

parameterizations may not be the most “biologically rele-

vant” solutions and may provide misleading predictions.

Even so, if sensitivity analysis is used to highlight potential

uncertainty in the predictions, an initial exploration can sup-

port understanding of the subject phenotypes and provide

insight into project questions.

OUTCOMES AND INSIGHTS

The following primary outcomes of Stage 4 should be

reviewed with all collaborators:

• Output sensitivity to different parameters; identification of associated
‘‘sensitive’’ parameters

• Initial calibration(s) of reference subjects corresponding to major
phenotype(s) of interest

• Results of any dynamical analyses
• Reduced model if appropriate
• Successful testing and, as needed, revision of reference subject(s)

The successful completion of this stage builds confidence
in the ability of the model to reproduce a multiplicity of criti-
cal behaviors using a single biologically reasonable param-
eterization for each reference VS. Structural changes
needed to capture known behaviors can highlight gaps in
biological understanding. Results of global sensitivity and
dynamical systems analysis can elucidate fundamental sys-
tem behaviors and factors that govern them. The reference
calibrations begin to give quantitative insight into the biol-
ogy, such as what mechanistic activities are consistent with
outcomes and what mechanistic differences could drive dif-
ferent phenotypes. However, quantitative insights are sub-
ject to the caveats that reference VSs represent few among
many potential parameterizations, and predictions are lim-
ited to identification of “possible” outcomes.

STAGE 5. EXPLORING KNOWLEDGE GAPS AND
VARIABILITY: ALTERNATE PARAMETERIZATIONS

QSP models can enable hypothesis exploration and predic-
tion in broader contexts than empirical models (i.e., novel
targets, combinations, and biomarkers) and with considera-
tion of complex dynamics not usually addressed in other
mechanistic PK-PD models or systems biology models.
However, the biological understanding central to these mod-
els is often imperfect and underconstrained, such that model
structures and parameterizations cannot be uniquely identi-
fied. This might in fact reflect the robustness of a biological
system, in which behavior must be maintained over a broad
range of physiological perturbation and variability. Thus,
exploration of variability and knowledge gaps through the
use of alternate parameterizations is an extremely important
aspect of QSP-based work. Alternate parameterizations that
produce comparable high-level behaviors under some con-
texts, may yield different predictions in new contexts, and
thus must be considered for robust predictions. Gutenkunst
et al.75 proposed that, because of the extent of parameter
“sloppiness” in systems models, the focus should not be the
uncertainty around individual parameters, but rather the
range of possible model predictions. Exploration of knowl-
edge gaps and variability can be used to identify different
predictions that result from alternate reasonable model struc-
tures and/or parameterizations. This approach outlined to

Table 3 Parameter optimization approaches

Optimization approach Example algorithms Strengths Caveats Example applications

Local Levenberg–Marquardt Simplicity, computational

efficiency

Local minimum only; requires convex,

smooth objective function

Glycolysis pathway

model91

Deterministic global Branch and Bound Guaranteed global minimum Computationally expensive Metabolic systems92

Stochastic global Simulated Annealing,

genetic algorithms,

evolutionary programming,

evolutionary strategies,

particle swarm, scatter

search

Computational efficiency;

near global minimum

Global minimum not guaranteed Blood coagulation93;

signal transduction94;

signaling95

Hybrid Combinations of the above Leverages strengths of local

and global approaches

Fewer and less widely tested

algorithms available

Dynamic biological

systems89 and

lipid metabolism90

A Six-Stage Workflow for Robust Application of Systems Pharmacology
Gadkar et al.

244

CPT: Pharmacometrics & Systems Pharmacology



relating variability in predictions to underlying model parame-

ters is very different than data-driven pharmacometric strat-

egies for identifying causes of variability, in which covariance

among parameters is a serious challenge.

Virtual subjects and populations
Here, we refer to each different model instance (structure

1 parameterization) as an alternate VS, which can corre-

spond to a virtual cell, organ, patient, pathway, or other bio-

logical system. As discussed above, a reference VS is a

single VS representative of a given phenotype, a virtual

cohort is a collection of VSs that match data for the pheno-

typic population of interest, and a virtual population (Vpop)

is a virtual cohort in which each VS’s contribution is

weighted such that the Vpop reproduces statistical features

of the data. These concepts are further described below

and in Figure 3.

Virtual subjects. Each VS corresponds to one point in

parameter space for a given model structure. For a VS to

be “acceptable,” all model outputs for that VS, simulated

under the appropriate conditions (e.g., untreated and

treated), should be within the limits seen in real world data.

A collection of acceptable ranges across all outputs defines

VS acceptance criteria. The criteria can include higher-level

properties of the phenotype (e.g., diabetic patient criteria of

fasting glucose >126 mg/dL) but would ideally include plau-

sible values of any relevant subsystem or biomarker meas-

ures (e.g., hormone concentrations and tissue properties).

Monte Carlo based exploration of the parameter space and

VS selection against the established acceptance criteria will

generate a pool of virtual patients. Gomez–Cabrero et al.96

developed a workflow for generating alternate hypothesis

from models with parameter uncertainty: a collection of fea-

sible parameter sets is identified using parameter estima-

tion techniques, and corresponding model predictions are

clustered to identify “key” behaviors and the corresponding

parameters that produce them.

Virtual cohorts. A collection of VSs forms a virtual cohort.

Virtual cohorts are used to predict the possible range of

outcomes in simulated experiments. “Inclusion” criteria are

highly dependent on the application. For example, for clini-

cal trial simulation, the criteria could be the inclusion/

exclusion criteria of the corresponding clinical study, and/or

behavior within the variability of results from previous trials.

Virtual population. When statistical data are available on

variability in the real-world measurements relating to model

outcomes (e.g., tumor cell/mass growth, disease activity,

and biomarker correlations), Vpops can be used to refine

predictions associated with a virtual cohort. We define a

Vpop as a collection (cohort) of VSs that are selected or

weighted to reproduce statistical features of experimental

measurements. In a Vpop, individual VSs are assigned

weights corresponding to their relative contribution to the

population measurements and statistics. These statistical

(or “prevalence”) weights reflect the potential probability of

occurrence of each VS in the corresponding real-world

studies. A binary 0 vs. 1 weighting can be used to “select”

VSs that together constitute a Vpop with the desired statis-

tical features.17 More complex schemes that try to maxi-

mize the mechanistic or parametric diversity of the Vpop

have also been used.97 Once developed, Vpops can be

used for predictions of means and ranges of responses to

interventions of interest (discussed below) and to analyze

correlations among parameters and variables.

Qualification and predictive capability
Qualification and testing of QSP models is fundamentally dif-

ferent than validation and testing of PK-PD, pharmacometric,

and statistical models, as discussed by Agoram.41 The bio-

logical understanding central to QSP models is often imper-

fect and underconstrained. Modeling can reduce or highlight

critical unknowns, but predictions are still subject to uncer-

tainty. Thus, prior discussions of QSP qualification10,41 have

focused on ensuring that the model addresses uncertainties

in the critical biology and that simulation results are consist-

ent with (but not necessarily predictive of) specified data.

Even so, it is valuable to test the predictive capability of a

QSP model to set expectations for and enable interpretation

of prospective predictions.
Once VSs have been developed to capture relevant data,

the model predictive performance is tested by assessing

agreement between simulated predictions and selects

experimental or clinical outcomes data reserved for this

effort. Admittedly, reserving data for predictive verification in

an underconstrained setting in which data are already insuf-

ficient can be challenging, and this step is sometimes omit-

ted. However, when reserving valuable data is problematic,

even limited verification is useful. For example, Gadkar

et al.17 used data from a single dose monotherapy arm of a

trial for calibration and multidose monotherapy and combi-

nation therapy data from the same trial for prediction.
As VSs represent a range of hypotheses and parameter-

izations, only some of which might prove valid, only a subset

of VSs might match the testing criteria. VSs with unrealistic or

inconsistent behaviors can then be eliminated from the popu-

lation. If few (or no) VSs generate predictions consistent with

test data, iterative generation and testing of VSs, possibly

including model revision, should be performed. Regardless,

interpretation of model predictions depends on the robust-

ness and extent of predictive verification.
Finally, unlike the case with empirical PK-PD models, mis-

matches between data and QSP-based predictions can offer

valuable insight by highlighting inconsistencies between bio-

logical hypotheses and real-world observations: What behav-

iors do not fit our mechanistic understanding? Are specific

qualitative or quantitative hypotheses invalidated? What new

hypotheses could resolve the mismatch? Thus, mismatches

are not solely an issue with the model, but can reflect the

state of understanding in the field.

Predictive simulation
A virtual cohort or Vpop whose behavior has been verified

against appropriate data can be used to make predictions

relevant to project questions. For an unweighted virtual

cohort, the variability in predictions offers a range of possi-

ble quantitative outcomes. These results can also be used

to assess relationships between biomarkers or parameters

and responses or phenotypes, for example by hierarchical
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clustering. A weighted Vpop can provide statistical predic-

tions, such as mean outcomes, variability, and correlations.

The more data used in the weighting, the more confidence

one can have in the statistical aspects of the predictions.

Robustness of predictions, however, is dependent on the

robustness of the total set of data (quantity, quality, and

nature) used to develop and constrain the model and the

VSs. Thus, the degree of confidence in predictions must be

carefully assessed and communicated on a case-by-case

basis.

OUTCOMES AND INSIGHTS

The outcomes of this stage are the final QSP-based find-

ings on questions identified in scoping before any expan-

sion or revision of the model, for example as new data

emerge, and include:

• Robust quantitative simulation-based predictions and understanding
• Influence of variability or uncertainty on predictions and the respon-

sible parameters/biology
• Explanation of how the results follow from biological understanding

and data

The final point, in particular, is invaluable for collabora-

tor understanding and acceptance and should be the

focus of discussions and recommendations. However, as

every stage of the workflow helps support acceptance and

interpretation of the final predictions, clear communication

of the workflow and results along the way are also impor-

tant to the ultimate project success. For less technical

interactions or for senior managers in industry, concise

description of the biological mechanisms leading to the

prediction, any uncertainties/risks in the predictions, and

the modeling-guided recommendation or decision promote

adoption.

STAGE 6. SUPPORTING EXPERIMENTAL AND

CLINICAL DESIGN: REFINING KNOWLEDGE

In addition to directly providing insight into the originally

defined project questions and goals, model-based under-

standing can be used to guide collection of important data

to enhance biological understanding or to verify “testable”

predictions.
Data gaps and sensitivities identified throughout the

workflow can be used to propose critical experiments or

Table 4 Approaches to answering frequently asked questions in QSP

Frequently asked questions/criticisms and responses

How can you build a model of biology we do not quite understand? What about competing hypotheses? Conflicting data?

• The model is an integrated, quantitative formalization of our current understanding of the biology and data.

• It allows evaluation of the hypothesized biology, including competing hypotheses and data, which can be implemented via alternate structures and

parameterizations.

• The model can be used to identify inconsistencies between hypotheses and data to support evaluation of the hypotheses and even propose new

hypotheses.

With enough parameters you can fit an elephant. The model is underspecified and the parameters are not identifiable.

• The first assertion is not true, because the model structure is not empirical but based on biological mechanism. Thus, the ability to “fit” the data is not guar-

anteed, regardless of the numbers of parameters.

• QSP models often contain many so-called “sloppy” parameters, which do not influence behaviors of interest.

• Sensitivity analysis identifies influential parameters to vary in alternate parameterizations.

• Numerous alternate parameterizations consistent with the data are explored.

• Model reduction can be used to make parameters identifiable if needed.

How do we evaluate and interpret this work? To what extent should we trust the predictions?

� Interpretation of results is based on the following criteria (corresponding to the workflow stages):

1. Application to questions for which it is qualified

2. Quantity/quality of biological knowledge and data

3. Reasonable representation of the biology

4. Consistency with all relevant behaviors

5. Adequate exploration of variability and uncertainty and testing of predictive capability

6. Articulation of important data gaps for experimental evaluation, and proposal/verification of “testable” hypotheses

7. The robustness of the predictions depends on the extent of exploration of the above

The models are too complex to explain to collaborators.

• Regular discussion with collaborators and advisors promotes shared understanding and ownership of the model

• Emphasis on the biological explanation/justification of decisions and findings fosters acceptance and adoption

Model predictions were wrong. Therefore the model is not useful.

• Incorrect predictions can offer valuable insight by identifying inadequacies in the understanding of the biology, as formalized in the model.

• Proposing mechanisms that could resolve the mismatches provides novel biological hypotheses and highlights areas for further experimental exploration to

advance the understanding in the field.

QSP, quantitative systems pharmacology.
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measurements that will clarify important biology of the

system. The identification and prioritization of data and

knowledge gaps highlight what experiments are needed

or what biomarkers should be measured. Experimentalists

and modelers can then collaborate to propose preclinical

experiments or clinical trial design to resolve these uncer-

tainties. In some cases, model results are predicated on

or lead to testable hypotheses and predictions, and sub-

sequent experiments can be used to verify these and

guide revision of the model and the related biological

understanding.
Experiments can also be designed to improve parameter

estimation or for model discrimination. Optimal experiment

design, including selection of species to measure, timing of

measurement, and choice of perturbations, is based on

maximizing the information content contained in the Fisher

Information Matrix. Iterative modeling and experimental

approaches have also been described.98–100

OUTCOMES AND INSIGHTS

The primary outcomes of this stage of the workflow are:

• Recommended experiments and experimental design to support
refinement of understanding and predictions

• Refinement of previous predictions based on incorporation of the
experimental results into the model

The efforts in this stage provide insight into missing infor-

mation in the field and support efficient experiment design.

Results of model-informed experiments can be used to con-

strain parameters and test alternate hypotheses. Once

these results are incorporated into the model, updated sim-

ulations can be performed to refine predictions made in the

previous stage(s) of the workflow.
Of course, the exploration of one set of questions invaria-

bly leads to new ones. As such, the workflow is not linear

but cyclic, allowing for continued refinement or expansion of

QSP models based on emerging experimental or clinical

data and new questions and goals.

SUMMARY

We have presented a staged workflow for the application of

QSP. Notably, this workflow helps address several ques-

tions and criticisms commonly facing QSP projects, as out-

lined in Table 4. By providing a common, organized

strategy along with guidance on technical approaches to

address these and other considerations, we believe this

workflow and subsequent evolution thereof can offer a use-

ful framework for the execution, communication, and accep-

tance of QSP endeavors.
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