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Abstract

Decellularization is a promising technique to
produce natural scaffolds for tissue engineering
applications. However, non-crosslinked natural
scaffolds disfavor application in cardiovascular
surgery due to poor biomechanics and rapid deg-
radation. Herein, we proposed a green strategy to
crosslink and functionalize acellular scaffolds via
the self-assembly of copper@tea polyphenol
nanoparticles (Cu@TP NPs), and the resultant
nanocomposite acellular scaffolds were named as
Cu@TP-dBPs. The crosslinking degree, biomechan-
ics, denaturation temperature and resistance to
enzymatic degradation of Cu@TP-dBPs were com-
parable to those of glutaraldehyde crosslinked
decellularized bovine pericardias (Glut-dBPs).
Furthermore, Cu@TP-dBPs were biocompatible
and had abilities to inhibit bacterial growth and promote the formation of capillary-like networks. Subcutaneous implantation models demon-
strated that Cu@TP-dBPs were free of calcification and allowed for host cell infiltration at Day 21. Cardiac patch graft models confirmed that
Cu@TP-dBP patches showed improved ingrowth of functional blood vessels and remodeling of extracellular matrix at Day 60. These results sug-
gested that Cu@TP-dBPs not only had comparable biomechanics and biostability to Glut-dBPs, but also had several advantages over Glut-dBPs in
terms of anticalcification, remodeling and integration capabilities. Particularly, they were functional patches possessing antibacterial and proan-
giogenic activities. These material properties and biological functions made Cu@TP-dBPs a promising functional acellular patch for cardiovascular
applications.
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Introduction
Cardiovascular disease, which represents a group of diseases affect-
ing the heart and circulatory system, is a leading cause of morbidity
and mortality throughout the world. Regardless of etiology, the ap-
plication of patches is a widely accepted therapeutic method for
surgical treatment of cardiovascular disease, including repair and
reconstruction of myocardium, heart valves and blood vessels [1, 2].
Currently, patches commonly used in clinically consist of synthetic
patches and xenogenic biological patches. The major drawback of
synthetic patches such as woven nylon and expanded

polytetrafluoroethylene is that they are rigid and induce reactive in-
flammation and thrombosis upon implantation [3]. Xenogenic bio-
logical patches offer several advantages over synthetic patches,
which include good pliability, lower thromboembolism and de-
creased suture line bleeding [4]. Glutaraldehyde (Glut) is a conven-
tional crosslinker to mask xenoantigenicity and improve the
biomechanics and biostability of biological patches. However, Glut
crosslinked patches are prone to calcification that may lead to long-
term failure [5, 6]. Delayed remodeling and integration with sur-
rounding tissue are also important limitations of these patches due
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to reconstructive failure [7]. Decellularization is an alternative
method for processing biological tissues with decreased antigenic-
ity, resistance to calcification and favorable tissue remodeling [8].
However, non-crosslinked acellular patches have low mechanical
properties and exhibit rapid degradation rates both in vitro and
in vivo, disabling their application in cardiovascular surgery [9, 10].

Hence, it is desirable to explore a new strategy to crosslink
acellular patches suitable for cardiovascular applications. In ad-
dition, future cardiovascular patches should be functional mate-
rials to have desired biological activities.

Copper is an essential metal element to all organisms, as cop-
per ion acts as a cofactor for many enzymes involved in redox
reactions and various biological processes. Particularly, copper
ions have been found to have proangiogenic and antibacterial ac-
tivities [11, 12]. In this context, there has been a growing ten-
dency to incorporate copper ions or copper-based nanoparticles
(acting as a reservoir of copper ions) into biomaterials to fabricate
functionalized biomaterials [13–15].

Green tea is a popular consumed beverage in Asia that has
attracted more attention in recent years. Tea polyphenol (TP) is a
general term of polyphenolic mixtures extracted from green tea,
which has inherent antibacterial, antioxidant and antiradical ac-
tivities [16, 17]. It also serves as a good reducer of metal ions,
thus favoring the green synthesis of metal nanoparticles [18, 19].
Furthermore, it has been reported that polyphenols derived from
plants can be utilized as natural crosslinking agents, as they can
be self-assembly with protein side chains via covalent or non-
convent bonds [20].

In this study, we used decellularized bovine pericardia (dBPs)
as the patch scaffolds and proposed a green strategy to crosslink
and functionalize acellular patches via the self-assembly of cop-
per@tea polyphenol nanoparticles (Cu@TP NPs). We hypothe-
sized that Cu@TP NPs were able to bridge and crosslink dBPs,
thus improving the biomechanical properties and biostability of
dBPs. Furthermore, the introduction of Cu@TP NPs could endow
dBPs with biological functions, such as antibacterial and proan-
giogenic activities.

Materials and methods
Detailed materials and methods are available in the
Supplementary Materials.

Fabrication of Cu@TP-dBPs
Fresh bovine pericardia were harvested from a local abattoir
(Wufeng Company, China) and transported on ice to the labora-
tory. Decellularization was performed following our previously
established method [21]. The obtained dBPs were sterilized using
70% alcohol and rinsed in sterile phosphate buffered saline (PBS).
To prepare TP solution, the decaffeinated green tea (10 g) was
added to 100 mL double distilled water and heated at 60�C for
60 min. Subsequently, dBPs were immersed in copper sulfate
(CuSO4, Sigma Aldrich, Germany) solution for 48 h at 37�C. After
washing with PBS, dBPs loaded with copper ions then were
treated with TP solution for 12 h at 40�C. For comparison pur-
poses, dBPs, dBPs treated with TP solution (TP-dBPs) and dBPs
treated with Glut (Glut-dBPs) were prepared. Glut crosslinking
was performed as the previous study [22]. TP-dBPs were prepared
by incubating dBPs in TP solution for 12 h at 40�C.

Physicochemical characterization of Cu@TP-dBPs
Physicochemical characterization of Cu@TP-dBPs were studied by
transmission electron microscopy (TEM), scanning electron

microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and

Fourier transform infrared (FTIR) spectroscopy. Hydrodynamic

size and zeta potential were measured by Zetasizer Nano-ZS90

[23, 24]. A ninhydrin assay was performed to measure the amount

of free amino groups of each samples using a commercially avail-

able kit (GenM3d, USA). Degree of crosslinking is calculated follow-

ing the equation:

Degree of crosslinking (%) ¼ (1 – amine content in sample/amine

content in non-crosslinked samaple) � 100%.

Extract cytotoxicity assay
Extract cytotoxicity was determined by CCK-8 assay (Dojindo,

China) using L929 cells. According to the International standard

ISO 10993-5 regarding tests for in vitro cytotoxicity of medical

devices, materials leading to a cell viability result above 70% of

the control were considered as non-cytotoxic.

Hemolysis assay
Hemolysis assay was performed using blood from donors.

Samples (�1 cm2) were placed in the sterile Eppendorf tube and 1

mL diluted red blood cell (RBC) solution was added per tube and

incubated at 37�C for 3 h. The RBCs incubated in deionized water

and PBS were used as the positive and negative controls, respec-

tively. The hemolysis rates were calculated using the following

equation:

Hemolysisrate ð%Þ ¼ ðODtest � ODnegÞ=ðODpos � ODnegÞ � 100%;

where ODtest, ODneg and ODpos were the OD545 values of samples,

negative control and positive control, respectively.

Differential scanning calorimetry
Differential scanning calorimetry (DSC) was used to measure the

thermal denaturation temperature (Td) of the tested pericardial

samples using a DSC 2500 Differential Scanning Calorimeter (TA

Instruments, USA). The resultant heating curves were analyzed

using Thermal analysis software and the denaturation tempera-

ture was recorded at the height of the endothermic peak.

In vitro collagenase assay
Samples were lyophilized, cut into pieces (� 1 mm3) and weighed

(initial dry weight). Then, the samples (40 mg) were treated with

collagenase Type I (1.5 mg/mL, Sigma Aldrich, Germany). At every

predetermined time point, the samples were lyophilized and

weighed again (final dry weight). The degree of enzymatic degra-

dation of the samples was quantified as the percent weight loss

(W%), which is calculated using the following formula:

W% ¼ ðW0 �WtÞ=W0 � 100%;

where W0 represents the initial weight of samples and Wt repre-

sents the weight of corresponding sample after enzymatic degra-

dation treatment.

Tensile testing
Experiments were carried out using a Zwick tensile tester (Zwick

GmbH & Co. KG). Pericardial samples of the same directions were

cut into 50 (length) � 10 (width) mm rectangular strips. The

mean thickness of each sample was determined by a series of

measurements at four different points using a Mitutoyo digital

micrometer. Samples were attached to grips. The tensile testing
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was performed at 5 mm/minute until failure. All testing was con-
ducted at room temperature.

In vitro antibacterial activity assay
Staphylococcus aureus (S. aureus, Gram-positive bacteria) suspen-
sion was inoculated on nutrient agar plates. Samples were cut
into round pieces with a diameter of 15 mm and placed on the
surface of agar plates, and co-cultured with S. aureus for 12 h at
37�C. The clear area indicating zone of inhibition was measured
and recorded.

In vitro tube formation assay
The tested pericardial samples (� 0.5 mm3/well) were placed in
six-well plates and incubated in endothelial medium (2 mL) at
37�C. The conditional medium from samples were collected at
Day 3. Human umbilical vein endothelial cells (HUVECs) (3� 104

cells/well) were resuspended in conditional medium and seeded
onto the solidified Matrigel-coated wells. After 12 h of incubation,
cells were stained with phalloidin (Servicebio, China) and 4’,6-
diamidino-2-phenylindole (Sigma Aldrich, Germany) solution.

Subcutaneous implantation models
The animal experiments were performed according to the NIH
Guide for the Care and Use of Laboratory Animals, and all proto-
cols were approved by the Institutional Animal Care and Use
Committee of Changhai Hospital. To evaluate the in vivo
responses including biostability, cell ingrowth and calcification,
the tested samples were implanted subcutaneously into Sprague
Dawley rats. At 21 days, rats were scarified and patch explants
were harvested and then possessed for histological analysis and
calcium quantitative analysis.

Cardiac patch graft models
To evaluate the capacity of integration with myocardial tissues,
the tested samples were implanted to the heart of rats. Briefly,
rats were anesthetized and heart was exposed through a median
sternotomy. The samples were cut into round patches (� 5 mm)
and laid on the top of cardiac wall and sutured to the margin of
the patch with around tissues. At 60 days, rats were scarified and
hearts were harvested and then possessed for histological
analysis.

Histological and immunohistochemical
evaluation
The specimens were fixed in 4% buffered formaldehyde for 24 h,
processed into paraffin and then sectioned at 5 lm. Sections were
deparaffinized and stained with hematoxylin and eosin (HE) for
morphological examination, with Verhoeff’s Van Gieson (VG)
staining for collagen and elastin, and with alizarin red S staining
for detection of calcification. The expression of a-smooth muscle
actin (a-SMA) was evaluated using immunohistochemistry.

Calcium quantitative analysis
Explants were weighed and decalcified in 6N HCl at room tem-
perature for 3days. The calcium content of the 0.6 N HCl super-
natant was determined colorimetrically using alizarin red S as
indicator. The total calcium content of each explants was nor-
malized to its dry weight.

Statistical analysis
Results are expressed as mean 6 standard error (SD). Statistical
analyses were performed using GraphPad Prism 6.0 (GraphPad
Software, USA). For normal distributions, the differences between

two of the groups were evaluated by means of the t-test, while
one-way analysis of variance for multiple samples. When the
data distribution was not normally distributed, Mann–Whitney
or Kruskal–Wallis non-parametric multiple-comparison test was
employed. P< 0.05 was considered statistically significant.

Results
Fabrication of Cu@TP-dBPs
Cu@TP-dBPs were crosslinked using a two-step method (Fig. 1A).
First, dBPs were immersed in the CuSO4 solution to load copper
ions (Cu2þ-dBPs). As shown in Fig. 1B, an obvious color change
was observed in CuSO4 solution-treated dBPs from white to blue.
Subsequently, dBPs loaded with copper ions were treated with TP
solution (polyphenolic content, 2.89 mg/mL). The resultant
Cu@TP-dBPs showed a yellow brown color, and the color gradu-
ally became darker with the concentration of copper ions rising
higher. TEM images (Fig. 1C) showed that Cu@TP NPs were syn-
thesized at the meantime, which were approximately spherical
in shape with nanoscale size, and compactly bound to matrix
fibers of dBPs. From the TEM image, we found that the synthe-
sized Cu@TP NPs showed a core@shell structure with deep-
contrast core and light-contrast layer. We also examined the hy-
drodynamic size and zeta potential Cu@TP NPs in solution. The
hydrodynamic size of Cu@TP NPs in solution (545.2 6 106.2,
Fig. 1D) was much larger than that acquired by TEM, which may
because the porous structure of dBPs limited the growth of
Cu@TP NPs. The zeta potential of Cu@TP NPs were –25.2 6 3.1 mV
(Fig. 1E). This negative zeta potential was due to the capping of
TPs, which were possessing negative charge.

Physicochemical characterization of Cu@TP-dBPs
The self-assembly of Cu@TP NPs with dBPs was evaluated by
FTIR spectroscopy. Compared to the FTIR spectrum of dBPs, the
absorption peak of amide I band in dBPs loaded with copper ions
from 1642.93 to 1639.92 cm–1 (Fig. 2A), suggesting the electrostatic
interaction between copper ions and C¼O groups of collagens
[25]. Phenolic hydroxyl groups have a strong potential for binding
and reacting with proteins by forming hydrogen bonds. Our
results showed that a major shift to the lower frequency was ob-
served at the band of amide A from 3325.80 to 3309.13 cm–1, sug-
gesting the formation of hydrogen bonds between hydroxyl
groups of TPs and NH groups of collagens. As a result, interac-
tions of multiple molecules (copper–collagen, TP–collagen and
copper–TP) bridged and crosslinked dBP collagens.

The surface morphology of Cu@TP-dBPs was examined by
SEM. As shown in Fig. 2B, the presence of Cu@TP NPs was clearly
visible on the surface of Cu@TP-dBPs, and they strongly adhered
to the collagen. We also compared the collagen structural differ-
ences between Cu@TP-dBPs, dBPs and TP-dBPs. Collagen align-
ment was not different among the three groups, suggesting the
synthesized nanoparticles did not alter the collagen structure of
dBPs. The EDS mappings of the SEM images revealed enhanced
copper signals in the Cu@TP-dBPs (Fig. 2C and D), suggesting suc-
cessful copper incorporation.

Biocompatibility of Cu@TP-dBPs
Non-toxicity is a prerequisite for the application of biomaterials in
clinical application. Therefore, we next assessed the appropriate
copper ion loading concentration without toxic effects on mamma-
lian cells using the extract toxicity assay. Cu@TP-dBPs were fabri-
cated using CuSO4 solution at concentrations of 0.1–1 mg/mL. They
were minced into pieces and incubated in culture medium to
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prepare extract medium (Fig. 3A). The corresponding copper ion
concentration in extract medium is shown in Supplementary Table
S1. CCK-8 results revealed that the cellular viability of L929 cells de-
creased gradually with increasing copper ion concentration
(Fig. 3B). According to the International safety standard of 70% via-
bility (ISO 10993-5), there was no significant toxicity on L929 cells
when Cu@TP-dBPs were fabricated using 0.1 mg/mL CuSO4 solution
even at Day 3 (Fig. 3C). Although Cu@TP-dBPs fabricated with 0.2,
0.3 and 0.4 mg/mL CuSO4 solution were safe for L929 cells at Day 1,
cell viability significantly decreased when cells were cultured for
the other two days (Supplementary Fig. S1). Accordingly, Cu@TP-
dBPs were fabricated using 0.1 mg/mL CuSO4 solution in the follow-
ing experiments as it was the highest non-toxic concentration.

Having determined that the Cu@TP-dBPs fabricated using
0.1 mg/mL CuSO4 solution had a favorable cytocompatibility, we
further assessed their suitability for blood biocompatibility via a
RBC hemolysis assay in vitro. Purified water and PBS showed posi-
tive (hemolysis) and negative (non-hemolysis) phenomena
(Fig. 3D), respectively. The hemolysis ratio of Cu@TP-dBPs were
1.87 6 1.28%, far below the International safety standard of 5%
(ISO10993-4:2002), suggesting that the fabricated Cu@TP-dBPs
could be used for blood-contacting applications.

Crosslinking properties of Cu@TP-dBPs
Histological staining showed that all pericardial samples were
free of cells with well-preserved extracellular matrix after decel-
lularization (Fig. 4A). Ninhydrin assay was performed to deter-
mine the degree of crosslinking. Using dBPs as the standard of
100% amine groups, the crosslinking degree increased in the or-
der TP-dBPs < Cu@TP-dBPs < Glut-dBPs (Fig. 4B). The crosslinking
degree of TP-dBPs was lower than that of Cu@TP-dBPs

(P¼ 0.0286), suggesting that the synthesized Cu@TP NPs might
enhanced the crosslinking effect of TPs through copper–collagen
and copper–TP interactions. No significant difference was found
between Cu@TP-dBPs and Glut-dBPs (P¼ 0.0571).dBPs were very
susceptible to Type I collagenase, they had >70% weight loss at
Day 3 (Fig. 4C), and completely degraded at Day 14 (Fig. 4D).
Crosslinking was able to prevent rapid degradation of dBPs, and
the three crosslinked dBPs (TP-dBPs, Cu@TP-dBPs and Glut-dBPs)
had <20% of weight loss at Day 14. The weight loss of TP-dBPs
was higher than that of Cu@TP-dBPs (P¼ 0.0020) and Glut-dBPs
(P¼ 0.0020) at Day 14. However, no significant difference was
found between Cu@TP-dBPs and Glut-dBPs (P¼ 1.0000) as for col-
lagen stability against Type I collagenase.

Having determine the enzymatic stability of Cu@TP-dBPs, we
next examined the collagen thermal stability assessed by DSC. The
collagen denaturation temperature increased in the order dBPs <

TP-dBPs< Cu@TP-dBPs < Glut-dBPs (Fig. 4E and Supplementary Fig.
S2). Particularly, the collagen denaturation temperature of Cu@TP-
dBPs was only secondary to that of Glut-dBPs.

Crosslinking is also used to strengthen biomechanical proper-
ties of biomaterials. Tensile testing (Fig. 4F) showed that no sig-
nificant differences in ultimate force (P¼ 0.6169), ultimate tensile
strength (P¼ 0.5555) and elastic modulus (P¼ 0.3084) were found
among Cu@TP-dBPs, TP-dBPs and Glut-dBPs. Taken together,
these results suggested that Cu@TP-dBPs showed great biome-
chanics and collagen stability comparable to those of Glut-dBPs.

Antibacterial and proangiogenic activities of
Cu@TP-dBPs
Staphylococcus aureus is a leading cause of endocarditis and cardio-
vascular surgical site infections [26]. Therefore, we used S. aureus

Figure 1. In situ synthesis of Cu@TP NPs within dBPs. Schematic diagram (A) and gross images (B) of Cu@TP-dBP fabrication. Representative images of
TEM (C) of Cu@TP-dBPs. The hydrodynamic size (D) and the zeta potential (E) of Cu@TP NPs in buffer solution. Scale bar ¼ 100 nm
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Figure 2. FTIR and SEM-EDS analysis of Cu@TP-dBPs. FTIR spectra of dBPs, Cu2þ-dBPs, Cu@TP-dBPs (A). SEM top-view of surface microstructures (B),
EDS spectra of corresponding SEM images (C) and elemental compositions in the interior detected by EDS maps (D): C, carbon; N, nitrogen; O, oxygen;
Cu, copper. Scale bar ¼ 600 nm

Figure 3. Cytocompatibility and blood biocompatibility of Cu@TP-dBPs. Schematic illustration showing the experimental design for extract toxicity
assay (A). The tested cells were treated with extract medium for 1 day (B) or 3 days (C) and cellular viability of L292 cells was determined by CCK-8
assay. Hemolysis assay (D) of Cu@TP-dBPs fabricated using 0.1 mg/mL CuSO4 solution had no hemolytic activity. n ¼ 4
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to evaluate the antibacterial activity of Cu@TP-dBPs. As shown in
Fig. 5A, clear inhibition zones were observed around TP-dBPs
(1.90 [1.83–1.98] mm) and Cu@TP-dBPs (1.90 [1.83–1.90] mm), and
no significance was recognized statistically between them
(P> 0.9999), suggesting that both of them had antibacterial activ-
ity against S. aureus.

To investigate the effects of TP-dBPs, Cu@TP-dBPs and Glut-
dBPs in angiogenesis, we employed an in vitro tube formation as-
say. As shown in Fig. 5B, HUVECs were resuspended in pericardial
conditional medium and seeded onto the solidified Matrigel-
coated wells. HUVECs cultured in Cu@TP-dBP conditional me-
dium showed an enhanced ability to form capillary-like struc-
tures (Fig. 5B) with increased tube length compared to dBPs
(Fig. 5C, P¼ 0.0209). In contrast, HUVECs cultured in TP-dBPs
(P¼ 0.9497) or Glut-dBPs (P¼ 0.9771) showed a reduced ability to
form capillary-like structures when compared with dBPs al-
though no statistical significance was reached (Fig. 5D). Taken to-
gether, these results suggested that Cu@TP-dBPs were functional
biomaterials with antibacterial and proangiogenic activities.

Cu@TP-dBPs were free of calcification in a rat
subcutaneous implantation model
To evaluate the in vivo host response, the tested pericardial sam-
ples were implanted subcutaneously in rats for 21 days (Fig. 6A).
HE staining showed that dBPs were almost degraded and
completely infiltrated by host cells (Fig. 6B). The surrounding
acellular regions of both Cu@TP-dBP explants and TP-dBP
explants were infiltrated by a number of fibroblast-like cells,
whereas the cells were hard to infiltrate into Glut-dBP explants.
In addition, Glut-dBP explants showed focal calcium deposition,
while no visible calcification was found in explants of the other
three groups (Fig. 6C), confirming that Glut crosslinking acceler-
ated the calcification process. The differences of calcium content
among the four groups were further characterized in terms with
quantitative analysis (Fig. 6D). Consistent with the histological

staining, the highest calcium content was found in Glut-dBP
explants. No significant difference in calcium content was found
among dBP, TP-dBP and Cu@TP-dBP explants (P¼ 0.5353), sug-
gesting that Cu@TP-dBPs showed anticalcification potential.

Cu@TP-dBPs showed good handling properties
and myocardial integration in a rat cardiac patch
graft model
Having determined that Cu@TP-dBPs were more permissive to
recellularization than Glut-dBPs in the rat subcutaneous implan-
tation model, we next investigated their remodeling and integra-
tion capacities in a rat cardiac patch graft model. In the
perspective of surgical handing, dBPs were too soft to handle,
trim and suture, thus, they were inconvenient for surgical proce-
dures. In contrast, the stiffener Cu@TP-dBPs, TP-dBPs and Glut-
dBPs had better handling properties and could be easily trimmed
to the desired shape and size and sutured with myocardium
(Fig. 7A and B).

After implantation for 60 days, the hearts were harvested and
assessed for histological features. Grossly, all patches were sur-
rounded by thin fibrous capsules (Fig. 8A). dBP patches were al-
most degraded, while Glut-dBP patches still preserved their
primary structures with a foreign mass protruding from the sur-
face of the heart (Fig. 8B, upper panel). Cu@TP-dBP and TP-dBP
patches showed favorable recellularization (Fig. 8B, lower panel),
which is a crucial step for integration of implanted patches with
native tissues. VG staining (Fig. 8C) revealed that neomatrix de-
velopment within the Cu@TP-dBP patches, suggesting the remod-
eling of extracellular matrix. However, Glut-dBP patches showed
limited remodeling with poor recellularization.

As shown in Fig. 8D, the spaces between Cu@TP-dBP and sur-
rounding myocardium contained a matrix richer in blood vessels
than the loose connective tissue seen surrounding the other
patches (Fig. 8D, upper panel). Functional blood vessels with me-
dial layers were determined by the immunohistochemical

Figure 4. Crosslinking characterizations of Cu@TP-dBPs. Representative histological staining of the four groups (A). Small image showed gross images
of dBPs. Ninhydrin assay (B), collagenase assay at Day 3 (C) and at Day 14 (D), DSC (E) and uniaxial tensile testing (F). $P < 0.05 compared to dBPs,
# compared to Glut-dBPs, * compared to TP-dBPs, NS, not significant. Scale bar ¼ 50 mm
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staining for a-SMA-positive medial layers. They were found to
penetrate into Cu@TP-dBP patches (Fig. 8D, lower panel, as indi-

cated by red arrow), while the depth areas of Glut-dBP and TP-
dBP patches lacked of functional blood vessels. Functional blood

vessels were hardly found in dBP patches, which mainly due to
the rapid degradation of these patches. Taken together, these
results suggested that Cu@TP-dBP patches had controlled degra-

dation, and showed favorable recellularization, ingrowth of func-
tional blood vessels and remodeling of extracellular matrix,
which could promote tissue integration with surrounding myo-

cardial tissues.
We evaluated calcification in the rat cardiac patch graft model

using alizarin red S staining. No calcification was noted in the
dBPs, Cu@TP-dBPs and TP-dBPs; however, local calcification was

found in the Glut-dBPs (Supplementary Fig. S3). In addition, we
investigated the in vivo toxicity of Cu@TP-dBPs on the major
organs, which were collected during in vivo animal experiments.

As shown in Supplementary Fig. S4, no necrosis, inflammation,
hemorrhage or other obvious damage was found in brain, lung,

kidney, liver and spleen, confirming that the fabricated Cu@TP-
dBPs exhibited negligible in vivo toxicity.

Discussion
Patch repairing and replacement are common especially in the

cardiovascular diseases. Generally, two main types of patch scaf-
fold have been proposed and developed: (i) artificial patches, fab-
ricated from synthetic and natural (biological) polymers; and (ii)

native biological patches from allogeneic or xenogenic sources

[27, 28]. Patches fabricated from synthetic polymers such as ex-
panded polytetrafluoroethylene and polyethylene terephthalate
exhibit enough mechanical properties and controlled biodegrad-
ability but bad biocompatibility, which cause high risk of postop-
erative complication. The patches fabricated from natural
polymers such as collagen and hyaluronic acid show good bio-
compatibility but bad mechanical strength. Xenogenic tissues
such as porcine or bovine pericardium is the main sources of na-
tive biological patches because human tissue are in short supply.

In order to minimize the immunogenic components, xeno-
genic tissues need to be treated with crosslinking agents or
underwent decellularization. Currently, decellularized patches
show promising applications in tissue engineering, and several
types of commercial decellularized patches (i.e. Veritas Collagen
MatrixVR , Peri-GuardVR and TutopatchVR ) have been already ap-
proved for clinical use [29]. However, patches for cardiovascular
applications should have enough mechanical properties and
structural stability [29]. For example, it is necessary for cardiac
patches to hold the ventricular pressure, withstand the tensile
force generated by wall contraction and provide mechanical sup-
port to prevent cardiac dilation [30, 31]. Patches used for leaflet
repair in atrioventricular valves or as a leaflet need to tolerate re-
peating cycles of mechanical load for years. Native biomaterials
often exhibit poor mechanical properties and rapid enzyme deg-
radation. Upon implantation, uncrosslinked natural biomaterials
are subject to chemical and enzymatic degradation, seriously af-
fecting the mechanical properties and decreasing the life of the
patches. Pavcnik et al. [32] reported a high failure rate of
CorMatrixVR at 3–4 months in an ovine model of carotid artery

Figure 5. Antibacterial and proangiogenic activities of Cu@TP-dBPs. Inhibition zone assay of the tested patches (A). Schematic illustration showing the
experimental design for angiogenesis assay (B). Representative phase contrast microphotographs showing the formation of capillary-like networks (C).
Upper: bright images. Lower: immunofluorescence images of phalloidin and DAPI double-staining. Quantitative analysis of specific parameters of
capillary tube formation after 12-h incubation on Matrigel (D). *P < 0.05 compared to dBPs, # compared to Glut-dBPs, $ compared to TP-dBPs. Scale bar
¼ 400 mm. All n ¼ 4
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grafting due to dilatation, stenosis, dissections and aneurysm for-
mation. Furthermore, accumulating evidence have shown that
decellularized patch CorMatrixVR have good performance in the

low pressure, usually extracardiac environment (i.e. veins), but
when they were used at higher pressure intracardiac sites such
as the aortic valve or in semilunar valve, complications are more

Figure 7. Ease of handling and in vivo toxicity of Cu@TP-dBPs. After crosslinking, dBPs became stiffer (A). Cu@TP-dBPs, TP-dBPs and Glut-dBPs could be
easily trimmed to the desired shape and size and sutured with myocardium (B)

Figure 6. Recellularization and calcification of Cu@TP-dBPs in the rat subcutaneous implantation models. Schematic illustration showing the
experimental design for rat subcutaneous implantation models (A). HE staining (B), alizarin red S staining (C) and quantification of calcium content (D)
of the patch explants. Lower panel showed the higher magnification images of corresponding samples at the regions marked by red-boxes. # P < 0.05
compared to Glut-dBP explants. NS, not significant. Arrow: calcium deposition. Scale bar ¼ 50 mm. n ¼ 4
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likely to occur [33]. Hence, it is desirable to explore a new strategy
to crosslink acellular patches to improve their mechanical
strength and biological stability.

Plant polyphenols have been used to crosslink biological tis-
sues by the formations of non-convent bonding between matrix
proteins and polyphenols [34, 35]. Polyphenols are also able to co-
ordinate with transition metal ions by forming stable chelating
rings and reduced them to atoms, and in the meantime, hydrox-
yls are oxidized to corresponding quinones and attached onto the
metal surface to form a core@shell structure [36]. In addition,

transition metal coordination has been emerging as an important
class of supramolecular crosslinkers that can enhance the me-
chanical properties of collagen materials [37]. Based on the above
mechanisms, we speculated that copper, collagen and TP were
able to form multiple molecular interactions within the self-
assembled structure. Consistent with our hypothesis, we found
that copper ions interacted with dBP collagens through electro-
static interaction. Subsequently, TPs were coordinated with the
entrapped copper ions to form Cu@TP NPs with a core@shell
structure. Meanwhile, the assembly of TPs was able to interact

Figure 8. Myocardial integration of Cu@TP-dBP patches in the rat cardiac patch graft models. Gross examination showing that Cu@TP-dBP patches
integrated well with surrounding myocardium (A). HE staining (B) and VG staining (C) showing that Cu@TP-dBP patches degraded faster and displayed
improved recellularization than Glut-dBP patches in vivo. HE staining and a-SMA immunohistochemical staining showed that Cu@TP-dBP patches
displayed enhanced blood vessel formation (D). Scale bar ¼ 100 mm. n ¼ 3
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with dBP collagens by the formation of hydrogen bonding. It was
noted that these multiple molecular interactions (copper–colla-
gen, TP–collagen and copper–TP) could achieve a higher cross-
linking degree than the simple interaction between TPs and dBP
collagens.

Glut is a widely used crosslinker for biological tissues, due to
its high efficiency of collagen-based materials. However, calcifi-
cation is a common and important problem for Glut crosslinked
biomaterials. One of the mechanism is that Glut accelerates the
calcification process by introducing the binding sites to the cal-
cium ion [38, 39]. In this study, we found that Cu@TP-dBPs were
free of calcification, suggesting that Cu@TP-dBPs showed antical-
cification potential. Furthermore, our results showed that physi-
cal parameters of Cu@TP-dBPs, such as thermal denaturation,
biodegradation and biomechanics, were comparable to those of
Glut-dBPs. These results suggested that Cu@TP-dBPs were reli-
able biomaterials and suited for cardiovascular applications. This
was a “green” strategy to crosslinking acellular patches, given
that the process is gentle, and environmentally friendly without
use of harsh, toxic and expensive chemicals.

Recellularization is the initial and crucial step for tissue con-
structive remodeling of acellular biomaterials in vivo [40, 41].
Rapid degradation has been recognized as an effective strategy to
promote recellularization and constructive remodeling of bioma-
terials [42]. However, rapid degradation of cardiovascular patches
may result in loss of mechanical strength to withstand the force
of heart and vessels, which may ultimately contribute signifi-
cantly to failure. Previous studies have demonstrated that plant
polyphenols crosslinked biological tissues are initially resistant
to collagenase and then show progressive degradation and host
cell infiltration due to reversible non-covalent interactions and
good biocompatibility [43, 44]. Consistently, we found that
Cu@TP-dBPs in a rat cardiac patch graft model showed improved
tissue integration capacity, including recellularization, ingrowth
of functional blood vessels and remodeling of extracellular ma-
trix. These results suggest that polyphenols based crosslinking
strategy provided a control degradation process, which were fa-
vorable for patch integration with surrounding native tissues.

The combination of metal nanoparticles with synthetic or bio-
logical (i.e. collagen hydrogels and acellular tissues) materials
provides an attractive approach to develop functional biomateri-
als [37]. Some studies used directly immersed or mechanical
transfer methods to load mental nanoparticles in or on biological
tissues. For example, Agarwal et al. [45] developed a mechanical
transfer method using polyelectrolyte multilayers as transferred
films to deliver silver nanoparticles onto biomedically relevant
soft materials. Recently, some studies have showed that in situ
synthesis of nanoparticles within material matrix is an effective
approach to achieve functional modification of materials [37]. At
the same time, the problem of nanoparticle aggregation could be
avoided, as the free space within the hydrogel porous structure
offers a nanoscopic pot for the synthesis of nanoparticles [46].
Therefore, we in situ synthesized Cu@TP NPs in this study.

Copper is a well-known antibacterial agent exhibiting bacteri-
cidal or bacteriostatic activity. For copper nanoparticles, the anti-
bacterial activity is related to direct contact toxicity or release of
dissolved copper ions from nanoparticles [12, 47]. In this study,
we found that Cu@TP-dBPs had comparable antibacterial activity
as TP-dBPs, suggesting that TP itself had enough antibacterial ef-
fect to inhibit bacterial growth. Indeed, TP as well as its polyphe-
nol components have been found to inhibit growth, adherence,
biofilm formation and protease activity of multiple bacteria, and
thereby exhibiting broad antibacterial spectrum [48, 49].

Angiogenesis plays a crucial role in efficient wound healing
and tissue regeneration, especially in cardiovascular patch
implanting position. Copper has previously been suggested to be
proangiogenic by multiple mechanisms that include releasing
various angiogenic factors and stimulating endothelial cell prolif-
eration [50, 51]. In this study, we found that Cu@TP-dBPs had an
improved proangiogenic effect both in vitro and in vivo. In vitro,
Cu@TP-dBP prompted HUVECs to form capillary-like structures.
In vivo, Cu@TP-dBP patches showed favorable recellularization
and formed functional blood vessels within the patches.

Although copper has many merits, the biocompatibility of
copper ions is still debated, particularly in the case of copper
nanoparticles. Previous studies reported that copper nanopar-
ticles had potent cytotoxic effects on mammalian cells [52, 53]. In
contrast, Shrikant Harne et al. [54] found that copper nanopar-
ticles synthesized by green method hold excellent biocompatibil-
ity to HeLa, A549 and BHK21 cell lines. These discrepant results
may be due to several factors, including the amount of released
copper ions, the size and shape of the nanoparticles, and their
capping chemistry [55]. To enhance biocompatibility of Cu@TP-
dBPs, we assessed the appropriate copper ion loading concentra-
tion according to the results of extract toxicity assay. In vitro and
in vivo studies confirmed that Cu@TP-dBPs fabricated using
0.1 mg/mL CuSO4 solution had good biocompatibility.

Conclusions
In this study, we reported a strategy to crosslink and functional-
ize acellular patches on the basis of the self-assembly of Cu@TP
NPs. Multiple molecular interactions (copper–collagen, TP–colla-
gen and copper–TP) could bridge dBPs, and thereby improved the
crosslinking effect of TPs. The resultant Cu@TP-dBPs showed
comparable biomechanics and biological stability to Glut-dBPs,
while they had several advantages over Glut-dBPs in terms of
anticalcification, remodeling and integration capabilities.
Furthermore, Cu@TP-dBPs were biocompatible and had antibac-
terial and proangiogenic activities. Collectively, these material
properties and biological functions made Cu@TP-dBPs a promis-
ing functional acellular patch for cardiovascular applications.
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