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In cognitive diagnostic assessments with time limits, not-reached items (i.e., continuous
nonresponses at the end of tests) frequently occur because examinees drop out of the
test due to insufficient time. Oftentimes, the not-reached items are related to examinees’
specific cognitive attributes or knowledge structures. Thus, the underlying missing data
mechanism of not-reached items is non-ignorable. In this study, a missing data model
for not-reached items in cognitive diagnosis assessments was proposed. A sequential
model with linear restrictions on item parameters for missing indicators was adopted;
meanwhile, the deterministic inputs, noisy “and” gate model was used to model the
responses. The higher-order structure was used to capture the correlation between
higher-order ability parameters and dropping-out propensity parameters. A Bayesian
Markov chain Monte Carlo method was used to estimate the model parameters. The
simulation results showed that the proposed model improved diagnostic feedback
results and produced accurate item parameters when the missing data mechanism was
non-ignorable. The applicability of our model was demonstrated using a dataset from
the Program for International Student Assessment 2018 computer-based mathematics
cognitive test.

Keywords: cognitive diagnosis assessments, missing data mechanism, not-reached items, Bayesian analysis,
sequential model

INTRODUCTION

In educational and psychological assessments, examinees often do not reach the end of the
test which may be due to test fatigue or insufficient time. The percentage of not-reached
items in large-scale cognitive testing varies across individuals, items, and countries. According
to the 2006 Program for International Student Assessment (PISA) study, an average of
4% of items are not reached (OECD, 2009). In the PISA 2015 (OECD, 2018) computer-
based mathematics cognitive dataset, the percentage of not-reached items in Chinese Taipei
is approximately 3%, and the percentage of not-reached items for the science cluster in a
Canadian sample is 2% (Pohl et al., 2019). According to the PISA 2018 (OECD, 2021) computer-
based mathematics cognitive data, the proportion of nonresponses for each item ranges from
0 to 17.3% in some countries, and the maximum percentage of not-reached items is as high
as 5%. Thus, the missing proportion at the item level is relatively high. In addition, the
percentage of nonresponses per nation (OECD countries) ranges from 4% to15% according to
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the PISA 2006 study (OECD, 2009). Even though the overall
proportion of item nonresponses is small, the rate of not-reached
responses for a single item or specific examinee may be large.

Previous literature focused on missing data in the item
response theory (IRT) framework, which has shown that simply
ignoring nonresponses or treating them as incorrect leads to
biased estimates of item and person parameters (Lord, 1974,
1983; Ludlow and O’Leary, 1999; Huisman, 2000). Often,
Rubin (1976) missing data mechanisms are worth reviewing for
statistical inference. The complete data include observed data and
unobservable missing data, and there are three types of missing
data mechanisms (Rubin, 1976; Little and Rubin, 2002): missing
completely at random (MCAR), missing at random (MAR), and
not missing at random (NMAR). MCAR refers to the probability
of missing data as independent of both observed and missing
data. MAR refers to the probability of missing data as only
dependent on observed data. NMAR refers to the probability of
missing data as dependent on the unobserved missing data itself,
which is not ignorable. In general, MCAR and MAR mechanisms
do not affect the parameter estimations of interest or the
followed-up inference, thus missing data can be ignored in these
two specific missing data mechanisms. However, Rose et al. (2010,
2017) showed that the proportion of examinees’ correct scores
based on the observed item responses was negatively correlated
with the item nonresponse rate, which suggests that simple
questions are easy to answer, and numerous difficult items may be
omitted. Item nonresponses may depend on the examinee’s ability
and the difficulty of the items, and therefore the ignorable missing
data mechanism assumption (MCAR or MAR) becomes highly
questionable. This leads to the development of measurement
models that consider the NMAR mechanism. Specifically, several
scholars have proposed multidimensional IRT (MIRT) models
to handle missing responses (e.g., Holman and Glas, 2005; Glas
and Pimentel, 2008; Pohl et al., 2019; Lu and Wang, 2020).
For example, Glas and Pimentel (2008) used a combination of
two IRT models to model not-reached items for speeded tests
according to the framework of the IRT. Subsequently, Rose et al.
(2010) proposed latent regression models and multiple-group
IRT models for non-ignorable missing data. Debeer et al. (2017)
developed two item response tree models to handle not-reached
items in various application scenarios.

Recently, cognitive diagnosis (von Davier, 2008, 2018,
2014; Xu and Zhang, 2016; Zhan et al., 2018; Zhang et al.,
2020) has received considerable attention from researchers
because cognitive diagnostic test enables the evaluation of
the mastery of skills or attributes of respondents and allows
diagnostic feedback for teachers or clinicians, which in turn
aids in decision-making regarding remedial guidance or targeted
interventions. In addition, the cognitive diagnostic test has
improved on traditional tests. General educational examinations
only provide test or ability scores in large-scale testing.
However, we can neither conclude that examinees mastered the
knowledge nor understand why examinees answered questions
incorrectly from a single score. Moreover, it is impossible to
infer differences in knowledge state and cognitive structures
between individuals with the same score. Thus, the information
provided by traditional IRT is not suitable for the needs

of individual learning and development. To date, numerous
cognitive diagnostic models (CDMs) have been developed, such
as the deterministic inputs, noisy “and” gate (DINA) model
(de la Torre and Douglas, 2004; de la Torre, 2009); the noisy
inputs, deterministic, “and” gate model (NIDA; Maris, 1999); the
deterministic inputs, noisy “or” gate (DINO) model (Templin
and Henson, 2006); the log-linear CDM (Henson et al., 2009); and
the generalized DINA model (de la Torre, 2011). Subsequently, a
higher-order DINA (HO-DINA) model (de la Torre and Douglas,
2004) was proposed to link latent attributes via higher-order
ability. Furthermore, Ma (2021) proposed a higher-order CDM
with polytomous attributes for dichotomous response data.

Numerous studies have focused on item nonresponses in IRT
models (Finch, 2008; Glas and Pimentel, 2008; Debeer et al.,
2017). However, only a few studies have discussed missing data
in cognitive assessments. Ömür Sünbül (2018) limited missing
data mechanisms to MCAR and MAR in the DINA model and
investigated different imputation approaches for dealing with
item nonresponses, such as coding item responses as incorrect
and using person mean imputation, two-way imputation, and
expectation-maximization algorithm imputation. Heller et al.
(2015) argued that CDMs may have underlying relationships
with knowledge space theory (KST), which has been explored
in several previous studies (e.g., Doignon and Falmagne, 1999;
Falmagne and Doignon, 2011). Furthermore, de Chiusole et al.
(2015) and Anselmi et al. (2016) have developed models
for KST to consider different missing data mechanisms (i.e.,
MCAR, MAR, and NMAR). However, in their work, missing
response data may not have been handled effectively, which may
have biased results. Shan and Wang (2020) introduced latent
missing propensities for examinees in the DINA model. They
also included a potential category parameter, which affects the
tendency to miss items. However, they did not provide a detailed
explanation of the category parameters. Moreover, their model
did not distinguish the type of item nonresponses.

The confound of different types of missing data produces
inaccurate attribute profile estimations, which consequently
results in incorrect diagnostic classifications. To the best of
our knowledge, there has been no model developed to date
that describes not-reached items in cognitive diagnosis. Thus,
a missing model for not-reached items is proposed to fill this
gap in cognitive diagnosis assessments. Specifically, a higher-
order DINA model is used to model responses and an IRT
model to describe missing indicators, which is a sequential
model with linear restrictions on item parameters (Glas and
Pimentel, 2008). The model is connected by bivariate normal
distributions between examinees’ latent ability parameters and
missing propensity parameters and between item intercept and
interaction parameters.

The rest of this paper is organized as follows. First,
an IRT model is introduced as a missing indicator model
for not-reached items. Then, a higher-order DINA model is
used for the observed responses and the correlation between
person parameters. Second, the Markov chain Monte Carlo
(MCMC) algorithm (Patz and Junker, 1999; Chen et al.,
2000) is developed to estimate the model parameters of
the proposed model. Simulation studies are conducted to
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assess the performance of the proposed model for different
simulation conditions. Third, a real dataset from the PISA
2018 (OECD, 2021) computer-based mathematics data is
analyzed. Concluding remarks and future perspectives are
provided thereafter.

MODEL CONSTRUCTION

A two-dimensional data matrix with element Yij is considered,
where examinees are indexed as i = 1, ...,N and items are
indexed as j = 1, ..., J. If the ith examinee answers the jth item,
the response is observed, and the Yij is equal to the observation
yij, otherwise, it is missing data. For convenience, the sign “d ” is
used to mark the missing data and the relevant parameters.

Missing Data Model for Not-Reached
Items
Glas and Pimentel (2008) proposed a sequential model with
a linear restriction on the item parameters to model the not-
reached items. Specifically, the missing indicator matrix D with
element dij is given by:

dij =
{

0, if yij was observerd,
1, if yij was not observer.

(1)

where dij = 1 indicates that the ith examinee drops out the
jth item. Because of the small overall proportion of not-reached
responses, the appropriate model must have few parameters to
be estimable (Lord, 1983). The one-parameter logistic model
(1PLM; Rasch, 1960) is adopted to model the missing indicators,
thus the dropping-out probability of examinee i on item j is:

p
(
dij = 1|θdi , β

d
j

)
=

exp
(
θdi − βdj

)
1 + exp

(
θdi − βdj

) , (2)

and
βdj = η0 +

(
j− J

)
η1, (3)

where βdj represents the so-called item difficulty parameter
for item j, and θdi denotes the ith examinee’s dropping-out
propensity. Also, βdj = η0 when j = J, where η0 is the difficulty
threshold of the last item, and η1 models a uniform change in the
probability as a function of the item position in the test. Usually,
the parameter η1 is negative, and hence it is more likely to drop
out the test at later position items of the test.

Higher-Order Deterministic Inputs, Noisy
“And” Gate Model
The DINA model describes the probability of the item response
as a function of latent attributes, and the probability of the ith
examinee responding to item j correctly is as follows:

p(Yij = 1) = gj +
(
1− sj − gj

) K∏
k = 1

αik
qjk , (4)

where sj and gj are the slipping and guessing probabilities of
the jth item, respectively, 1− sj − gj = IDIj is the jth item
discrimination index (de la Torre, 2008), and αik is the kth
attribute of the ith examinee, with αik = 1 if examinee i
masters attribute k and αik = 0 if examinee does not master
attribute k. The Q matrix (Tatsuoka, 1983) is an J × K matrix,
with qjk, qjk = 1 denoting that the attribute k is required for
answering the jth item correctly and qjk = 0 if the attribute k
is not required for answering the jth item correctly.

Equation (4) can be reparameterized as the reparameterized
DINA model (DeCarlo, 2011).

βj = logit(gj), (5)

δj = logit
(
1− sj

)
− logit

(
gj
)
. (6)

In addition, logit(x) = log( x
1−x ), thus Equation (4) can be

reformed as,

logit(P(yij = 1)) = βj + δj

K∏
k = 1

α
qjk
ik , (7)

where βj and δj are the item intercept and interaction parameter,
respectively, and they are assumed to follow a bivariate normal
distribution as follows:(

βj

δj

)
∼ N(

(
µβ

µδ

)
, 6I),6I =

(
σ2

β σβδ

σβδ σ2
δ

)
. (8)

The higher-order structure is very flexible because it can
reduce the number of model parameters and can provide higher-
order abilities and more accurate attribute structures. Because
the attributes in a test are often correlated, the higher-order
structure (de la Torre and Douglas, 2004; Zhan et al., 2018) for
the attributes is expressed as,

logit(P(αik = 1)) = θi
hγk − λk, (9)

where P(αik = 1) is the probability that the ith examinee masters
the kth attribute, θhi is the higher-order ability of examinee i, and
γk and λk are the slope and intercept parameters of attribute
k, respectively. The slope parameter γk is positive because
the knowledge attribute is mastered better with the increased
ability θ h

i .

Missing Mechanism Models
If the observation probability p(yij|dij, βj, δj, αik) does not
depend on θd, when θh and θd are independent, then the
missing data are ignorable. In this situation, this model
is treated as a MAR model. Let p(yij|dij, βj, δj, αik) be the
measurement model for the observed data. In addition, let
p(dij|θdi ,η0,η1) be the measurement model for the missing

data indicators, and p
(
θh
)

and p(θd) are densities of θh

and θd, respectively. To model non-ignorable missing data,
it is assumed that θhi and θdi follow a bivariate normal
distribution N(µP, 6P); thus, the two models describe the
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two missing mechanisms (i.e., MAR and NMAR). Next,
we introduce the two missing data models for the not-
reached items.

Missing at Random Model
The expression of the MAR model is as follows, and the likelihood
function form of the MAR model can be written as,

N∏
i = 1

J∏
j = 1

K∏
k = 1

p(αik|θhi , γk,λk)p(dij|θdi ,η0,η1)p(θhi )p(θ
d
i ), (10)

where the MAR model is regarded as a model that ignores the
missing data process. In fact, the latent variables θhi and θdi are
independent in the MAR model. In other words, the model
for the missing data process p(dij|θdi ,η0,η1) can be ignored in
estimating the item response model.

Not Missing at Random Model
The NMAR model is often called the non-ignorable model, and in
this case, θhi and θdi are correlated. A covariance matrix is used to
describe the relationship between the latent higher-order ability
parameters and the missing propensity parameters in this model.
Thus, the likelihood function of the NMAR model can be written
as,

N∏
i = 1

J∏
j = 1

K∏
k = 1

p(αik|θhi , γk,λk)p(dij|θdi ,η0,η1)p(θhi , θ
d
i |µP, 6P),

(11)
where the person parameters are assumed to follow a bivariate
normal distribution, with mean vector µP = (µθh ,µθd )

′ and
covariance matrix:

6P =

(
σ2

θh
σθhθd

σθhθd σ2
θd

)
. (12)

Model Identifications
In Equations (2) and (9), the linear parts of 1PLM and the HO-
DINA model can be written as follows:

θdi − βdj and θhi γk − λk. (13)

To eliminate the trade-offs between ability θdi and dropping-
out threshold parameter βdj and between the higher-order ability
person parameter θh and the attribute intercept λk, the mean
population level of person parameters is set to zero, that is,
µθh = 0 and µθd = 0. σθh = 1 is fixed to eliminate the
scale trade-off between θhi and γk (Lord and Novick, 1968; Fox,
2010). In addition to the identifications, two local independence
assumptions are made, that is, the αik values are conditionally
independent given θhi , and the Yij values are conditionally
independent given αi.

Bayesian Model Assessment
In the Bayesian framework, two common Bayesian model
evaluation criteria, the deviance information criteria (DIC;
Spiegelhalter et al., 2002) and the logarithm of the pseudo-
marginal likelihood (LPML, Geisser and Eddy, 1979;

Ibrahim et al., 2001) are used to compare the differences in
the missing mechanism models according to the results of
MCMC sampling. Let,

� =
{
θhi , θ

d
i ,η0,η1, αik, βj, δj, γk,λk,µβ,µδ, 6I, σθhθd , σ

2
θd

}
.

The DIC is given by,

Dev(Y,D|�) = − 2logL(Y,D, �)

= − 2
N∑

i = 1

J∑
j = 1

K∑
k = 1

[(Y ij = d)log(P(Yij = d))

+ (Y ij = 1)log((1− P(Yij = d))P(Yij = 1))

+ (Y ij = 0)log((1− P(Yij = d))P(Yij = 0))]. (14)

On the basis of the posterior distribution of Dev (Y,D, �), the
DIC was defined as,

DIC = Dev + pD = Dev + (Dev− D̂ev), (15)

where Dev = E(Dev(Y,D, �)|Y,D) ∼= 1
R
∑R

r = 1
Dev(Y,D, �r), which is the posterior mean deviance and
is a Bayesian measure of fit, r = 1, ...,R denotes the rth
iteration of the algorithm, and D̂ev = Dev

(
Y,D, �

)
, which

is the effective number of parameters, is a Bayesian measure of
complexity, with � = E(�|Y,D) ∼= 1

R
∑R

r = 1�
r . A smaller

DIC indicates a better model fit.
The conditional predictive ordinate (CPO)

index of the two models was computed. Let
Qij,max = max1 ≤ r ≤ R

{
−logf (Yij,Dij|�

r)
}

. Thus,

log
(

ĈPOij

)
=

−Qij,max − log

[
1
R

r∑
r = 1

exp
{
−logf

(
Yij,Dij|�

r)
− Qij,max

}]
.

(16)

The summary statistic for log
(

ĈPOij

)
is the sum of their

logarithms, which is termed the LPML and is given by,

LPML =
N∑

i = 1

J∑
j = 1

log(ĈPOij), (17)

where the model with a larger LPML indicates a better
fit to the data.

SIMULATION STUDIES

Three simulation studies were conducted to evaluate different
aspects of the proposed model. Simulation study I was conducted
to assess whether the MCMC algorithm could successfully
recover parameters of the proposed model under different
numbers of examinees and items. Simulation study II was
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conducted to investigate the parameter recovery of different
numbers of attributes for the same examinees and items.
Simulation study III intended to show the differences in model
parameter estimates between the NMAR and MAR models
for different dropping-out proportions and correlations among
person parameters.

Data Generation
In the three simulation studies, the item parameters were sampled

from the following distributions:
(

βj
δj

)
∼ MVN

((
µβ

µδ

)
,6I

)
,

µβ = − 2.197, µδ = 4.394,6I =

(
1 −0.8
−0.8 1

)
. These

values were used in Shan and Wang (2020) study. The dropping-
out proportions across three levels (i.e., low, medium, and high)
were varied by setting different combinations of η0 and η1.
That is, the dropping-out proportion was 3.8 (low) when
η0 = 1,η1 = − 0.7; the dropping-out proportion was 12
(medium) when η0 = 1,η1 = − 0.32; and the dropping-out
proportion was 25% (high) when η0 = 1,η1 = − 0.18.

The attribute intercept parameters were
λ = (−1,−0.5, 0, 0.5, 1) , and the attribute slope parameters
wereγk = 1.5 for all attributes, which were consistent with those
in the study by Shan and Wang (2020). Three Q matrices with
different numbers of attributes (Figure 1) were considered, and
the three Q matrices were taken from Xu and Shang (2018) study
and Shan and Wang (2020) study.

The person parameters θhi and θdi were simulated

from the bivariate normal distribution
(

θh

θd

)
∼

MVN

((
0
0

)
,

(
1 σθhθd

σθhθd σ2
θd

))
,where σ2

θd
= 0.25. Three

levels of correlation between θhi and θdi were considered for
ρ

θhi θ
d
i
: 0 (uncorrelated), −0.5 (medium), and −0.8 (high). The

missing data due to dropping-out items were simulated in the

J=30, K=5

J=20, K=5

J=20, K=3

A

B

C

FIGURE 1 | K-by-J Q matrices in simulation studies, where black means “1”
and white means “0.” K is the number of attributes and J is the number of
items.

following manner. The three levels of dropping-out proportions
were 3.8% (low), 12% (medium), and 25% (high).

Model Calibration
The priors of η0 and η1 were η0 ∼ N (0, 2) and η1 ∼ N(0, 2),
respectively. The priors of the item parameters βj and
δj were assumed to have a bivariate normal distribution:(

βj
δj

)
∼ N

((
µβ

µδ

)
,6I

)
. The priors of the person parameters

were assumed to follow a bivariate normal distribution:(
θh

θd

)
∼ N

((
0
0

)
,6P

)
. The priors of the higher-order

structure parameters were expressed as λk ∼ N (0, 4) and
γk ∼ N(0, 4)I (γk > 0), the priors of the covariance matrix of
the person were expressed as σθhθd ∼ U (−1, 1) and σ2

θd
∼Inv-

(2, 2), the priors of the covariance matrix of the item parameters
were expressed as6I Inv-Wishart

(
6−1

I0 , vI0
)
, and the hyperpriors

were specified as 6I0 =

(
1 0
0 1

)
, vI0 = 2,kI0 = 1,

µβ ∼ N (−2.197, 2) , and µδ ∼ N(4.394, 2)I (µδ > 0). The
hyperpriors specified above were on a logit scale for β andδ

and were consistent with those reported by Zhan et al. (2018).
The mean guessing effect was set at 0.1, which was roughly
equal to a logit value −2.197 for µβ. A standard deviation of
√

2 on the logit scale for µβ indicated that the simulated mean
guessing effect changed from 0.026 to 0.314. In addition, the
mean slipping effect was also set at 0.1, which indicated that µδ

was approximately 4.394 on the logit scale. The simulated mean
slipping effect changed from 0.007 to 0.653 under a standard
deviation of

√
2 on the logit scale for δ.

The initial values of the model parameters were as
follows: βj = 0, δj = 0 for j = 1, ..., J, θhi = 0,
θdi = 0 for i = 1, ..., N, σθhθd = 0, σ2

θd
= 1,

η0 = 0,η1 = 0,µβ = 0,µδ = 0, 6P =

(
1 0
0 1

)
,

µP =

(
0
0

)
, and σ2

θh
= 1. In addition, λk = 0, γk = 1 for

k = 1,,K, and α =

 α11 · · · α1K
...
. . .

...

αN1 · · · αNK

, where αik

(i = 1, ...,N, k = 1, ...,K) were sampled from 0 to 1
randomly. The proposal variances were chosen to give
Metropolis acceptance rates between 25% and 40%. The
Markov chain length was set at 10,000 so that the potential
scale reduction factor (PSRF; Brooks and Gelman, 1998) was
less than 1.1 for all parameters, which implied proper chain
convergence. Five thousand iterations were treated as burn-in.
The final parameter estimates were obtained as the average of the
post-burn-in iterations.

In terms of evaluation criteria, the bias and root mean squared
error (RMSE) are used to assess the accuracy of the parameter
estimates. In particular, the bias for parameter η was,

bias (η) =
1
R

R∑
r = 1

(̂
η(r) − η

)
, (18)
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and the RMSE for parameter η is defined as,

RMSE (η) =

√√√√ 1
R

R∑
r = 1

(̂
η(r) − η

)2
, (19)

where η is the true value of the parameter, and η̂(r) is the estimate
for the rth replication. There were R = 30 replications for each
simulation condition. The recoveries of attributes are evaluated
using the attribute correct classification rate (ACCR) and the
pattern correct classification rate (PCCR):

ACCR =
∑N

i = 1 I (α̂ik = αik)

N
, (20)

PCCR =

∑N
i = 1

[∏K
k = 1 I (α̂ik = αik)

]
N

, (21)

where I (α̂ik = αik) is the indicator function that is,
I (α̂ik = αik) = 1 if α̂ik = αik, otherwise I (α̂ik = αik) = 0.

Simulation Study I
In simulation study I, the different numbers of examinees and
items were considered to estimate the model parameters under a
fixed number of five attributes. Three conditions were considered
in this simulation: (a) 500 examinees and 30 items, (b) 1,000

examinees and 30 items, and (c) 500 examinees and 20 items. The
correlation between θhi and θdi was −0.3, and the dropping-out
proportion was medium.

Table 1 presents the bias and RMSE of the ability parameters
and item parameters, as well as the attribute parameter estimates.
For the 30 items and the 5 attributes (please see the first four
columns of Table 1), the item parameter estimates improve when
the number of examinees increases from 500 to 1,000, the bias
and RMSE of δ and µβ decrease, and the RMSE of β,µδ, and item
covariance matrix elements reduce. For the 500 examinees and
the 5 attributes (please see the middle four columns of Table 1),
the person parameter estimates improve when the number of
items increases from 20 to 30, and θh and σ2

θd
are more accurate.

The ACCRs and PCCRs are presented in Table 2. The ACCRs
and PCCRs could be recovered satisfactorily with a larger sample
and longer test length. The ACCRs and PCCRs decrease when
the number of examinees or test length decreases (please see the
first three columns in Table 2), and the changes are particularly
marked when the test length is reduced. Figure 2 shows the PSRF
of several items and attribute parameters under 500 examinees
and 30 items. It is observed that the item intercept parameter β,
the interaction parameter δ, the attribute slope parameter γ, and
the attribute intercept parameter λ converge at 5,000 iterations,
and the convergence of β and δ are significantly faster than that
of λ and γ.

TABLE 1 | Bias and RMSE of the parameter estimates in simulation studies I and II.

N = 1000 N = 500 N = 500 N = 500

J = 30 J = 30 J = 20 J = 20

K = 5 K = 5 K = 5 K = 3

Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE

β 0.009 0.167 −0.002 0.198 −0.134 0.272 −0.020 0.282

δ −0.001 0.274 −0.051 0.339 0.072 0.345 0.017 0.351

µβ −0.111 0.203 −0.120 0.215 −0.296 0.374 −0.192 0.268

µδ 0.035 0.181 −0.017 0.196 0.236 0.356 0.191 0.313

λ1 0.078 0.137 0.063 0.179 0.066 0.191 −0.109 0.181

λ2 0.029 0.100 −0.133 0.193 −0.149 0.199 −0.030 0.130

λ3 0.052 0.104 −0.058 0.143 −0.127 0.202 −0.204 0.245

λ4 0.040 0.106 −0.069 0.145 −0.121 0.178 − −

λ5 0.201 0.239 −0.089 0.188 −0.181 0.246 − −

γ1 0.129 0.249 0.296 0.457 0.222 0.403 −0.179 0.451

γ2 0.034 0.189 0.065 0.268 −0.288 0.360 −0.156 0.545

γ3 −0.063 0.182 −0.002 0.252 0.359 0.527 −0.301 0.626

γ4 −0.027 0.180 −0.202 0.298 −0.139 0.276 − −

γ5 0.039 0.206 0.153 0.326 −0.083 0.282 − −

σ2
β −0.152 0.281 −0.051 0.282 −0.035 0.374 −0.353 0.429

σβδ 0.093 0.244 −0.027 0.280 −0.118 0.415 0.131 0.318

σ2
δ −0.103 0.282 0.066 0.340 0.315 0.611 0.132 0.457

η0 −0.051 0.086 −0.014 0.097 0.053 0.112 −0.130 0.161

η1 −0.004 0.013 0.005 0.017 0.008 0.019 −0.013 0.022

σθhθd −0.056 0.077 −0.046 0.091 0.001 0.083 0.057 0.105

σ2
θd −0.001 0.081 0.008 0.094 0.018 0.101 −0.029 0.075

θh 0.071 0.625 −0.043 0.594 −0.044 0.612 −0.044 0.701

θd
−0.039 0.480 0.006 0.475 0.006 0.468 0.006 0.479

The boldfaced values indicate that much smaller Bias and RMSE are obtained from the model.
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TABLE 2 | ACCRs and PCCRs in simulation studies I and II.

N = 1000 N = 500 N = 500 N = 500

J = 30 J = 30 J = 20 J = 20

K = 5 K = 5 K = 5 K = 3

ACCR 0.968 0.966 0.922 0.985

0.980 0.976 0.966 0.993

0.984 0.985 0.960 0.982

0.986 0.977 0.984 −

0.986 0.981 0.954 −

PCCR 0.910 0.898 0.811 0.961

The boldfaced values indicate that much smaller Bias and RMSE are obtained from
the model.

Simulation Study II
This simulation study was conducted to investigate the parameter
recovery of different numbers of attributes for fixed 500
examinees and 20 items. The correlation between θhi and θdi was
set at−0.3, and the dropping-out proportion was medium.

The last four columns of Table 1 show the results of simulation
study II. The RMSE of the estimates of item and person
parameters with attribute K = 5 are smaller than those with
attribute K = 3. The RMSE of the attribute slope parameters and
intercept parameters recover more satisfactorily with attribute
K = 3 than with attribute K = 5. The last two columns of Table 2
show the ACCRs and PCCRs for simulation study II. The ACCRs
with attribute K = 3 are higher than those with attribute K = 5 and
improve from 0.957 to 0.987 on average. Moreover, the PCCRs
are significantly higher when the number of attributes decreases.
That is, the PCCR with attribute K = 5 is 0.811, and the PCCR
with attribute K = 3 is 0.961.

Simulation Study III
The purpose of this simulation study was to investigate the
parameter recovery with the NMAR model, MAR model, and
HO-DINA model that ignores the not-reached items under
different simulation conditions. The data were generated using
the proposed model with the NMAR mechanism. A total of 500
examinees answered 30 items, and each item had 5 attributes.
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FIGURE 2 | The trace plots of PSRF values for simulation study I.
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TABLE 3 | Bias and RMSE of parameter estimates of three models with low dropping-out proportion under different correlations between θh
i and θd

i in simulation study III.

ρ = 0 ρ = −0.5 ρ = −0.8

Parameter Statistics NMAR MAR HO-DINA NMAR MAR HO-DINA NMAR MAR HO-DINA

η0 Bias 0.003 0.001 − 0.036 −0.001 − 0.015 −0.019 −

RMSE 0.123 0.125 − 0.155 0.174 − 0.134 0.162 −

η1 Bias 0.005 0.004 − −0.004 −0.109 − −0.003 −0.107 −

RMSE 0.055 0.055 − 0.065 0.137 − 0.059 0.131 −

β Bias −0.018 −0.016 −0.015 −0.003 0.124 0.121 −0.029 0.093 0.093

RMSE 0.234 0.233 0.234 0.239 0.299 0.297 0.237 0.285 0.286

δ Bias 0.039 0.047 0.045 0.022 −0.017 −0.015 0.063 0.021 0.021

RMSE 0.336 0.345 0.346 0.341 0.369 0.369 0.346 0.369 0.369

µβ Bias −0.136 −0.117 −0.115 −0.120 0.006 0.004 −0.146 −0.022 −0.022

RMSE 0.228 0.217 0.218 0.218 0.201 0.201 0.235 0.204 0.204

µδ Bias 0.073 0.067 0.064 0.054 0.016 0.017 0.095 0.052 0.052

RMSE 0.216 0.228 0.229 0.205 0.255 0.255 0.223 0.259 0.263

σ2
β Bias −0.052 −0.053 −0.056 −0.067 0.074 0.075 −0.055 0.096 0.096

RMSE 0.290 0.290 0.289 0.291 0.322 0.322 0.291 0.331 0.332

σβδ Bias 0.008 −0.005 −0.003 0.051 −0.275 −0.276 0.028 −0.316 −0.314

RMSE 0.286 0.299 0.296 0.281 0.446 0.445 0.289 0.479 0.478

σ2
δ Bias 0.054 0.225 0.222 −0.021 0.656 0.657 0.004 0.703 0.700

RMSE 0.358 0.447 0.443 0.333 0.812 0.811 0.355 0.856 0.855

λ1 Bias 0.039 0.017 0.017 0.098 0.298 0.285 0.056 0.220 0.224

RMSE 0.168 0.172 0.173 0.193 0.370 0.363 0.181 0.331 0.330

λ2 Bias −0.096 −0.111 −0.108 −0.103 −0.051 −0.055 −0.096 −0.049 −0.048

RMSE 0.168 0.180 0.178 0.168 0.160 0.163 0.166 0.159 0.159

λ3 Bias −0.051 −0.053 −0.052 −0.127 −0.003 −0.011 −0.091 0.030 0.033

RMSE 0.147 0.149 0.150 0.188 0.163 0.162 0.167 0.169 0.168

λ4 Bias −0.089 −0.084 −0.083 −0.068 0.023 0.018 −0.080 0.002 0.003

RMSE 0.162 0.161 0.161 0.152 0.149 0.150 0.153 0.141 0.141

λ5 Bias −0.102 −0.076 −0.081 −0.142 0.019 0.017 −0.135 0.006 0.007

RMSE 0.194 0.186 0.190 0.214 0.185 0.187 0.210 0.181 0.180

γ1 Bias 0.122 0.173 0.179 0.178 0.294 0.263 0.277 0.501 0.520

RMSE 0.346 0.371 0.374 0.387 0.472 0.433 0.451 0.698 0.710

γ2 Bias −0.004 0.044 0.035 −0.117 0.246 0.245 −0.084 0.246 0.247

RMSE 0.276 0.284 0.275 0.281 0.380 0.381 0.271 0.372 0.377

γ3 Bias 0.080 0.104 0.111 0.126 0.474 0.477 0.141 0.485 0.494

RMSE 0.301 0.312 0.313 0.323 0.577 0.583 0.332 0.594 0.603

γ4 Bias −0.103 −0.077 −0.078 −0.114 0.025 0.021 −0.178 −0.037 −0.035

RMSE 0.267 0.263 0.264 0.274 0.252 0.256 0.287 0.235 0.233

γ5 Bias −0.052 0.005 −0.006 −0.075 0.114 0.115 −0.039 0.137 0.132

RMSE 0.289 0.286 0.290 0.284 0.307 0.310 0.280 0.313 0.309

θd Bias −0.002 −0.002 − 0.011 0.011 − 0.017 0.018 −

RMSE 0.499 0.492 − 0.454 0.667 − 0.377 0.668 −

θh Bias −0.044 −0.046 −0.046 −0.044 −0.044 −0.047 −0.044 −0.046 −0.045

RMSE 0.581 0.581 0.580 0.582 0.591 0.592 0.578 0.591 0.591

σ2
θd Bias −0.002 0.007 − 0.013 1.022 − 0.015 1.023 −

RMSE 0.089 0.088 − 0.095 1.160 − 0.081 1.097 −

σθhθd Bias 0.011 − − 0.015 − − 0.010 − −

RMSE 0.131 − − 0.113 − − 0.082 − −

NMAR means not missing at random model, MAR means missing at random model, HO-DINA means higher-order DINA model. The boldfaced values indicate that much
smaller Bias and RMSE are obtained from the model.

Three dropping-out proportions (i.e., 3.8% [low], 12% [medium],
and 25% [high]) and three correlations between θhi and θdi
(i.e., 0 [uncorrelated], −0.5 [medium], and −0.8 [high]) were
manipulated. Thus, there were 3× 3 simulation conditions.

Table 3 shows the bias and RMSE of the parameters of
three models with low dropping-out proportions under different
correlations between θhi and θdi . Results show that the parameter
estimates from the three models are similar when the correlation
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TABLE 4 | Bias and RMSE of parameter estimates of three models with medium dropping-out proportion under different correlations between θh
i and θd

i in
simulation study III.

ρ = 0 ρ = −0.5 ρ = −0.8

Parameter Statistics NMAR MAR HO-DINA NMAR MAR HO-DINA NMAR MAR HO-DINA

η0 Bias 0.014 0.009 − −0.006 −0.159 − −0.033 −0.181 −

RMSE 0.133 0.131 − 0.131 0.216 − 0.123 0.226 −

η1 Bias 0.001 0.001 − −0.001 −0.039 − −0.011 −0.048 −

RMSE −0.002 −0.003 − −0.001 −0.024 − −0.001 −0.019 −

β Bias −0.022 −0.019 −0.019 −0.028 0.114 0.113 −0.021 0.119 0.118

RMSE 0.249 0.248 0.249 0.265 0.323 0.322 0.249 0.309 0.309

δ Bias 0.071 0.082 0.081 0.042 −0.002 −0.001 0.052 0.005 0.007

RMSE 0.365 0.378 0.377 0.360 0.401 0.400 0.357 0.389 0.391

µβ Bias −0.137 −0.121 −0.120 −0.146 −0.001 0.001 −0.134 0.008 0.004

RMSE 0.229 0.226 0.223 0.238 0.206 0.204 0.229 0.207 0.202

µδ Bias 0.102 0.103 0.102 0.077 0.029 0.026 0.080 0.032 0.037

RMSE 0.232 0.250 0.247 0.224 0.266 0.264 0.226 0.269 0.268

σ2
β Bias −0.031 −0.031 −0.033 −0.032 0.105 0.108 −0.046 0.095 0.095

RMSE 0.308 0.307 0.306 0.299 0.341 0.342 0.299 0.338 0.338

σβδ Bias −0.015 −0.024 −0.023 −0.015 −0.344 −0.346 0.029 −0.304 −0.304

RMSE 0.310 0.319 0.319 0.296 0.504 0.505 0.286 0.471 0.471

σ2
δ Bias 0.107 0.277 0.274 0.075 0.764 0.765 0.016 0.710 0.712

RMSE 0.393 0.490 0.488 0.361 0.919 0.919 0.340 0.864 0.866

λ1 Bias 0.047 0.026 0.028 0.109 0.349 0.344 0.070 0.267 0.268

RMSE 0.170 0.173 0.172 0.195 0.414 0.410 0.187 0.375 0.372

λ2 Bias −0.104 −0.116 −0.114 −0.106 −0.055 −0.052 −0.110 −0.051 −0.048

RMSE 0.174 0.184 0.182 0.171 0.163 0.163 0.173 0.158 0.157

λ3 Bias −0.044 −0.047 −0.044 −0.112 0.025 0.032 −0.097 0.027 0.026

RMSE 0.146 0.148 0.150 0.180 0.171 0.180 0.168 0.165 0.161

λ4 Bias −0.091 −0.086 −0.083 −0.064 0.034 0.034 −0.081 0.011 0.009

RMSE 0.165 0.162 0.162 0.152 0.154 0.155 0.156 0.144 0.144

λ5 Bias −0.107 −0.083 −0.082 −0.153 0.003 0.005 −0.138 0.033 0.037

RMSE 0.197 0.194 0.192 0.221 0.182 0.181 0.214 0.190 0.191

γ1 Bias 0.119 0.183 0.168 0.113 0.301 0.285 0.236 0.723 0.712

RMSE 0.170 0.173 0.172 0.195 0.414 0.410 0.187 0.375 0.372

γ2 Bias −0.006 0.032 0.029 −0.110 0.267 0.269 −0.098 0.233 0.232

RMSE 0.268 0.277 0.271 0.280 0.393 0.398 0.274 0.365 0.367

γ3 Bias 0.096 0.104 0.124 0.127 0.504 0.516 0.127 0.473 0.472

RMSE 0.313 0.307 0.322 0.332 0.611 0.632 0.323 0.580 0.578

γ4 Bias −0.122 −0.093 −0.089 −0.091 0.056 0.046 −0.176 −0.046 −0.054

RMSE 0.277 0.269 0.264 0.267 0.265 0.263 0.295 0.240 0.237

γ5 Bias −0.059 −0.006 −0.011 −0.079 0.087 0.084 −0.045 0.152 0.161

RMSE 0.284 0.298 0.285 0.285 0.293 0.289 0.284 0.325 0.333

θd Bias −0.002 −0.002 − 0.011 0.013 − 0.017 0.019 −

RMSE 0.484 0.483 − 0.443 0.577 − 0.379 0.586 −

θh Bias −0.044 −0.045 −0.045 −0.044 −0.047 −0.045 −0.044 −0.045 −0.045

RMSE 0.585 0.583 0.583 0.581 0.593 0.592 0.574 0.592 0.593

σ2
θd Bias 0.008 0.011 − 0.013 0.598 − 0.051 0.648 −

RMSE 0.001 0.001 − 0.017 0.494 − 0.029 0.411 −

σθhθd Bias −0.003 − − 0.008 − − 0.001 − −

RMSE 0.023 − − 0.005 − − 0.008 − −

The boldfaced values indicate that much smaller Bias and RMSE are obtained from the model.

between θhi and θdi is 0. When the correlation between θhi and
θdi increases, the bias and RMSE of η1, β, 6I, and γ in the
NMAR model are much smaller than those in the MAR and

HO-DINA models. Moreover, for low dropping-out proportions,
when the correlation between θhi and θdi increases, the bias of
the person parameters of the three models changes very little,
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TABLE 5 | Bias and RMSE of parameter estimates of three models with high dropping-out proportion under different correlations between θh
i and θd

i in
simulation study III.

ρ = 0 ρ = −0.5 ρ = −0.8

Parameter Statistics NMAR MAR HO-DINA NMAR MAR HO-DINA NMAR MAR HO-DINA

η0 Bias −0.013 −0.019 − 0.016 −0.221 − 0.014 −0.174 −

RMSE 0.134 0.132 − 0.146 0.271 − 0.130 0.237 −

η1 Bias −0.002 −0.003 − −0.001 −0.024 − −0.001 −0.019 −

RMSE 0.012 0.011 − 0.013 0.028 − 0.011 0.024 −

β Bias −0.025 −0.021 −0.021 −0.027 0.175 0.177 −0.010 0.187 0.185

RMSE 0.275 0.274 0.273 0.284 0.383 0.384 0.267 0.373 0.371

δ Bias 0.058 0.071 0.069 0.060 −0.001 −0.003 0.043 −0.021 −0.019

RMSE 0.392 0.405 0.404 0.392 0.441 0.443 0.378 0.427 0.425

µβ Bias −0.142 −0.120 −0.124 −0.144 0.056 0.061 −0.126 0.071 0.067

RMSE 0.235 0.225 0.228 0.240 0.217 0.218 0.227 0.216 0.215

µδ Bias 0.091 0.089 0.092 0.093 0.035 0.028 0.075 0.011 0.015

RMSE 0.234 0.252 0.253 0.236 0.271 0.272 0.219 0.263 0.216

σ2
β Bias −0.032 −0.033 −0.032 −0.012 0.084 0.086 −0.025 0.084 0.085

RMSE 0.302 0.302 0.302 0.313 0.339 0.339 0.304 0.332 0.334

σβδ Bias −0.004 −0.013 −0.017 −0.047 −0.336 −0.339 −0.004 −0.313 −0.314

RMSE 0.302 0.316 0.314 0.322 0.505 0.507 0.309 0.485 0.486

σ2
δ Bias 0.083 0.271 0.271 0.118 0.802 0.806 0.037 0.738 0.740

RMSE 0.383 0.491 0.489 0.405 0.960 0.965 0.378 0.898 0.901

λ1 Bias 0.047 0.027 0.021 0.110 0.490 0.502 0.089 0.474 0.467

RMSE 0.182 0.181 0.184 0.201 0.553 0.566 0.198 0.552 0.544

λ2 Bias −0.110 −0.120 −0.122 −0.099 0.013 0.015 −0.102 0.006 0.003

RMSE 0.182 0.190 0.191 0.170 0.173 0.174 0.174 0.164 0.163

λ3 Bias −0.055 −0.055 −0.055 −0.116 0.102 0.104 −0.091 0.152 0.144

RMSE 0.156 0.158 0.156 0.186 0.206 0.207 0.171 0.237 0.232

λ4 Bias −0.096 −0.089 −0.092 −0.074 0.098 0.098 −0.076 0.085 0.084

RMSE 0.170 0.167 0.168 0.160 0.188 0.188 0.159 0.178 0.177

λ5 Bias −0.077 −0.045 −0.051 −0.147 0.141 0.147 −0.140 0.171 0.164

RMSE 0.196 0.197 0.195 0.223 0.244 0.247 0.225 0.269 0.263

γ1 Bias −0.133 0.174 0.186 0.147 0.672 0.720 0.251 1.029 0.995

RMSE 0.374 0.390 0.400 0.375 0.892 0.952 0.439 1.294 1.249

γ2 Bias −0.020 0.059 0.058 −0.102 0.334 0.340 −0.058 0.341 0.333

RMSE 0.287 0.302 0.294 0.285 0.458 0.461 0.271 0.452 0.444

γ3 Bias −0.091 0.117 0.117 0.111 0.537 0.532 0.143 0.591 0.584

RMSE 0.328 0.330 0.328 0.332 0.648 0.644 0.341 0.700 0.693

γ4 Bias −0.130 −0.104 −0.102 −0.122 0.055 0.053 −0.146 0.026 0.026

RMSE 0.289 0.280 0.277 0.290 0.271 0.270 0.294 0.265 0.261

γ5 Bias −0.014 0.046 0.039 −0.078 0.147 0.152 −0.050 0.226 0.213

RMSE 0.304 0.321 0.314 0.289 0.330 0.334 0.296 0.386 0.376

θd Bias −0.002 −0.002 − 0.011 0.016 − 0.018 0.021 −

RMSE 0.479 0.475 − 0.442 0.549 − 0.374 0.526 −

θh Bias −0.044 −0.045 −0.046 −0.043 −0.046 −0.045 −0.044 −0.045 −0.046

RMSE 0.595 0.594 0.594 0.590 0.607 0.608 0.584 0.607 0.607

σ2
θd Bias 0.001 0.001 − 0.017 0.494 − 0.029 0.411 −

RMSE 0.088 0.085 − 0.102 0.555 − 0.097 0.463 −

σθhθd Bias 0.023 − − 0.005 − − 0.008 − −

RMSE 0.102 − − 0.092 − − 0.085 − −

The boldfaced values indicate that much smaller Bias and RMSE are obtained from the model.

whereas the RMSE of the person parameters in the MAR and HO-
DINA models increases significantly. As expected, the NMAR
model has higher accuracy of parameters than that of the other
two models. Furthermore, the parameter estimates of the MAR

and HO-DINA models are similar for all simulation conditions
because θhi and θdi are uncorrelated in both the MAR and HO-
DINA models, which ignore the not-reached items. Table 4 shows
the bias and RMSE of the parameters of the three models with
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FIGURE 3 | Bias of parameter estimates in the mean item vector and the item covariance matrix elements under different dropping-out proportions and correlations
between θh

i and θd
i in simulation study III. Note that the Bias_NMAR is the bias of parameter estimates in NMAR model, and Bias_MAR is the bias of parameter

estimates in the MAR model.

medium dropping-out proportions under different correlations
between θhi and θdi . Similar parameter estimates are obtained
from the three models when the correlation between θhi and
θdi is 0. When the correlation between θhi and θdi increases, not
only the bias but also the RMSE of the person parameters are
lower in the NMAR model than those in the MAR and HO-
DINA models, and the other results are similar to those with
low dropping-out proportions. Table 5 shows the bias and RMSE
of the parameters of the three models with high dropping-
out proportions under different correlations between θhi and
θdi . We find that the parameter estimates improve significantly
with high dropping-out proportions. Figure 3 shows the bias
of the estimates of item mean vector and the item covariance
matrix elements in the NMAR and MAR models under different

dropping-out proportions and correlations between θhi and θdi .
The results show that the estimates of the parameters are more
accurate in the NMAR model than those in the MAR model
when the correlation is increased. Moreover, it is observed that
the bias of the parameters of the NMAR model is close to 0 as the
correlation between θhi and θdi increases. In contrast, the bias of
the parameters of the MAR model is significantly larger than that
of the NMAR model. Figure 4 shows the RMSE of the estimates
of the item mean vector and the item covariance matrix elements
in the NMAR and MAR models under different dropping-out
proportions and correlations between θhi and θdi . The results show
that the RMSE of the item mean vector in the NMAR model
improves slightly than that in the MAR model. Moreover, the
RMSE of the item covariance matrix elements shows significant
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FIGURE 4 | RMSE of parameter estimates in the mean item vector and the item covariance matrix elements under different dropping-out proportions and
correlations between θh

i and θd
i in simulation study III. Note that the Bias_NMAR is the bias of parameter estimates in the NMAR model, and Bias_MAR is the bias of

parameter estimates in the MAR model.

improvements, and the estimates of the item covariance matrix
elements are precise when the correlation is high. Figure 5
shows the ACCRs and PCCRs under nine simulation conditions.
Detailed results are provided in Supplementary Table 1. It is
found that ACCRs and PCCRs in the NMAR model are improved
significantly when the missing proportion or the correlation
between θhi and θdi is high. This indicates that the MAR model
could not recover the attribute pattern effectively when the
missing data mechanism is indeed non-ignorable. Table 6 shows
the model selection results. The differences in DIC and LPML
are not obvious when the correlation between θhi and θdi is 0.
The DICs of the NMAR model are smaller than those of the
MAR model under nine simulation conditions. Moreover, the
LPMLs of the NMAR model are higher than those of the MAR

model. Thus, the DIC and LPML indices are able to select the
true model accurately.

REAL DATA ANALYSIS

This study analyzed one dataset from the computer-based PISA
2018 (OECD, 2021) mathematics cognitive test with nine items
in Albania, which was also used in the study by Shan and
Wang (2020). According to the PISA 2018 (OECD, 2021)
mathematics assessment framework, four attributes belonging
to the mathematical content knowledge were assessed: change
and relationship (α1), quantity (α2), space and shape (α3),
and uncertainty and data (α4). Item responses were coded 0
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FIGURE 5 | The ACCRs and PCCRs of NMAR and MAR models under different correlations between θh
i and θd

i and different dropping-out proportions in simulation
study III.

(no credit), 1 (full credit), 6 (not reached), 7 (not applicable),
8 (invalid), and 9 (nonresponse). There were 798 examinees
after removing examinees with codes 7 (not applicable) and
8 (invalid). In addition, 224 examinees with code 9 were also
removed from this study because this study mainly focused
on dropping-out missingness. Thus, the final sample was 574.
The overall not-reached proportion was about 2%, and the
not-reached proportions at the item level were from 0.7%

to 3.3%. The item IDs and Q matrices are presented in
Table 7.

The DIC and LPML of the NMAR model in the real data were
5,760.28 and −3,040.03, respectively, and the DIC and LPML of
the MAR model were 6,521.21 and−3,213.94, respectively. These
two model fit indices indicated that the NMAR model fits the real
data better than the MAR model. Thus, the NMAR model was
adopted to fit this real dataset.
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TABLE 6 | DICs and LPMLs of NMAR and MAR models under different correlations between θh
i and θd

i and different dropping-out proportions in simulation study III.

Low dropping-out proportion Medium dropping-out proportion High dropping-out proportion

NMAR MAR NMAR MAR NMAR MAR

ρ = 0 DIC 12139.3 12146.3 12283.9 12290.6 12084.8 12090.3

LPML −6348.4 −6352.7 −6465.8 −6468.3 −6532.1 −6539.9

ρ = −0.5 DIC 12152.6 12541.4 12225.5 12653.3 12113.8 12570.5

LPML −6354.7 −6592.1 −6431.9 −6660.7 −6539.8 −6747.6

ρ = −0.8 DIC 12132.3 12517.4 12215.6 12672.1 12029.8 12461.9

LPML −6333.8 −6579.2 −6412.4 −6663.1 −6476.2 −6681.6

TABLE 7 | The Q matrix in the real data.

Attribute CM033Q01 CM474Q01 CM155Q01 CM155Q04 CM411Q01 CM411Q02 CM803Q01 CM442Q02 CM034Q01

α1 0 0 1 1 0 0 0 0 0

α2 1 0 0 0 0 0 0 0 1

α3 0 1 0 0 1 0 0 1 0

α4 0 0 0 0 0 1 1 0 0

TABLE 8 | Estimates and standard errors of the parameters for the real data.

Statistics σ
θhθd σ2

θd µβ µδ σ2
β

σβδ σ2
δ

λ1 λ2 λ3 λ4 γ1 γ2 γ3 γ4

Est. −0.224 0.159 −1.749 2.380 3.058 −0.887 1.257 1.505 2.081 1.851 2.184 3.957 3.645 3.921 3.585

SD 0.149 0.040 0.379 0.292 2.108 1.241 0.979 0.399 0.427 0.443 0.382 0.441 0.432 0.446 0.482

Est. is the estimated value, SD is the standard deviation.

TABLE 9 | Estimates and standard errors of the item parameters for the real data.

Parameter Statistics 033Q01 474Q01 155Q01 155Q04 411Q01 411Q02 803Q01 442Q02 034Q01

βj Est. 0.350 −0.251 −0.239 −1.213 −1.522 −1.296 −4.061 −4.325 −2.424

SD 0.132 0.125 0.152 0.167 0.223 0.151 0.687 0.776 0.250

δj Est. 2.433 1.418 3.265 1.559 2.541 0.781 3.485 3.218 2.326

SD 0.520 0.225 0.561 0.280 0.396 0.323 0.755 0.801 0.371

Est. is the estimated value, SD is the standard deviation.

Tables 8, 9 show the estimated values and standard deviations
of the item, person, and attribute parameters. Results show that
the correlation coefficient of the person parameters is negative
(i.e.,−0.516), which indicates that the examinees with the higher
abilities are less likely to drop out of the test. The estimated
attribute slope parameters are positive, which implies that the
knowledge attribute is better mastered with the increased ability
θhi . The item mean parameter µβ is estimated to be −1.749,
which shows that the mean guessing probability is approximately
0.15. In addition, for the estimation of item parameters, only βj
for CM033Q01 is positive, while the βj values for other items
are negative, which implies that the guessing probability of item
CM033Q01 is higher than 0.5 and the guessing probability of
all other items is lower than 0.5. All δj are positive, which
satisfies gj < 1− sj, as expected. Supplementary Figure 1 shows
the proportions of attribute patterns for examinees with not-
reached items, which illustrate that the most prevalent attribute
pattern for examinees with not-reached items is (0000), which
is unsurprising.

CONCLUSION

Not-reached items occurred frequently in cognitive diagnosis
assessments. Missing data could help researchers understand
examinees’ attributes, skills, or knowledge structures. Studies
dealing with item nonresponses have used imputation
approaches in cognitive diagnosis models, which may lead
to biased parameter estimations. Shan and Wang (2020)
introduced latent missing propensities of examinees for a
cognitive diagnosis model that was governed by the potential
category variables. However, their model did not distinguish
the type of item nonresponses, which could result in inaccurate
inferences regarding cognitive attributes and patterns.

In this study, a missing data model for not-reached items in
cognitive diagnosis assessments was proposed. A DINA model
was used as the response model, and a 1PLM was used as the
missing indicator model. The two models were connected by
two bivariate normal distributions for person parameters and
item parameters. This new model was able to obtain more
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fine-grained attributes or knowledge structure as diagnostic
feedback for examinees.

Simulation studies were conducted to evaluate the
performance of the MCMC algorithm using the proposed
model. The results showed that not-reached items provide
useful information for further understanding the knowledge
structure of examinees. Additionally, the HO-DINA model
for the cognitive diagnosis assessments explained examinees’
cognitive processes, thus precise estimations of parameters were
obtained from the proposed NMAR model. We compared the
recovery of parameters under the two missing mechanisms,
which revealed that the bias and RMSE of person parameters
decreased significantly when using the proposed NMAR model
when the missing proportion and the correlation of ability
parameters were high. Moreover, considerable differences in
the ACCRs and PCCRs between the NMAR and MAR models
were found. With regard to model selection, the proposed
NMAR model fitted the data better than the MAR model
when the missing data mechanism was non-ignorable. The
proposed NMAR model was successfully applied to the 2018
computer-based PISA mathematics data.

Several limitations of the study warrant mentioning, alongside
future research avenues. First, this study only modeled not-
reached items; however, examinees may skip the items in a
cognitive test, which is another type of missing data that needs
to be explored further. Second, missing data mechanisms in
cognitive assessments may depend on individual factors, such
as sex, culture, and race. In addition, different training and
problem-solving strategies of examinees, and different school
locations may also affect the pattern of nonresponses. Future
studies can extend our model to account for the above-mentioned
factors. Third, future studies could also incorporate the additional

sources of process data, such as the response times, to explore the
missing data mechanisms.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.oecd.org/PISA/.

AUTHOR CONTRIBUTIONS

LL completed the writing of the article. JL provided the original
thoughts. LL and JL provided key technical support. JZ, JL, and
NS completed the article revisions. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science
Foundation of China (Grant No. 12001091), China Postdoctoral
Science Foundations (Grant Nos. 2021M690587 and
2021T140108), and the Fundamental Research Funds for the
Central Universities of China (Grant No. 2412020QD025).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpsyg.
2022.889673/full#supplementary-material

REFERENCES
Anselmi, P., Robusto, E., Stefanutti, L., and de Chiusole, D. (2016). An upgrading

procedure for adaptive assessment of knowledge. Psychometrika 81, 461–482.
doi: 10.1007/s11336-016-9498-9

Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence
of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. doi: 10.1080/
10618600.1998.10474787

Chen, M. H., Shao, Q. M., and Ibrahim, J. G. (2000). Monte Carlo Methods in
Bayesian Computation. New York, NY: Springer. doi: 10.1007/978-1-4612-
1276-8

de Chiusole, D., Stefanutti, L., Anselmi, P., and Robusto, E. (2015). Modeling
missing data in knowledge space theory. Psychol. Methods 20, 506–522. doi:
10.1037/met0000050

de la Torre, J. (2008). An empirically based method of Q-matrix validation for
the DINA model: Development and applications. J. Educ. Meas. 45, 343–362.
doi: 10.1111/j.1745-3984.2008.00069.x

de la Torre, J. (2009). DINA model and parameter estimation: a didactic. J. Educ.
Behav. Stat. 34, 115–130. doi: 10.3102/1076998607309474

de la Torre, J. (2011). The generalized DINA model frame work. Psychometrika 76,
179–199. doi: 10.1007/s11336-011-9207-7

de la Torre, J., and Douglas, J. A. (2004). Higher-order latent trait models for
cognitive diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF02295640

Debeer, D., Janssen, R., and De Boeck, P. (2017). Modeling skipped and not-
reached items using irtrees. J. Educ. Meas. 54, 333–363. doi: 10.1111/jedm.
12147

DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: the DINA
model, classification, latent class sizes, and the Q-matrix. Appl. Psychol. Meas.
35, 8–26. doi: 10.1177/0146621610377081

Doignon, J. P., and Falmagne, J. C. (1999). Knowledge Spaces. New York:NY:
Springer. doi: 10.1007/978-3-642-58625-5

Falmagne, J. C., and Doignon, J. P. (2011). Learning Spaces: Interdisciplinary
AppliedMathematics. New York:NY: Springer. doi: 10.1007/978-3-642-01039-2

Finch, H. (2008). Estimation of item response theory parameters in the presence of
missing data. J. Educ. Meas. 45, 225–245. doi: 10.1111/j.1745-3984.2008.00062.
x

Fox, J. P. (2010). Bayesian Item Response Modeling: Theory and Applications.
New York:NY: Springer. doi: 10.1007/978-1-4419-0742-4

Geisser, S., and Eddy, W. F. (1979). A predictive approach to model selection. J. Am.
Stat. Assoc. 74, 153–160. doi: 10.1080/01621459.1979.10481632

Glas, C. A. W., and Pimentel, J. L. (2008). Modeling nonignorable missing
data in speeded tests. Educ. Psychol. Meas. 68, 907–922. doi: 10.1177/
0013164408315262

Heller, J., Stefanutti, L., Anselmi, P., and Robusto, E. (2015). On the link between
cognitive diagnostic models and knowledge space theory. Psychometrika 80,
995–1019. doi: 10.1007/s11336-015-9457-x

Henson, R. A., Templin, J. L., and Willse, J. T. (2009). Defining a family of cognitive
diagnosis models using log-linear models with latent variables. Psychometrika
74, 191–210. doi: 10.1007/s11336-008-9089-5

Holman, R., and Glas, C. A. W. (2005). Modelling non-ignorable missing-data
mechanisms with item response theory models. Br. J. Math. Stat. Psychol. 58,
1–17. doi: 10.1111/j.2044-8317.2005.tb00312.x

Frontiers in Psychology | www.frontiersin.org 15 June 2022 | Volume 13 | Article 889673

https://www.oecd.org/PISA/
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.889673/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.889673/full#supplementary-material
https://doi.org/10.1007/s11336-016-9498-9
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1007/978-1-4612-1276-8
https://doi.org/10.1007/978-1-4612-1276-8
https://doi.org/10.1037/met0000050
https://doi.org/10.1037/met0000050
https://doi.org/10.1111/j.1745-3984.2008.00069.x
https://doi.org/10.3102/1076998607309474
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1007/BF02295640
https://doi.org/10.1111/jedm.12147
https://doi.org/10.1111/jedm.12147
https://doi.org/10.1177/0146621610377081
https://doi.org/10.1007/978-3-642-58625-5
https://doi.org/10.1007/978-3-642-01039-2
https://doi.org/10.1111/j.1745-3984.2008.00062.x
https://doi.org/10.1111/j.1745-3984.2008.00062.x
https://doi.org/10.1007/978-1-4419-0742-4
https://doi.org/10.1080/01621459.1979.10481632
https://doi.org/10.1177/0013164408315262
https://doi.org/10.1177/0013164408315262
https://doi.org/10.1007/s11336-015-9457-x
https://doi.org/10.1007/s11336-008-9089-5
https://doi.org/10.1111/j.2044-8317.2005.tb00312.x
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-889673 June 7, 2022 Time: 12:55 # 16

Liang et al. Modeling Not-Reached Items in CDM

Huisman, M. (2000). Imputation of missing item responses: Some simple
techniques. Q. Q. 34, 331–351. doi: 10.1023/A:1004782230065

Ibrahim, J. G., Chen, M. H., and Sinha, D. (2001). Bayesian Survival Analysis.
New York:NY: Springer. doi: 10.1007/978-1-4757-3447-8

Little, R. J. A., and Rubin, D. B. (2002). Statistical Analysis With Missing Data, 2nd
Edn. New York:NY: Springer. doi: 10.1002/9781119013563

Lord, F. M. (1974). Estimation of latent ability and item parameters when there are
omitted responses. Psychometrika 39, 247–264. doi: 10.1007/BF02291471

Lord, F. M. (1983). Maximum likelihood estimation of item response parameters
when some responses are omitted. Psychometrika 48, 477–482. doi: 10.1007/
BF02293689

Lord, F. M., and Novick, M. R. (1968). Statistical Theories Of Mental Test Scores.
Berlin: Addison-Wesley.

Lu, J., and Wang, C. (2020). A response time process model for not-reached and
omitted items. J. Educ. Meas. 57, 584–620. doi: 10.1111/jedm.12270

Ludlow, L. H., and O’Leary, M. (1999). Scoring omitted and not-reached items:
practical data analysis implications. Educ. Psychol. Meas. 59, 615–630. doi:
10.1177/0013164499594004

Ma, W. (2021). A Higher-Order Cognitive Diagnosis Model With Ordinal Attributes
For Dichotomous Response Data. Multivariate Behavioral Research. Milton Park:
Taylor & Francis. doi: 10.1080/00273171.2020.1860731

Maris, E. (1999). Estimating multiple classification latent class models.
Psychometrika 64, 187–212. doi: 10.1007/BF02294535

OECD (2009). PISA 2006 Technical Report. Paris: OECD Publishing.
OECD (2018). PISA 2015 Technical Report. Paris: OECD Publishing.
OECD (2021). PISA 2018 Technical Report. Paris: OECD Publishing.
Ömür Sünbül, S. (2018). The impact of different missing data handling methods

on DINA model. Int. J. Eval. Res. Educ. 7, 77–86. doi: 10.11591/ijere.v1i1.11682
Patz, R. J., and Junker, B. W. (1999). A straightforward approach to Markov chain

Monte Carlo methods for item response models. Journal of Educational and
Behavioral Statistics 24, 146–178. doi: 10.3102/10769986024002146

Pohl, S., Ulitzsch, E., and von Davier, M. (2019). Using response times to model
not-reached items due to time limits. Psychometrika 84, 892–920. doi: 10.1007/
s11336-019-09669-2

Rasch, G. (1960). Probabilistic Models For Some Intelligence And Attainment Tests.
Copenhagen Denmark: Danish Institute for Educational Research.

Rose, N., von Davier, M., and Nagengast, B. (2017). Modeling omitted and not-
reached items in IRT models. Psychometrika 82, 795–819. doi: 10.1007/s11336-
016-9544-7

Rose, N., von Davier, M., and Xu, X. (2010). Modeling nonignorable missing data
with IRT. Research Report No. RR-10-11. Princeton, NJ: Educational Testing
Service. doi: 10.1002/j.2333-8504.2010.tb02218.x

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592. doi:
10.1093/biomet/63.3.581

Shan, N., and Wang, X. (2020). Cognitive diagnosis modeling incorporating item-
level missing data mechanism. Front. Psychol. 11:564707. doi: 10.3389/fpsyg.
2020.564707

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002). Bayesian
measures of model complexity and fit. J. Royal Stat. Soci. Series B 64, 583–639.
doi: 10.1111/1467-9868.00353

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions
based on item response theory. J. Educ. Meas. 20, 345–354. doi: 10.1111/j.1745-
3984.1983.tb00212.x

Templin, J. L., and Henson, R. A. (2006). Measurement of psychological disorders
using cognitive diagnosis models. Psychol. Methods 11, 287–305. doi: 10.1037/
1082-989X.11.3.287

von Davier, M. (2008). A general diagnostic model applied to language testing
data. Br. J. Math. Stat. Psychol. 61, 287–307. doi: 10.1348/000711007X19
3957

von Davier, M. (2014).The Log-Linear Cognitive DiagnosticModel As A Special Case
Of The General Diagnostic Model. Research Report No. RR-14-40. Princeton, NJ:
Educational Testing Service. doi: 10.1002/ets2.12043

von Davier, M. (2018). Diagnosing diagnostic models: FromVon Neumann’s
elephant to model equivalencies and network psychometrics. Meas. Int. Res.
Pers. 16, 59–70. doi: 10.1080/15366367.2018.1436827

Xu, G., and Shang, Z. (2018). Identifying latent structures in restricted latent
class models. J. Am. Stat. Assoc. 113, 1284–1295. doi: 10.1080/01621459.2017.
1340889

Xu, G., and Zhang, S. (2016). Identifiability of diagnostic classification
models. Psychometrika 81, 625–649. doi: 10.1007/s11336-015-9
471-z

Zhan, P., Jiao, H., and Liao, D. (2018). Cognitive diagnosis modelling incorporating
item response times. Br. J. Math. Stat. Psychol. 71, 262–286. doi: 10.1111/bmsp.
12114

Zhang, Z., Zhang, J., Lu, J., and Tao, J. (2020). Bayesian Estimation of the DINA
Model with Pólya-Gamma Gibbs Sampling. Front. Psychol. 11:384. doi: 10.
3389/fpsyg.2020.00384

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Liang, Lu, Zhang and Shi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 16 June 2022 | Volume 13 | Article 889673

https://doi.org/10.1023/A:1004782230065
https://doi.org/10.1007/978-1-4757-3447-8
https://doi.org/10.1002/9781119013563
https://doi.org/10.1007/BF02291471
https://doi.org/10.1007/BF02293689
https://doi.org/10.1007/BF02293689
https://doi.org/10.1111/jedm.12270
https://doi.org/10.1177/0013164499594004
https://doi.org/10.1177/0013164499594004
https://doi.org/10.1080/00273171.2020.1860731
https://doi.org/10.1007/BF02294535
https://doi.org/10.11591/ijere.v1i1.11682
https://doi.org/10.3102/10769986024002146
https://doi.org/10.1007/s11336-019-09669-2
https://doi.org/10.1007/s11336-019-09669-2
https://doi.org/10.1007/s11336-016-9544-7
https://doi.org/10.1007/s11336-016-9544-7
https://doi.org/10.1002/j.2333-8504.2010.tb02218.x
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.3389/fpsyg.2020.564707
https://doi.org/10.3389/fpsyg.2020.564707
https://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1348/000711007X193957
https://doi.org/10.1348/000711007X193957
https://doi.org/10.1002/ets2.12043
https://doi.org/10.1080/15366367.2018.1436827
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1080/01621459.2017.1340889
https://doi.org/10.1007/s11336-015-9471-z
https://doi.org/10.1007/s11336-015-9471-z
https://doi.org/10.1111/bmsp.12114
https://doi.org/10.1111/bmsp.12114
https://doi.org/10.3389/fpsyg.2020.00384
https://doi.org/10.3389/fpsyg.2020.00384
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Modeling Not-Reached Items in Cognitive Diagnostic Assessments
	Introduction
	Model Construction
	Missing Data Model for Not-Reached Items
	Higher-Order Deterministic Inputs, Noisy “And” Gate Model
	Missing Mechanism Models
	Missing at Random Model
	Not Missing at Random Model

	Model Identifications
	Bayesian Model Assessment

	Simulation Studies
	Data Generation
	Model Calibration
	Simulation Study I
	Simulation Study II
	Simulation Study III

	Real Data Analysis
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


