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Abstract

Motivation: Gene set enrichment analyses (GSEAs) are widely used in genomic research to identify

underlying biological mechanisms (defined by the gene sets), such as Gene Ontology terms and

molecular pathways. There are two caveats in the currently available methods: (i) they are typically

designed for group comparisons or regression analyses, which do not utilize temporal information

efficiently in time-series of transcriptomics measurements; and (ii) genes overlapping in multiple

molecular pathways are considered multiple times in hypothesis testing.

Results: We propose an inferential framework for GSEA based on functional data analysis, which

utilizes the temporal information based on functional principal component analysis, and disentan-

gles the effects of overlapping genes by a functional extension of the elastic-net regression.

Furthermore, the hypothesis testing for the gene sets is performed by an extension of Mann-

Whitney U test which is based on weighted rank sums computed from correlated observations.

By using both simulated datasets and a large-scale time-course gene expression data on human

influenza infection, we demonstrate that our method has uniformly better receiver operating char-

acteristic curves, and identifies more pathways relevant to immune-response to human influenza

infection than the competing approaches.

Availability and Implementation: The methods are implemented in R package FUNNEL, freely and

publicly available at: https://github.com/yunzhang813/FUNNEL-GSEA-R-Package.

Contact: xing_qiu@urmc.rochester.edu or juilee_thakar@urmc.rochester.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microarrays and RNA-seq have made simultaneous expression

profiling of thousands of genes across several experimental/clinical

conditions widely accessible. However, interpreting the profiles

from such large numbers of genes remains a key challenge. An im-

portant conceptual advance in this area was the shift from a focus

on differential expression of single genes to testing sets of biologic-

ally related genes (Mootha et al., 2003; Subramanian et al., 2005).

Here gene sets are typically defined a priori to include genes that

share some common biologically relevant properties (e.g. members

of the same metabolic pathway, having a common biological func-

tion, presence of a binding motif etc.). In addition to the advantage

in interpretability, another benefit of analyzing gene sets instead of

individual genes is that small changes in gene expression are unlikely

to be captured by conventional single-gene approaches, especially

after correction for multiple testing (Mootha et al., 2003).

Due to these advantages, gene-set hypothesis testing has become

a popular research area and many methods have been developed

(Dinu et al., 2007; Jiang and Gentleman, 2007; Kim and Volsky,

2005; Luo et al., 2009; Oron et al., 2008; Saxena et al., 2006;
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Wu et al., 2010; Wu and Smyth, 2012; Yaari et al., 2013) in recent

years to improve the original GSEA procedure (Subramanian et al.,

2005). For example, some recently developed gene set tests such as

CAMERA (Wu and Smyth, 2012) and its extension (Yaari et al.,

2013) include adjustments for inter-gene correlation. Such adjust-

ments are necessary because inter-gene correlation can increase the

false discoveries of many differential expression tests (Qiu et al.,

2005, 2013, 2014; Qiu and Yakovlev, 2006, 2007) and gene-set

tests (Breslin et al., 2004; Dørum et al., 2009; Wu and Smyth, 2012)

substantially and render the results highly variable.

Another under-developed area is time-course gene set analyses.

Although some inferential tools (Conesa et al., 2006; Luan and Li,

2004; Park et al., 2003; Sohn et al., 2009; Storey et al., 2005; Wu

and Wu, 2013) are available for detecting temporally significant

genes, only a handful existing methods are specifically designed for

time-course gene set analyses (Hejblum et al., 2015; Nueda et al.,

2009; Wang et al., 2008, 2009a,b; Zhang et al., 2011) based on gen-

eric analytical tools such as linear mixed effect regression (Wang

et al., 2008, 2009a,b), principal component analysis (PCA, Nueda

et al., 2009), and B-splines (Hejblum et al., 2015).

Increasingly, personalized approaches are applied to transcrip-

tome analyses to study subject-specific responses. Unlike genetically

identical mice, transcriptomic studies across human population have

revealed that human subjects exhibit large variation in responses to

biological conditions across subjects. Large between-subject vari-

ation can reduce the statistical power significantly in a standard

cross-sectional study. This problem can be mitigated by incorporat-

ing subject-specific information (e.g. baseline measurements before

intervention or infection in a longitudinal analysis (Thakar et al.,

2015; Tsang et al., 2014). Moreover, to quantify the heterogeneity

of subject-specific responses may be an important aspect of a study

(Henn et al., 2013; Wu and Wu, 2013). This consideration has led

to the development of the single sample GSEA (Barbie et al., 2009)

that uses the differences in empirical cumulative distribution func-

tions of gene expression ranks inside and outside the gene set to cal-

culate sample-specific enrichment statistics.

In this study, we propose a new method based on functional

PCA (FPCA, Ramsay and Silverman, 2005). It can detect arbitrary

non-constant trends in time-course data analysis and is superior to

several competing omnibus tests based on B-splines (Sohn et al.,

2009; Storey et al., 2005), mainly because eigen-functions selected

by FPCA form an orthogonal functional basis that explains more

L2-variation of the entire transcriptome than any other basis.

Moreover, FPCA is applied to each subject separately to improve

the ability to identify subject-specific variations. Population-based

inference can then be made by aggregating P-values across subjects

with a suitable meta-analysis tool such as Fisher’s combined prob-

ability test (Fisher, 1963).

The availability of high-quality gene sets from publicly accessible

databases, such as MSigDB (Liberzon et al., 2011) and KEGG path-

ways (Kanehisa and Goto, 2000) is critical for the success and popu-

larity of gene set tests. Because pathway definitions in the public

repositories are typically curated from many studies therefore not

context-specific, there is a remarkable overlap in these gene sets. For

example, we use 186 CP:KEGG biological pathways provided from

MSigDB database in this study. These pathways consist of 5267

unique genes, and 2278 (or 43.3%) of them belong to two or more

pathways. Ignoring this overlap overweighs the importance of genes

shared by multiple sets and increases the dependence of hypothesis

tests, thus reduces statistical power and induce spurious type I error

and instability of inferences at the gene set level (Gordon et al.,

2007; Qiu et al., 2005; Qiu and Yakovlev, 2006, 2007).

Moreover, we and others have studies context-specific activa-

tions of pathways (Hartmann et al., 2015; Katanic et al., 2016; Lee

et al., 2011; Segal et al., 2003), which are more pertinent to various

immune and stress responses in both human and yeast models. It

will be difficult to design follow-up experiments if the significance

of selected gene sets is largely driven by generic associations that are

not specific to the biological conditions of interest.

To address this issue, we developed a weighting method based on

functional elastic-net regression to assess the functional similarities be-

tween a given gene and the sets to which it belongs. By design, we let

the weights pertinent to one gene sum up to one; so that this gene is not

over-counted in gene-set-level analyses. We also developed a general-

ized Mann-Whitney U (MWU) test for gene-set-level inferences, which

incorporates both inter-gene correlation and the weights determined by

the functional elastic-net regression. With the proposed method, we

will be able to estimate condition-specific importance of genes in the

pathways, which will facilitate future empirical investigations.

Dubbed as FUNNEL-GSEA (FUNctioNal ELastic-net regression

in Gene Set Enrichment Analysis) or simply FUNNEL, our method

utilizes recent advances in functional data analysis and is the first

method to directly account for the overlapping genes by decompos-

ing them into fractions (weights) in gene-set-specific manner. In this

study, we demonstrate that FUNNEL has better statistical power

and uniformly better receiver operator characteristics (ROC) curves

than two major competing methods, CAMERA (Wu and Smyth,

2012) and TcGSA (Hejblum et al., 2015). The original CAMERA

parametric test is designed for detecting linear trend only; with ap-

propriately selected summary statistic, CAMERA can be extended

for non-linear trends using its non-parametric test. Furthermore, we

apply FUNNEL to temporal gene expression data collected from

human subjects challenged with live influenza viruses to show

increased sensitivity and identification of pathways more inform-

ative in describing the differences of two phenotypic groups (symp-

tomatic and asymptomatic subjects) at the molecular level.

2 Materials and methods

Our method, FUNNEL-GSEA, consists of three components: (i) A

gene-level summary statistic based on FPCA test (Ramsay and

Silverman, 2005; Wu and Wu, 2013). (ii) A weighting method to de-

compose overlapping genes based on functional elastic-net regres-

sion. (iii) A generalized MWU test that incorporates both weights

and inter-gene correlation to test significant gene sets. These compo-

nents are described in the following subsections.

2.1 A gene-level summary statistic based on FPCA
Let yij be the pre-processed (i.e. normalized and log-transformed)

expression level for the ith gene at the jth sampling time point. The

observed data can be modeled as

yij ¼ xi tj

� �
þ �ij; for i ¼ 1; . . . ;m; j ¼ 1; . . . ; n;

where xið�Þ is unknown gene-specific function of time, and �ij is ran-

dom noise. After subtracting the mean expression over time for each

gene, we apply FPCA across all the centered expression values. The

estimated per-gene expression curve is represented as

bxiðtÞ ¼ bli þ
XL

l¼1

bn il
b/lðtÞ; (1)

where bli is the temporal sample mean expression; b/lðtÞ is the lth

eigen-function; and bn il is the functional principal component (FPC)
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score that quantifies how much bxi tð Þ can be explained by b/ lðtÞ.
Empirical evidences show that the first three eigen-functions (L ¼ 3)

explain about 86% of total variance of the real data (see

Supplementary Material Section S1), and thus can represent the

overall expression pattern of a given gene set. This high-level of vari-

ance explained by just a few eigen-genes is very common in FPCA

analyses of time-course gene expression data (Qiu et al., 2015b; Wu

et al., 2014; Wu and Wu, 2013). As a comparison, we performed

standard PCA in the time direction on the same expression data.

Top 3 principal components only explain about 53% of total vari-

ance and it would require at least 8 principal components to explain

about 86% of variance (see Supplementary Material Section S1).

The main reason that FPCA is much more efficient than PCA in ex-

plaining data variation is that FPCA uses roughness penalty to

achieve smoothness of temporal functions; in doing so it ‘borrows

information’ across time points and reduces a large proportion of

spurious variation pertaining to the i.i.d. measurement error.

For time-course gene expression data, a temporally differentially

expressed gene can be defined as a gene with significant non-

constant expression pattern across time points. In other words, we

want to test the following hypotheses

Hi0 : xi tð Þ ¼ li versus Hi1 : xi tð Þ 6¼ li; for t 2 t1; tn½ �:

Under Hi0, xi tð Þ is estimated by a function with constant value bl i (the

sample mean expression for the ith gene); under Hi1, bxi tð Þ defined in

Equation (1) is used instead. We use the following functional F-statis-

tic to summarize the information contained by each gene over time:

Fi ¼
RSS0

i � RSS1
i

RSS1
i

;

where RSS0
i and RSS1

i are the residual sum of squares under the null

and alternative hypotheses, respectively. This summary statistic can

be viewed as a ‘signal-to-noise’ ratio for functional data. The larger

Fi is, the more significant the ith gene is.

2.2 Decomposing overlapping genes based on

functional elastic-net regression
We use the following concurrent functional linear model to decom-

pose an overlapping gene between gene-sets

xi tð Þ ¼
X
k2Ki

signalki tð Þ þ �i tð Þ ¼
X
k2Ki

XL

l¼1

bk
l;i
b/k

l tð Þ þ �i tð Þ: (2)

Here Ki is the set of gene sets where the ith gene belong; bk
l;i,

l ¼ 1;2 . . . L; k 2 Ki, is the linear coefficient w.r.t. b/k

l ðtÞ, the lth

eigen-function obtained from performing FPCA on the kth gene set.

signalki tð Þ ¼
PL

l¼1 bk
l;i
b/k

l tð Þ represents the temporal signal of the ith

gene attributed to the kth gene set; and �iðtÞ is the noise function

that cannot be explained by any gene set.

We denote the set of eigen-functions fb/k

l tð Þ; l¼1;2. . .L; k2Kig
as a vector of functions b/ iðtÞ; the set of linear coefficients fbk

l;i;

l¼1;2 . ..L; k2Kig in Equation (2) as a vector bi, which can be esti-

mated by the following optimization problem

bbi ¼ min
bi

OBJ bijxi tð Þ; b/ i tð Þ
� �

;

OBJ bijxi tð Þ; b/ i tð Þ
� �

¼ kxiðtÞ � b/iðtÞ
T
bik2 þ k1kbik1 þ k2kbik2:

Here k1 is the LASSO (Tibshirani, 1996) penalty coefficient and k2 is

the ridge (L2) penalty coefficient. We need LASSO penalty because

sparcity in bb i enhances the biological interpretability. We also need

ridge penalty to account for possible collinearity problems because

some genes are shared by many gene sets, which implies that a large

number of covariates (eigen-functions) may be used in regression.

Besides, although eigen-functions pertain to one gene set are

independent by construction, there may be high correlation

between certain eigen-functions estimated from different gene sets. In

this case, adding ridge penalty can make the parameter estimation

more stable.

By using the terminology from multivariate regression, we call

the above optimization problem as functional elastic-net regression

(Zou and Hastie, 2005). Most currently available penalized func-

tional linear regression methods (Goldsmith et al., 2012) focus on

using Tikhonov regularization (semi-positive-definite penalty) to

achieve smoothness and computational stability of functional linear

regression. Model selection methods such as LASSO and group

SCAD (Fan and Li, 2001; Wang et al., 2007) regularization were re-

cently used in functional linear regression but most of them

(Collazos et al., 2016; Gertheiss et al., 2013; James et al., 2009; Lee

and Park, 2012; Matsui and Konishi, 2011) are developed for stand-

ard functional regression model (functional covariates and scalar re-

sponses). Model selection methods for historical functional linear

models (of which the concurrent model is a special case) were

studied in (Harezlak et al., 2007; Matsui et al., 2009). These meth-

ods involve computational expensive fitting techniques that are not

necessary for concurrent functional regression model. In this study,

we took a different approach based on an equivalence relationship

between the penalized concurrent functional regression and a stand-

ard multivariate regression. This approach is computationally

efficient and highly flexible. Technical details of this approach

can be found in Supplementary Material Section S2. The selection of

the penalty coefficients can be found in Supplementary Material

Section S6.

Once bb i is estimated, we define the estimated weight for the ith

gene in the kth gene set to be

bwi;k :¼
PL

l¼1ðbbk

l;iÞ
2

P
k2Ki

PL
l¼1ðbbk

l;iÞ
2
:

We assign bwi;k ¼ 1 if gene i belongs to the kth gene set only. Due to

the use of LASSO penalty, in some cases both the numerator and de-

nominator may be zero, in which case we assign bwi;k ¼ 0. The

weighting vector of the kth pathway is denoted by wk ¼
fwi;k; i 2 Ikg, where Ik is the set of genes in this gene set.

2.3 Weighted MWU test with correlation
The MWU test is a rank-based non-parametric test that can be used

in a competitive GSEA to test whether the median of gene-level sum-

mary statistics (Fi) sampled from the testing gene set is significantly

greater than the median of Fi sampled from the rest of the genome

(called the background genes). Unlike the setting of classical MWU

test in which all observations are assumed to be independent, genes

are known to be correlated with each other, especially within one

biological pathway. Consequently, the classical MWU test must be

adapted to accommodate with such correlation. As a special case,

CAMERA assumes that genes in the testing gene set share a common

pairwise correlation q (interchangeable correlation structure) and

the background genes remain independent. In this study, we further

extended the modified MWU test used in CAMERA to allow the use

of weights, which reflect the empirical membership of the overlap-

ping genes assigned to the test gene set.
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Suppose we want to test the kth gene set which contains m1

member genes. We denote the number of background genes as

m2 ¼ m�m1. We define the weighted MWU statistic for this gene

set as

ri;k :¼
Xm2

i0¼1

IFi>Fi0 ;UkðwkÞ :¼
Xm1

i¼1

wi;kri;k¼
Xm1

i¼1

wi;k

Xm2

i0¼1

IFi>Fi0 :

It is worth noting that applying weights to the Mann-Whitney

style of ranks is not equivalent to applying weights to the Wilcoxon

style of ranks, which are the ranks of observations in both samples.

Under the assumption of interchangeability, it is easy to show that

under H0

E UkðwkÞð Þ ¼
Xm1

i¼1

wi;kE ri;k

� �
¼ m�1m2

2
; m�1 :¼

Xm1

i¼1

wi;k:

Here m�1 can be considered as the effective sample size of the testing

gene set. We also compute the variance of UkðwkÞ under H0 as

Var UkðwkÞ; qð Þ ¼m2

2p

�
c1 wkð Þ p

2
þ m2 � 1ð Þ p

6

� �

þ c2 wkð Þ arcsin
qþ 1

2
þ m2 � 1ð Þarcsin

q
2

� �	
;

where q is the inter-gene correlation; c1 wkð Þ and c2 wkð Þ are two

constants depending on weights wk only. More details can be found

in Supplementary Material Section S3.

Because Fi is signless (the larger Fi, the more significant), we

apply a one-sided t-test based on the following standardized

weighted rank sum statistic

Tk ¼
Uk wkð Þ � E Uk wkð Þð Þ

VarðUk wkð Þ;qÞ
1
2

:

Similar to CAMERA, we set the degrees of freedom of the t-distribu-

tion to n� 1, to reflect the precision with which q is estimated. Our

test reduces to CAMERA’s MWU test when wk � 1; which further

reduces to the usual MWU test when q ¼ 0.

As a summary, we illustrate the overall structure of FUNNEL-

GSEA in Figure 1.

2.4 Human influenza infection data
Gene expression data of human influenza infection (Huang et al.,

2011; Woods et al., 2013) were downloaded from Gene Expression

Omnibus (Edgar et al., 2002) series GSE52428. A total of 17 (9

symptomatic and 8 asymptomatic) subjects infected by influenza A

H3N2/Wisconsin virus were studied. Whole transcriptome

expression data had been sampled at 16 time points from one day

before the infection till 5 days after the infection. Gene expressions

were log2-transformed and filtered based on inter-quantile range

(IQR � 0.3). After non-specific filtering, �10 000 genes were re-

ported for each subject. These gene expressions were standardized

by the z-score transformation.

2.5 Simulations
Simulated data were generated by a linear mixed effect model with

16 time points (as in the real data) and 5000 genes with two (small

and large) noise variance parameters. These genes were grouped

into 90 synthesized pathways such that 3000 of them belong to a

single pathway and the rest 2000 are shared by more than one path-

way. 18 out of these 90 pathways were assigned with true signals

generated from linear combinations of three designed signal pat-

terns, to represent linear trend, sinusoid trend, and late (linear) re-

sponse, respectively. We simulated cases with small and large

variance. The simulation was repeated for 20 times for each case.

Technical details of these simulated data, as well as some additional

simulations based on biological signals and correlation structures

more general than the interchangeable structure can be found in

Supplementary Material Section S5.

3 Results

3.1 Large proportion of genes are shared by multiple

gene sets
Functionally related genes in specific gene sets or pathways are static

instances derived frequently by curation and recently by meta-

analysis (Ruparelia et al., 2015; Tan et al., 2014). The overlap be-

tween these gene-sets is inevitable given modular topology of biolo-

gical response. For example, NFkB related genes can be induced

upon stimulation by several cytokines. However, exact instance of

activation of NFkB regulated genes in a specific infection might not

be derived by all the cytokines that can activate those genes.

Specifically, we use 186 pathways from MSigDB (category

CP:KEGG), which have 5267 unique genes. Among them, 2278 (or

43.3%) genes belong to two or more pathways; the two most-

overlapped genes (MAPK1 and MAPK3) belong to 46 pathways (see

Fig. 2 for more details).

3.2 Estimating the empirical membership (weights) of

overlapping genes
Given a gene associated with multiple gene sets, its context-specific

activation could be indeed mediated by all the gene sets, only one of

Fig. 1. An illustration of the FUNNEL-GSEA analysis pipeline
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the gene sets, or none of the gene sets. Virtually all currently avail-

able gene set tests simply assume that the overlapping genes are acti-

vated by all gene sets to which they belong. This practice is

equivalent to always assign bwi;k ¼ 1 for estimated weights and is

henceforth called the naı̈ve method. In order to evaluate weight as-

signment, we developed simulated data sets where the real member-

ship of each gene to its gene-sets (wi;k) is known using a linear

mixed effect model (see Section 2 and Supplementary Material

Section S5). The mean squared error (MSE) of the empirical mem-

bership (weights) estimated by FUNNEL averaged across 20 replica-

tions was 0.13 for the small variance simulations and 0.18 for the

large variance simulations. Here MSEsim for each simulation is

defined as

MSEsim ¼
1

N

X2000

i¼1

X
k2Ki

wi;k � bwi;k

� �2
;

where N ¼
P2000

i¼1 jKij, and MSE ¼
P20

sim¼1 MSEsim=20 is averaged

over 20 replications.

To put the accuracy of weight estimation in context, we took a

closer look at genes that are shared by two pathways and compare

the MSEs associated with FUNNEL with the naı̈ve method. For the

clarity of discussion, we consider binary weights (provide MSE at

binary level) and dichotomize the estimated weights to be zero if

ŵi;k < 0:2 and one if ŵi;k � 0:2. The results for the small variance

case are listed as follows (see Supplementary Tables S1 and S2 for

the large variance case).

• Case I. On average (over 20 repetitions), 495.9 genes belong to

two insignificant gene sets that do not carry any true temporal sig-

nals (true weight wi;k¼ (0,0)). FUNNEL correctly assigned zero

weights 82% of times (MSEFUNNEL¼0.18 and MSEnaı̈ve¼1).
• Case II. On average, 267.75 genes belong to one significant and one

insignificant pathways (true weights wi;k¼ (0,1) or (1,0)). FUNNEL

assigned the correct weights 83% of times (MSEFUNNEL¼0.17 and

MSEnaı̈ve¼0.5).
• Case III. On average, 13.35 genes belong to two significant gene

sets. Because the true weight are in continuous scale, we only re-

port the MSE for the continuous estimates for this case:

MSEFUNNEL¼0.20 and MSEnaı̈ve¼0.26.

In summary, FUNNEL was able to estimate the true weights better

than the naı̈ve method in all cases.

3.3 Performance of gene set tests in simulation studies
Once weights are estimated, we apply the weighted MWU test with

correlation (see Section 2) to test the significance of 90 synthesized

pathways. Table 1 summarizes the statistical power and type I error

for FUNNEL and CAMERA for both small and large variance cases.

We find that FUNNEL always has better statistical power than

CAMERA. Next, we conduct receiver operating characteristic

(ROC) analyses for both methods. Figure 3 shows that the ROC

curves of FUNNEL dominate that of CAMERA uniformly. In both

small and large variance cases, the area under the ROC curve (AUC)

of FUNNEL is larger than that of CAMERA, and such differences

are significant based on a non-parametric AUC test (DeLong et al.,

1988).

Next, we compare the performance of TcGSA on the same set of

simulation data. Unlike FUNNEL or CAMERA, TcGSA is a self-

contained gene set test; so the comparison is only exploratory. Out

of the 90 synthesized pathways, TcGSA identifies all of them being

significant, irrespective of whether the pathways have true signal or

not. The potential reasons for such poor performance may include

technical failures [such as convergence problem in the likelihood

model and size limitation of gene set, which is documented in

(Hejblum et al., 2015)], and the ignorance of overlapping among

pathways.

3.4 Analyses of time-course H3N2 infection data
The time-course gene expression data used in our study were col-

lected from 9 symptomatic and 8 asymptomatic subjects infected by

influenza A H3N2/Wisconsin virus (see Section 2). We apply

Fig. 3. ROC curves of FUNNEL (black, dashed) and CAMERA (grey, solid) for

different signal to noise levels. ROC curves were plotted for small (left) and

large (right) variances in the noise level of the simulated data (see Section 2

for the details). ROC curve of FUNNEL dominates that of CAMERA in both

cases. The differences of AUC in both cases are highly significant based on

the AUC test

Table 1. Mean (STD) of statistical power and type I error at 5% sig-

nificance level for FUNNEL and CAMERA in 20 replicates of

simulation

Small variance Large variance

FUNNEL Power 0.825 (0.049) 0.714 (0.049)

Type I error 0.001 (0.003) 0.010 (0.013)

CAMERA Power 0.703 (0.049) 0.508 (0.101)

Type I error 0.001 (0.003) 0.001 (0.004)

Fig. 2. Distribution of overlapping genes among KEGG pathways curated by

MSigDB. Each bin in the histogram represents one row in Table (a). In total,

5267 unique genes pooled from 186 CP:KEGG pathways are used in this illus-

tration. Among them, 2278 (or 43.3%) genes belong to two or more pathways;

the two most-overlapped genes (MAPK1 and MAPK3) belong in 46 pathways
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FUNNEL and CAMERA to test the significance of 186 KEGG-

derived pathways provided by MSigDB for each subject. We use

functional F-statistic as the gene-level summary statistic for both

procedures. For CAMERA, gene-set-level inference is made by the

Wilcoxon rank sum test with adjustment for correlation. We use the

same correlation estimates and the degrees of freedom in both

FUNNEL and CAMERA (see Supplementary Material Section S4).

The resulting subject-level P-values are combined by Fisher’s com-

bined probability test (Fisher, 1963) for each (symptomatic and

asymptomatic) group. After applying Bonferroni procedure to con-

trol for the familywise error rate (FWER) at 0.05 level, FUNNEL is

able to identify 32 significant pathways from the symptomatic group

(n ¼ 9) which include pathogen recognition receptor signaling path-

ways such as the Cytosolic DNA sensing, NOD-like receptor signal-

ing, RIG-I-like receptor signaling, and Toll-like receptor signaling

pathways. Adaptive immune response related pathways such as the

B cell receptor signaling and T cell receptor signaling pathways are

also significant. All of the above pathways are significant in 6 or

more (�67%) number of symptomatic subjects. For the asymptom-

atic group (n ¼ 8), FUNNEL identifies 22 significant pathways,

including the B cell receptor signaling, Antigen processing and pres-

entation, and Ribosome pathways. Fewer subjects (	50%) in the

asymptomatic group show activation of the above pathways. We

present a heatmap of -log10-transformed P-values for the 32

significant pathways selected from the symptomatic subjects in

Figure 4. In contrast, CAMERA only identifies four pathways with

very general biological functions (the Glutathione metabolism,

Ribosome, Proteasome and Primary immunodeficiency pathways)

for the symptomatic group and seven (the Oxidative phosphoryl-

ation, Ribosome, Spliceosome, Proteasome, Protein export, B cell re-

ceptor signaling and Parkinsons disease pathways) for the

asymptomatic group. We also list top 30 most significant (ranked by

adjusted P-values) pathways selected by CAMERA for the symp-

tomatic group in Supplementary Material Section S7 for a more hol-

istic comparison. In conclusion, FUNNEL has improved sensitivity

to identify relevant pathways than CAMERA.

Next, we applied TcGSA to the real data. Out of 186 pathways

tested, 23 (12%) have problematic pathway size as reported by

TcGSA and another 74 (40%) fail to converge. For the symptomatic

group, 139 pathways (many with the above technical issues) are sig-

nificant after controlling for FDR at 0.05 level by the Benjamini-

Yekutieli procedure implemented in TcGSA.

3.5 The utility of estimated empirical memberships
We illustrate the utility of the empirical memberships (weights) esti-

mated from penalized functional linear regression in Figure 5. Shown in

Figure 5A are the color-coded empirical memberships of top 10 over-

lapping genes with the largest average weights in the Complement and

coagulation cascades pathway, estimated from nine symptomatic sub-

jects. We can see that C3AR1 is assigned to Complement and coagula-

tion cascades pathway almost exclusively for all subjects. According to

MSigDB, C3AR1 can potentially be assigned to two pathways: the

Neuroactive ligand-receptor interaction and Complement and coagula-

tion cascades pathway. We found that the temporal pattern of C3AR1

resembles the Complement and coagulation cascades pathway most

closely (Fig. 5B). This empirical evidence suggests that while C3AR1

can potentially be activated by diseases related to neuro-active ligand re-

ceptors such as thyroid hormone resistance syndrome (Cheng, 2005)

and woolly hair (Shimomura et al., 2008, 2009, 2010), it is exclusively

activated by the Complement and coagulation cascades pathway for

the specific biological condition (H3N2/Wisconsin influenza infection)

of the study.

4 Discussion

Time-series gene expression data have gained popularity in recent years

due to their application in the translation studies. Identifying early

changes in the gene-expression that are predictive of future responses to

the diseases, infections or vaccinations can be predicted by applying

advanced mathematical modeling tools such as high-dimensional differ-

ential equations (Lu et al., 2011; Qiu et al., 2015a; Wu et al., 2013,

2014), dynamic Bayesian network (Perrin et al., 2003; Zou and

Conzen, 2005), or Granger’s model (Lozano et al., 2009; Shojaie and

Michailidis, 2010) to study the dynamic and causal relationship be-

tween genes based on changes of expressions over many time points.

Unlike group comparisons, advanced inferential tools such as non-para-

metric regression (Müller, 2012) and functional data analysis are

required to detect biological signals presented in the form of non-linear

temporal trends of gene expression profiles most efficiently. Only a

handful gene set analysis methods are designed to detect arbitrary non-

linear temporal trend at this moment and there are much room for im-

provement. For example, TcGSA (Hejblum et al., 2015) has an option

to use either cubic polynomials or natural cubic splines to model non-

linear temporal trends. However, TcGSA assumes the same trend

among all genes in a set, which is unrealistic in many situations. PCA-

maSigFun, developed by Nueda et al. (Nueda et al., 2009), does have

the ability to account for possible heterogeneity inside a gene set; but its

use of standard PCA and linear regression is suboptimal for time-course

data with complex non-linear patterns. On the other hand, CAMERA

(Wu and Smyth, 2012) is a generic GSEA framework that can be used

Fig. 4. A Heatmap of -log10-transformed P-values for all 32 significant

CP:KEGG pathways selected by FUNNEL (ordered by adjusted Fisher’s P-val-

ues for the symptomatic group). The P-values computed from individual sub-

jects were combined by Fisher’s combined probability test in each group.

Bonferroni procedure for multiple testing adjustment was applied to the com-

bined Fisher’s P-values to control for FWER. Many of these pathways listed

here, such as the B-, T-cell receptor signaling, NOD-like signaling, RIG-like re-

ceptor signaling, Toll-like receptor signaling, Chemokine signaling, JAK-

STAT signaling, FC-Epsilon-RI signaling, MTOR signaling pathways are well

documented immune signaling pathways that send signals that lead to the

activation of various cell-specific immune activities (Color version of this fig-

ure is available at Bioinformatics online.)
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in time-course gene expression analysis as well. CAMERA adjusts for

inter-gene correlation in the gene-set-level inference; is more efficient

than procedures based on permuting samples; and is more flexible and

robust than approaches based on estimating or approximating the cor-

relation matrix (Nam, 2010; Wang et al., 2008, 2009a). That being

said, CAMERA’s performance depends largely on the efficiency of the

summary statistics used to capture temporal trends. In FUNNEL-

GSEA, we use functional PCA to capture arbitrary and possibly hetero-

geneous non-linear trends within gene sets, which is known to be more

efficient than competing methods such as splines (Sohn et al., 2009;

Storey et al., 2005).

Although our method is designed with a focus on subject-specific

analyses; group-level results can be obtained by a suitable meta-analysis

method. We choose to combine individual P-values by Fisher’s com-

bined probability test in this study because it allows the detection of

gene sets that are activated by influenza infection with subject-specific

expression patterns, which is more flexible than those competing

approaches that depend on detecting common expression patterns

across all subjects. This approach also enables us to study the heterogen-

eity of subject-level responses, e.g. in Figures 4 and 5A. Although

Fisher’s combined probability test is arguably the most widely used

meta-analysis procedure, we will explore other meta-analysis options

that have better protection against type I error in the future.

GSEA facilitates comparisons across independent studies per-

formed on different platforms and techniques by assembling gene-

sets from available data-sets in the public repositories. The problem

of overlapping gene-sets is exacerbated when these data are obtained

under different experimental conditions. For example, C3AR1 is a

protein coding gene that could be assigned to the Neuroactive

ligand-receptor interaction and Complement and coagulation cas-

cades pathway; yet within the context of influenza viral infection,

empirical evidences show that it is almost entirely driven by the

Complement and coagulation cascades pathway. To our best know-

ledge, no currently available GSEA methods has the ability to assign

conditional pathway memberships to overlapping genes like

C3AR1, and they simply count the summary statistics of overlap-

ping genes in all gene sets to which they may belong in gene-set ana-

lyses. This naı̈ve practice can inflate type I error if overlapping genes

are signal-carrying genes assigned to irrelevant pathways, and/or

reduce statistical power when many irrelevant null genes are as-

signed to an informative pathway. FUNNEL-GSEA assigns weights

(empirical pathway membership) of overlapping genes based on

penalized functional linear regression that reflects the functional

similarities between overlapping genes and the gene sets they belong

to. Such empirical memberships are more specific and relevant to

the experimental conditions than generic associations provided by

public databases. Furthermore, we require weights pertain to one

gene to sum up to one; so that this gene is not over-counted in gene-

set-level analyses.

We also want to discuss the applicability of functional data ana-

lysis, which is designed for continuous data, to RNA-seq-based ex-

pression data (Garber et al., 2011; Mortazavi et al., 2008; Wang

et al., 2009b). Unprocessed RNA-seq reads are discrete random vari-

ables that are commonly represented by the negative binomial model

(Anders and Huber, 2010; Hardcastle and Kelly, 2010; Robinson

et al., 2010) or NBP model (Di et al., 2011). Several recent studies

(Law et al., 2014; Rapaport et al., 2013; Ritchie et al., 2015) show

that pre-processing techniques such as non-specific filtering, normal-

ization, and log transformation can greatly reduce the granularity of

raw reads so that analytic tools designed for continuous high-

throughput data have comparable or even better performance on

these data as compared with specialized tools based on discrete mod-

els. We believe this is largely due to the removing of genes with very

low reads in modern gene expression analysis pipelines such as

DESeq2 (Love et al., 2014) and LIMMA (Smyth, 2005). The remain-

ing genes have large numbers of reads that can be well approximated

by continuous distributions such as the normal distribution (after log2

transformation). In the future, we plan to extend FUNNEL-GSEA so

that it has an option to use summary statistics that are designed for

discrete time-course models to summarize gene-level information;

then use standard PCA and linear regression to assign weights for

overlapping genes. Such an extension may be more suitable for un-

normalized and un-filtered time-course RNA-seq data.
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