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Abstract

Despite significant development in distributed denial of service (DDoS) defense systems, the downtime caused by DDoS
damages reputation, crushes end-user experience, and leads to considerable revenue loss. Volumetric DDoS attacks are the
most common form of DDoS attack and are carried out by an army of infected IoT devices or by reflector servers, which
increase attacks at massive scales. In this work, we propose a voting-based multimode framework to combat volumetric DDoS
(VMFECVD) attacks. VMFCVD is based on a triad of fast detection mode (FDM), defensive fast detection mode (DFDM),
and high accuracy mode (HAM) methods. FDM is designed to classify network traffic when the server is under attack. The
highly dimensionally reduced dataset helps FDM accelerate detection speed. During our experiment, the dimension reduction
for FDM was more than 97% while maintaining an accuracy of 99.9% in most cases. DFDM is an extended version of FDM
that enhances malicious network traffic detection accuracy by tightening the detection technique. HAM focuses on detection
accuracy, showing substantial improvement over FDM and DFDM. HAM activates when the server is stable. VMFCVD
is extensively experimented on the latest benchmark DDoS and botnet datasets, namely the CICIDS2017 (BoT & DDoS),
CSE-CIC-IDS2018 (BoT & DDoS), CICDDo0S2019 (DNS, LDAP, SSDP & SYN), DoHBrw2020, NBaloT2018 (Mirai),
UNSW2018 BoTIoT, and UNSW NB15 datasets. The VMFCVD results show that it outperforms recent studies. VMFCVD
performs exceptionally well when the server is under DDoS attack.
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1 Introduction

The COVID-19 outbreak and rapid spread of the coronavirus
have driven organizations to shift their services online. In the
wake of the epidemic, sectors, such as education, health care,
entertainment, food services, and retail, have moved online
to contain the spread of the virus. Most organizations have
implemented work from home either fully or partially for
the same reason. The digital shift underwent a quantum leap
within a span of a few months. With the growth of depen-
dencies on online services and activities due to emergency
scenarios, it has become crucial for organizations to provide
uninterrupted services/resources to end users. Unavailability
of services/resources can incur a massive loss for organiza-
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tions. DDoS attacks are one of the most effective attacks used
by cybercriminals to prevent legitimate users from using the
service by exhausting server resources. DDoS attacks have
become more sophisticated with tremendous increases in vol-
ume [1]. In recent years, Internet of Things (IoT)-enabled
DDoS attacks have increased at an alarming level. Cyber-
criminals are launching DDoS attacks using botnets (robot
networks), an army of infected IoT devices, which increase
the intensity of attacks to tbps. Botnets work like an army to
launch a DDoS attack on a victim server through a centralized
botnet command and control system [2]. The modern DDoS
attack has become a mainstream commodity in the cyber
world [3]. There are underground communities of cybercrim-
inals [2], where each cybercriminal has an army of bots. They
team up to launch DDoS attacks with much higher volume
and velocity on the victim server.

DDoS attacks can be direct attacks or an amplified reflection-
based attack on the victim server [4]. Direct attacks are
carried out by an army of infected devices, while reflec-
tive servers are used for amplified reflection-based attacks.
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Researcher [5] conducted a systematic mapping study to eval-
uate the most common cyber security threats by analyzing 78
primary studies. They reported denial of service as the most
addressed vulnerability with the frequency of 37% in their
systematic mapping study. FSLab reported that 73% of DDoS
attacks are volumetric DDoS attacks, out of which 53% are
reflection-based attacks launched using vulnerable servers
[6] or infected devices. Volumetric DDoS attacks exploit
network protocol fragility to target servers. It overwhelms
the server’s resources by sending massive traffic or service
requests. Network protocol servers such as SSDP (simple
service discovery protocol) and LDAP (lightweight directory
access protocol) servers are well-known examples of volu-
metric DDoS attacks. The amplified reflection-based SSDP
attack generates an enormous amount of traffic by exploiting
the UPnP (universal plug and play) protocol. LDAP servers
supporting UDP (user datagram protocol) services are used
to launch volumetric LDAP DDoS attacks.

SYN flood attacks are another example of a volume-
based DDoS attack. Attackers abuse the 3-way handshaking
process of stateful TCP (transmission control protocol) con-
nections to launch SYN flood attacks by repeatedly sending
many SYN packets to the victim servers. Servers must reply
to each SYN packet with the SYN-ACK (synchronize—
acknowledge) flag and wait for each SYN request’s acknowl-
edgment packet. This process uses some memory and
processing power of a server. The flood of SYN requests over-
whelm servers, resulting in service unavailable errors to any
new request, including legitimate users. The connectionless
nature of the UDP protocol causes the UDP protocol-based
amplified reflection DDoS (AR-DDoS) attacks. AR-DDoS
requires minimal effort [7] to launch an efficient volumetric
DDoS attack. The connectionless nature is for the enormous
benefit of the network, but attackers misuse it. They abuse
UDP services such as LDAP, Memcached, NTP, and DNS to
execute attacks.

With the ever-growing dependencies on the digital world,
it has become vital to provide uninterrupted services to users.
Unavailability of service for a fraction of time can cause con-
siderable revenue loss for any business. Most organizations
do not reveal if they are attacked by DDoS, making it diffi-
cult to estimate the financial loss caused by DDoS attacks.
It has been reported that there is a 55% increase in DDoS
attacks from January 2020 to March 2021 [6]. In 54% of
incidents, attackers launched DDoS attacks using multiple
modern attack vectors. Figure 1 depicts the modern attack
vector. Despite many studies carried out by researchers [8—
19] and leading organizations in cybersecurity sectors, DDoS
attacks are rapidly growing and pose a tremendous threat to
cyberspace.

The significant contributions of this work are summarized
as follows:

Springer

e This paper proposes a weighted voting-based multimode
machine learning framework, VMFCVD, to detect and
mitigate volumetric DDoS attacks.

e VMFCVD has three modes, namely FDM, DFDM &
high accuracy mode (HAM), to classify network pack-
ets. Initially, HAM is activated. Based on the DDoS attack
possibilities, the mode switches.

e FDM has low computational and memory overhead, as
it takes only two features to classify any network packet.
It activates when the framework observes a high volume
of incoming traffic.

e DFDM has the same low computational and memory
overhead as FDM. Only if all votes are in favor of a
packet, does DFDM allow it.

e HAM has more computational and memory overhead
than FDM and DFDM, but gives the highest accuracy.

e We have compared the performance of VMFCVD with
traditional ML algorithms and with state-of-the-art base-
lines.

2 Related Work

DDoS attacks have a high potential to bring down unpro-
tected servers within a small fraction of time, making them a
growing concern for all organizations committed to provid-
ing uninterrupted services to their users. Various researchers
have proposed techniques to defend against DDoS attacks. In
this section, we discuss ML-based classification techniques
to combat DDoS attacks.

Aamir and Zaid [8] proposed an ML framework to detect
DDoS attacks where they initially applied feature engineer-
ing, such as backward elimination, Chi-square test, and
information gain. Feature engineering supports the dataset
to overcome issues related to missing values, skewness, and
collinearity—multicollinearity. They applied five ML mod-
els, namely K-nearest neighbors (KNN), naive Bayes (NB),
support vector machines (SVM), random forests (RF), and
artificial neural networks (ANN), to evaluate their frame-
work’s performance. To obtain optimal results, their experi-
mental setup was different for each dataset. Doriguzzi-Corin
et al. [9] proposed LUCID, a lightweight CNN-based DDoS
attack detection technique intending to speed up network
traffic classification on resource-containing devices. Their
proposed approach produces consistent detection results on
datasets such as ISCX2012, CIC2017, UNB201X, and CSE-
CIC2018 with accuracies of 0.988, 0.9967, and 0.9946,
respectively. They created a tool to extract network traffic
into the required input format for LUCID for live detection.
Jia et al. [10] presented two ML models, long short-term
memory (LSTM) and convolutional neural network (CNN),
to identify and classify malicious traffic. They called it
Flowguard. Flowguard was validated on the CICDD0S2019
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Fig.1 A modern cyberattack overview

dataset and on their dataset generated using BoNeSi and
SlowHTTPTest DDoS simulators. Their proposed model
recorded an accuracy of 98.9% and outperformed other ML
models implemented in work, namely ID3, random forest
(RF), naive Bayes (NB), and logistic regression (LR) mod-
els.

Injadat et al. [11] proposed a multistage ML frame-
work for network intrusion detection. The stages involved
in their framework are data preprocessing, feature selec-
tion, hyperparameter optimization, and combination to give
an optimized result. The main techniques used in various
stages were Z score normalization & synthetic minority
oversampling techniques for the first stage, mutual informa-
tion gain and feature correlation for the second stage, and
random search, meta-heuristic optimization algorithms, and
Bayesian optimization techniques for parameter optimiza-
tion in the third stage. Researchers evaluated the framework
on the CICIDS 2017 and UNSW-NB 2015 datasets. They
were able to enhance the detection accuracy by over 99%.
Priyadarshini and Barik [12] proposed a deep learning-based
DDoS attack mitigation technique to protect fog and cloud
computing environments from DDoS attacks. They deployed
the proposed mechanism on the SDN controller in a software-
defined network. The proposed model was evaluated on the
Hogzilla dataset. Researchers also evaluated it on live DDoS
network traffic extracted using TCPDump. They obtained a
maximum accuracy of 99.12% on the training sample and
98.88% on the test sample.

Aamir and Zaid [13] developed a clustering-based semisu-
pervised ML scheme to improve DDoS detection. They
applied agglomerative clustering and principal component
analysis (PCA) with K-means clustering to reduce the dimen-
sionality of the dataset. In the next step, they developed a
voting technique to classify the label of the network traffic.

--.. a\ l

&°
"”I%us DDoS aﬁﬂi‘ *

Attack using Reflectors

% 1"-._ Reflectors

Controller

Bot Army

They evaluated the proposed framework on the CICIDS2017
DDoS dataset, a subset of the CICIDS2017 dataset. The
KNN, SVM, and RF algorithms determined the voting to
classify the network traffic into benign or DDoS attacks.
The KNN, SVM, and RF accuracies were 95%, 92%, and
96.66%, respectively, and the voting model obtained 82.10%
accuracy. They intended to include more ML models to
enhance the accuracy. Rehman et al. [14] proposed DID-
DOS, a DL- and ML-based framework to detect DDoS
attacks. DIDDOS was based on a gated recurrent unit (GRU),
recurrent neural network (RNN) from deep learning, naive
Bayes (NB), and sequential minimal optimization (SMO)
from the machine learning paradigm. The experiment was
performed on the CICDD0S2019 dataset. They recorded the
highest accuracy of 99.91% using the GRU classifier on the
CICDDo0S2019 SSDP dataset. CICDD0S2019 SSDP is the
subset of the CICDDo0S2019 dataset with a massive num-
ber of records, where only 0.0003% of records are benign
records and the remaining 99.9997% of records are SSDP
DDoS attack records (763 benign and 2610611 SSDP DDoS
records). Popoola et al. [15] developed a deep learning-based
botnet attack detection framework called LAE-BLSTM by
implementing a long short-term memory autoencoder (LAE)
for dimensionality reduction and bidirectional long short-
term memory (BLSTM) for the classification of network
traffic into benign and malicious traffic. LAE-BLSTM exper-
imented on the Bot-IoT dataset. LAE reduced the number
of features from 37 to 6; deep BLSTM outperformed on
a reduced dataset when the Nadam optimizer was applied.
The framework is preferable for memory-constrained IoT
devices.

Ravi and Shalinie [16] developed a learning-driven detec-
tion mitigation (LEDEM) mechanism to detect and mitigate
DDoS attacks triggered by malicious IoT devices on IoT
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servers. Supervised machine learning techniques were used
for attack detection. They proposed different fixed IoT
(flot) and mobile 10T (mloT) techniques for attack mit-
igation. An approximation algorithm, fMS, was used for
floT, where malicious IoT devices were grouped accord-
ing to their VLAN id and the packets were dropped if they
belonged to that VLAN or even disconnected that VLAN.
A greedy drop rule was used for mloT, which dropped all
the incoming packets from the malicious IoT devices. A
testbed was created to verify LEDEM in a real network.
LEDEM was also demonstrated on the UNB-ISCX dataset.
The achieved accuracy was 96.28%. Gu et al. [17] proposed
SKM-HFS, a semisupervised weighted k-mean framework
using hybrid feature selection for DDoS attack detection. The
Hadoop-based hybrid feature selection technique was used to
determine the vital features to obtain higher detection accu-
racy. SKM-HFS experimented on the DARPA, CAIDA2007,
and CICID2017 datasets with accuracies of 99.68%, 99%,
and 98.86%, respectively. An experiment was conducted for
a real-world dataset and achieved an accuracy of 99.75%.
Bawany et al. [18] discussed major challenges and require-
ments for an effective DDoS mechanism. They proposed
a customizable framework called ProDefense (SDN-Based
Proactive DDoS Defense Framework) to defend against
DDoS attacks. ProDefense is a scalable & lightweight appli-
cation that provides rapid detection of DDoS attacks without
utilizing high computation power. It supports blocking port,
diverting flows, and controlling bandwidth techniques to
mitigate DDoS attacks. Idhammad et al. [19] propose semi-
supervised DDoS detection, combining an unsupervised ML
technique and a supervised ensembled ML technique. The
unsupervised approach is based on co-clustering, entropy
estimation, and information gain ratio that helps it to remove
noisy data from network traffic. The processed network traf-
fic improves the performance and reduces the false-positive
rate. The supervised ensemble ML classifiers classify the
malicious traffic accurately and reduce the false-positive
rates. Researchers experimented their approach on NSL-
KDD, UNB ISCXIDS 2012, and UNSW-NB1 dataset getting
accuracies of 98.23%, 99.88%, and 93.71%, respectively.

3 Proposed Framework

In this work, a combination of ML models are used to detect
DDoS attacks. The systematic flow of VMFCVD is given
here: Fig. 2 exhibits the same.

e The data cleaning module handles dataset noises such as
single value columns, infinity values, and missing values
well in advance.

Springer

e The data transformation module normalizes data so that
all the features in the dataset will have a normalized data
range.

e Extensive work on dimensionality reduction techniques
ensures that all the features are ranked correctly based
on various factors, such as feature importance, Pearson’s
correlation, and mutual information gain.

e The cluster formation module emphasizes the highly
ranked features while creating clusters.

e The module to find the best cluster is designed precisely
to rank all the clusters quickly.

e The ML models involved in voting are selected pre-
cisely. Each algorithm outperforms other algorithms one
or more times during our testing on various datasets.
There is no single algorithm that dominates others.

e The voting calculation is dynamic. The weight calcula-
tion module ensures that the high-performing algorithm
obtains higher weight during voting.

e The prediction of the voting module for any network traf-
ficis between 0 and 1; itis the probability of being benign
or malicious flow. This value helps to fine-tune the final
result of our voting classifier.

e All three modes are optimized based on their devel-
opment detection strategy. FDM is optimized toward
detection speed, DFDM is optimized toward detecting
malicious flow with high speed, and HAM is optimized
toward accuracy without concerning the detection speed.

e VMFCVD discards all the packets predicted as malicious
to defend against a DDoS attack.

e VMFCVD is validated on most of the benchmark DDoS
and botnet attack datasets.

3.1 Data Preprocessing

Datasets may have noise that may hamper the performance of
aML model. Table 7 shows that most of the datasets have NA
values. NA values can reduce the performance of the model
if not handled correctly. There are many datasets where one
or more features have a unit value. Unit values are identical
for all the records; therefore, they do not affect the model’s
accuracy, but they can increase the complexity of the model.
Data transformation is equally essential to transform data
from one dimension to another, convert nonnumeric data to
numeric data or scale down the range of the dataset in a stan-
dard range of values. Data preprocessing includes all these
steps and many more to produce a high-quality dataset so
that any ML model can obtain a high accuracy while using
low computational power. In VMFCVD, we worked exten-
sively on data preprocessing, and the output of this module
provides us with exceptionally high-quality dimensionally
reduced noise-free datasets. Figure 3 exhibits an overview of
our proposed data preprocessing module
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3.1.1 Data Cleaning

Data cleaning is one of the crucial steps of data preprocessing.
We started with deleting features that had identical values.
Features with identical values for each record do not affect the
accuracy of the ML model. In the second step of data clean-
ing, we replaced all the —inf and inf values with NA to handle
them using our ImputeMissing module. It is required as —inf

Extremely high network traffic

Yes SifvDy == 0) . N°

Malicious Flow Discm‘d

VD = Z(hamPredicti * hamAccu,)

i=0

DFDM

Yes 'if(VDj > maxAccuracy) \No

& inf values are not supported by many ML models. At the
end of data cleaning, we called the ImputeMissing module to
determine the most appropriate value for each missing value
occurring in the dataset. Deleting these values can be another
option to handle missing values, but deleting a single missing
value deletes the entire row. This can lead to the loss of a con-
siderable amount of essential data. For example, the original
UNSW-NBI15 dataset has 2.27% data missing, but deleting
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Fig.3 Data preprocessing
module

Handle Missing Values

Handle -inf & inf Values

Handle Single Value Features

missing values deletes 47.8% of the dataset. During data pre-
processing, if a dataset has more than 40% missing data for
a particular feature, we delete that feature entirely. Including
these features can slow down the detection process, as for
each missing data, the ImputeMissing module needs to be
called. Including features with missing values can increase
the processing overhead for VMCFD. The impact is high
when VMFCVD switches to the low feature-based detection
module, where we consider a minimum number of features
for attack detection to speed up the attack detection process.

The developed missing value imputation module uses
a linear regression algorithm to predict the missing value.
We first categorized the dataset into two categories: COLS
_WONA, which consisted of features without missing val-
ues, and COLS_WNA, which consisted of the features with
missing values. We predicted missing values for each fea-
ture of COLS_WNA. A train—test split was performed in
such a way that Y_Train contained all the nonmissing values,
and Y_Test had all the missing values. The linear regression
model was trained using X_Train and Y_Train, and then, the
Y_Test was predicted using X_Test data. The pseudo-code
is given by Algorithm 1.

Algorithm 1 Missing value imputation Algorithm

Require: input dataset DS having NA values

Ensure: output dataset DS_WONA without NA values

1: COLS_WONA <« Select columns in DS not having NA values

2: COLS_WNA <« Select columns in DS having NA values

3: DS_WONA < DS (COLS_WONA)

4: for i=0 to len(COLS_WNA) do

5: TRAIN < Select all non NA rows of COLS_WNA[i] from DS

6:  TEST <« Select all rows from DS having NA value in
COLS_WNA[i]

7. X_Train < TRAIN(COLS_WONA)

8:  Y_Train & TRAIN(COLS_WNA[i])

9: model.fit(X_Train, Y_Train)

10:  X_Test < TEST(COLS_WONA)

11: Y _Test <= model.predict(X _Test)

12:  DS_WONA[COLS_WNA[i]] < Combine(Y _Train, Y _Test)

13: end for

@ Springer

Data

Data Cleaning

Preprocessing

Mutual Information Gain
Data Encoding

Calculate Feature Correlation

Data Transformation

Data Normalization

Dimensionality Reduction

Calculate Feature Importance

3.1.2 Data Transformation

This is a process to restructure the dataset from one to another.
It enhances the dataset’s quality and organizes it in a more
precise format to improve the performance of ML models.
Data normalization and data encoding are some resources
involved in data transformation. Normalization is a process
to rescale and transform the data so that each feature can
have an identical range of values [20]. It ensures that the ML
model is not biased toward any feature with a wide range
of values compared to features with a value range in the
single digits or a value even smaller than the single-digit
range. It produces an improved version of the dataset with
equal importance for each feature as input to the learning
model. We used the StandardScaler transformation tech-
nique to normalize the dataset, where we scaled down all
numeric values between —1 and 1. Data encoding is another
imperative process used to transform categorical features into
numerical features. Most ML models perform excellently on
numerical features, while categorical features are not wel-
comed by many. Encoding categorical features to numeric
features improves the performance of the model. We have
applied OneHotEncoder, the most widely used data encoding
technique, to transform categorical features into numerical
features.

3.1.3 Dimensionality Reduction

Dimensionality reduction is a technique to identify an extra-
neous feature of a dataset that either decreases the ML
model’s performance or does not improve the ML model’s
performance. Datasets may have redundant features and
irrelevant information, negatively affecting the ML model’s
performance [21]. Figures 4 and 5 show that if we increase
the number of features, it increases the time complexity of
the model. It is also observed that increasing the feature size
does not mean that it will increase the model’s accuracy. It is
essential to achieve areduced set of features that can give high
accuracy and reduce the difficulties of the learning process
[22]. Our investigation shows that lowering the dimension
improves the detection speed. We have considered feature
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importance (FI), mutual information gain, and feature corre-
lation to obtain high-ranked features for training the voting
model.

Feature Importance Feature importance describes how
important a feature is for the model’s classification perfor-
mance. There are different ML models that help to measure
feature importance. During the experiment, it was observed
that different ML models give diverse feature importance (FI)
values on the same dataset. Each ML model’s FI values were
different; for the same feature, one algorithm showed zero
importance, albeit the other showed a considerable positive
value. To ensure that we did not miss any potential fea-
tures, we consolidated three ML models, namely LightGBM,
XGBoost, and DecessionTree, to measure feature impor-
tance.

We observed that the data range of each ML model’s FI
varied widely. After calculating FI, we rescaled the FI range
for each algorithm to the range of [0, 1]. The min—max nor-
malization function is given as:

% X — min().() )
max(X) — min(X)

where

)_( is a list of features with their calculated FI
X is the normalized value calculated from X.

Once the FI values were measured and normalized, we
combined the FI values of all three models. A graph is plotted
in Fig. 6 based on the combined FI values. Features with

higher FI values are essential features for the classification
model.

Feature Correlation This is the crucial stage where we deter-
mined the correlation between all the features in the dataset.
If two features are highly correlated, then we can keep one
feature and drop the other feature. Features that are highly
correlated with classification output are preferred; features
highly associated with other features are not suitable for ML
algorithms [23]. We calculated the correlation between fea-
tures using Pearson’s correlation coefficient formula.

Y X — X)) —Y)

Pxy = ()
n _ n —
Y(Xi—X)2 [ (Yi —Y)?
i=1 i=1
where
X and Y are two features of the dataset
n is the number of rows in X
)_( is mean of X
Y is mean of Y
Pxy is Pearson’s correlation coefficient between X and
Y.

A heatmap is plotted in Fig. 7 based on the calculated
correlation values between different features. The correlation
map shows how much two features are linearly correlated.
The possible range of values for the correlation coefficient is
—1 to 1. A value equal to zero or close to zero indicates that
there is no relation between two features. A value equal to
1 or —1 or close to it indicates that both features are highly
correlated.

Mutual Information Mutual information is calculated
between an independent feature and a dependent feature to
determine the information gain value, which measures the
dependency of a dependent feature on an independent fea-
ture. Features with a higher value of information gain can be
included in the minimal set of features on the ML algorithm.
We used Mutual_info_classif to determine the MI value for
each feature concerning the classification output. Figure 8
depicts the graph plotted from the calculated mutual infor-
mation gain. The range of MI values can be between 0 and 1.
A high Ml score of a feature means it has a closer connection
with the target feature and including it in the training set can
be helpful for the classification model.
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Algorithm 2 ClusterFormation algorithm

Require: FEATURES: list of features in dataset
FeaturesInEachCluester: no. of features in each subcluster
NoOfFeatures: no of features considered while creating subclus-

ters

Ensure: CLUSTERS: final set of clusters

1: CLUSTERS <[]

2: if NoOfFeatures < 3 then

3:  NoOfFeatures < 3

4: end if

5: for i=0 to NoOfFeatures do

6:  for j=i+1 to NoOfFeatures do

7: NewRow < []

8: NewRow.append(FEATURES[i])

9: for k=0 to FeaturesInEachCluester do
10: NewRow.append(FEATURES [j+k])
11: end for

12: CLUSTERS.append(NewRow)

13:  end for

14: end for

3.2 Cluster Formation, Ranking, and Best Cluster
Identification

Once the features were ranked from the techniques explained
above, we needed to determine the minimal features from
these selected features. The output of the data preprocessing
and feature selection phase was a list of features with their
ranking from highest to lowest. The highest-ranked features
had a high potential for the minimal set of features for our
detection framework. It is essential to identify high-ranked
features that are good together to improve the model’s accu-
racy. In the next step, we clustered the datasets so that highly
ranked features obtained more weight in the clustering pro-
cess. The pseudo-code is given by Algorithm 2. The output
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Fig.9 Data preprocessing module

of ClusterFormation is represented in Fig. 9 when n features
were called one by one. We call ClusterFormation module
n — 2 times where 7 is total number of features. First, we call
it for three features, then for four features, and so on until
it reaches the last feature. Each time when we call Cluster-
Formation, it generates three subclusters. The accuracy of all
these subclusters is calculated in next stage, and we select the
best-performing cluster only.

We calculated the accuracy of each subcluster and selected
the best-performing cluster for the next step. Table 1 shows
details of the best cluster from the set of subclusters.

The best-performing cluster with two features was selected
for one of the modes of VMFCVD. For another mode, we
chose the best-performing cluster from the rest of the cluster
sets. Table 2 gives information about the fastest cluster and
cluster that can give the highest accuracy.
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Table 1 Best clusters from each subcluster

Algorithm 3 Voting Calculation Algorithm

NoOfFeatures Feature set Accuracy
2 [F53, F1] 0.9886
3 [F53, F13, F1] 0.9956
4 [F53, F13, F1, F67] 0.9813
5 [F5, F53, F13, F1, F67] 0.8954
6 [F53, F13, F1, F67, F7, F36] 0.9963
7 [F53, F13, F1, F67, F7, F36, ... 0.8166
8 [F53, F13, F1, F67, F7, F36, ... 0.8166
9 [F53, F13, F1, F67, F7, F36, ... 0.8166
10 [F53, F13, F1, F67, F7, F36, ... 0.7154
11 [F5, F13, F1, F67, F7, F36, ... 0.7175
12 [F53, F13, F1, F67, F7, F36, ... 0.9464
13 [F53, F13, F1, F67, F7, F36, ... 0.9473
14 [F53, F13, F1, F67, F7, F36, ... 0.9473
15 [F5, F53, F13, F1, F67, F7, ... 0.8348
16 [F53, F13, F1, F67, F7, F36, ... 0.9669
17 [F53, F13, F1, F67, F7, F36, ... 0.969
18 [F53, F13, F1, F67, F7, F36, ... 0.9799

3.3 Voting-based Volumetric DDoS Detection
Framework

Factors such as dataset size and deployment environment
extensively affect ML model performance. It is not advis-
able to depend on a single ML algorithm when developing
a framework. Although a ML algorithm can perform excep-
tionally well on a particular dataset with high accuracy and
precision, there is no guarantee that it will perform well on
all datasets [24]. VMFCVD relies on the triad of fast detec-
tion mode (FDM), defensive fast detection mode (DFDM),
and high accuracy mode (HAM) models. The implementa-
tion of this triad ensures that the system will defend itself
against DDoS attacks more efficiently. We considered five
well-known ML models to classify network traffic: AdaBoost
classifier, bagging classifier, gradient boosting classifier, K-
neighbors classifier, and random forest classifier. The result
was calculated based on their voting. Each ML algorithm
has a different voting right based on its performance calcu-
lated during its training time. VMFCVD is highly adaptive. It
has three different approaches to classify cyber-attacks and
switches between these approaches based on the network
traffic.

Require: MODELS: [List of ML models]
Ensure: Final calculated voting
1: VotingData < 0 , Votelndex <= 0, TotAccuracy < 0
2: if NoOfFeatures < 3 then
3: model < model.fit(X_Train, Y _Train)
4: end if
5: for model in MODELS do
. model < model fit(X_Train, Y _Train)
predict <= model.predict(X_Test)
accuracy < metrics.accuracy_score(Y _Test, predict)
9:  VotingData < VotingData + predict x accuracy
10:  TotAccuracy < TotAccuracy + accuracy
11: end for
12: Votelndex < TotAccuracy/2 — 0.2
13: MaxVotelndex <= 0
14: TotalRecords <= Len(X_Test)
15: for i=0 to 40 do
16:  if VotingData >= Votelndex then

® 2D

17: Vote < 1
18: else

19: Vote < 0
20:  endif

21:  Accuracy < Sum(Vote) /TotalRecords
22:  if MaxAccuracy < Accuracy then

23: MaxAccuracy <= Accuracy
24: MaxVotelndex < Votelndex
25:  endif

26:  Votelndex <= Votelndex + 0.01
27: end for

28: Accuracy < Sum(Vote) /TotalRecords
29: if Y_Test=1 AND Vote=1 then
30: TP < 1

31: else

32: TP«<0

33: end if

34: if Y_Test=0 AND Vote=0 then
35: TN<«1

36: else

37: TN <0

38: end if

39: if Y_Test=0 AND Vote=1 then
40: FP <1

41: else

42: FP <0

43: end if

44: if Y_Test=1 AND Vote=0 then
45: FN <1

46: else

47: FN <0

48: end if

Calculation of Vote All the ML models were trained on the
training dataset. Once trained, the accuracy and their predic-
tions were calculated on the test dataset. We calculated the
weight of each ML algorithm based on its accuracy. Once

Table 2 Fastest and highest

. NoOfFeatures Feature set Accuracy Conclusion
performing clusters
2 [F53, F1] 0.9886 Fastest cluster
6 [F53, F13, F1, F67, F7, F36] 0.9963 Most accurate cluster
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Table3 Data reduction in FDM Dataset Dimensionality reduction FDM Data reduction (%)
Before After
CICIDS2017 BoT 79 2 97.4
CICIDS2017 DDoS 79 2 97.4
CSE-CIC-IDS2018 BoT 80 2 97.5
CSE-CIC-IDS2018 DDoS 80 2 97.5
CICDDo0S2019 DNS 88 2 97.7
CICDDo0S2019 LDAP 88 2 97.7
CICDDo0S2019 SSDP 88 2 97.7
CICDDo0S2019 SYN 88 2 97.7
DoHBrw 2020 35 2 94.2
NBaloT2018 Mirai 116 2 98.2
UNSW NB15 46 2 95.8
UNSW2018 BoTIoT 48 2 95.6
Lalgll)el\z OiI:rplr:(B’&ment in Dataset Accuracy
FDM DFDM Improvement
CICIDS2017 BoT 0.273187 0.284992 0.0118
CICIDS2017 DDoS 0.998191 0.9984 0.00021
CSE-CIC-IDS2018 BoT 0.989981 0.993876 0.00389
CSE-CIC-IDS2018 DDoS 0.997507 1 0.00249
CICDDo0S2019 DNS 0.999988 0.99999 0
CICDDo0S2019 LDAP 0.999947 1 0.00005
CICDDo0S2019 SSDP 0.999999 0.999999 0
CICDDo0S2019 SYN 0.999983 0.999998 0.00001
DoHBrw 2020 0.999987 0.999987 0
NBaloT2018 Mirai 0.999931 0.999969 0.00004
UNSW NB15 0.996412 1 0.00359
UNSW2018 BoTIoT 0.999987 0.999995 0.00001

the weight was calculated, we multiplied the prediction of
each ML algorithm by its weight for each record for every
ML model’s prediction. The resultant weighted prediction
was used to calculate the voting for a packet to determine
whether it was benign or malicious. Algorithm 3 is a master
algorithm to perform the vote. All three modes of VMFCVD
call it and perform the voting based on their voting criteria.

3.3.1 Fast Detection Mode (FDM)

As shown in Fig. 4, if we increased the feature size, the
training time also increased, and the framework used more
computational power. Considering this, we trained FDM with
the minimum possible number of features set. Taking only
two features from the network traffic enables FDM to clas-
sify more network traffic. FDM used a highly dimensionally
reduced dataset provided by our dimensionality reduction
module. Table 3 shows the percentage of data reduction for

all the datasets we used during the experiment. Keeping the
minimum number of features in the training and test datasets
helped VMFCVD process the maximum number of requests
compared to the mode where we considered more features
for model training and testing. FDM was active all the time,
even when HAM was running. During this time, FDM trained
itself with all the incoming flows. VMFCVD automatically
switched to FDM when it observes considerably high net-
work traffic. HAM suspends during this time. Suspending
HAM helps FDM obtain the maximum amount of resources
for attack detection.

3.3.2 Defensive Fast Detection Mode (DFDM)

This is the extended version of the FDM. DFDM uses FDM’s
voting module, but it has voting calculation techniques. Even
if a single vote is against a packet, that packet is classified
as a malicious packet. Only the packets that have zero prob-

@ Springer



9976

Arabian Journal for Science and Engineering (2022) 47:9965-9983

Table 5 Accuracy improvement in HAM over FDM

Dataset Accuracy
FDM HAM Improvement

CICIDS2017 BoT 0.99207 0.99721 0.00514
CICIDS2017 DDoS 0.99855 0.99923 0.00068
CSE-CIC-IDS2018 BoT 0.99555 0.99555 0
CSE-CIC-IDS2018 DDoS 0.99829 0.99997 0.00168
CICDDo0S2019 DNS 0.99997 0.99998 0.00001
CICDDo0S2019 LDAP 0.99984 0.99999 0.00015
CICDDo0S2019 SSDP 0.99991 0.99999 0.00008
CICDDo0S2019 SYN 0.99994 0.99999 0.00005
DoHBrw 2020 0.99998 0.99998 0
NBaloT2018 Mirai 0.99993 0.99995 0.00002
UNSW NB15 0.99633 0.99641 0.00008
UNSW2018 BoTIoT 0.99996 1 0.00004

ability of being malicious are classified as benign packets.
This mode activates when the network experiences an attack
with a very high volume of incoming data. DFDM increases
the accuracy of detecting malicious packets but decreases the
accuracy for detecting benign packets. VMFCVD switches
to DFDM mode when the DDoS attack intensity is very high.
The increase in accuracy of detecting malicious packets in
DFDM over FDM is given in Table 4.

3.3.3 High Accuracy Mode (HAM)

This mode gives the highest accuracy. HAM may require a
higher number of input features for training, which increases

computational overhead. This mode activates when the net-
work 1is stable, and the number of incoming packets is
average. This model is intended to give the highest accuracy
on any dataset. Table 5 shows the improvement in HAM’s
accuracy over FDM. The cluster that outperformed the oth-
ers during feature selection time with the highest accuracy is
considered input for this model.

4 Experimental Results and Discussion

All experiments are carried out on a 64-bit Window 10 Pro
operating system equipped with a 2.70 GHz Core i7 proces-
sor, 16 GB RAM. VMFCVD is implemented in Python 3.8.8
using Jupyter Notebook. The machine learning classification
models used are the AdaBoost classifier, bagging classifier,
gradient boosting classifier, K-neighbors classifier, and ran-
dom forest classifier. These classifiers are selected based on
their diverse performance on the various datasets. Table 6
shows the diversity in their performance; if an ML model
gives the highest accuracy for one dataset, the same model
gives the lowest accuracy for another. The cells highlighted
show the maximum performance of an ML model. AdaBoost
gives the highest average performance, while bagging gives
the best performance on five occasions. The lowest perfor-
mance of bagging and GradientBoost is recorded three times.

4.1 Benchmark Datasets
Our framework has experimented with twelve labeled

datasets containing benign and malicious network traffic.
Most of the datasets we have considered have been generated

Table 6 Performance of ML

models on various datasets Dataset Features Accuracy
AdaBoost Bagging GB?* KNN RF
CICIDS2017 BoT 2 0.99194 0.98696 0.98892 0.99082 0.98926
CICIDS2017 DDoS 2 0.99838 0.79279 0.89456 0.89815 0.79911
CSE-CIC-IDS2018 BoT 2 0.99199 0.98656 0.98815 0.99537 0.98318
CSE-CIC-IDS2018 DDoS 2 0.99823 0.99824 0.99824 0.99828 0.99824
CICDDo0S2019 DNS 2 0.99986 0.99996 0.99995 0.99997 0.99997
CICDDo0S2019 LDAP 2 0.99983 0.99983 0.99981 0.99984 0.99983
CICDDo0S2019 SSDP 2 0.99989 0.99991 0.99981 0.99985 0.99989
CICDDo0S2019 SYN 2 0.99979 0.99993 0.99978 0.99993 0.99978
DoHBrw 2020 2 0.99993 0.99997 0.99997 0.99996 0.99542
NBaloT2018 Mirai 2 0.99993 0.99993 0.99991 0.99993 0.99993
UNSW NB15 2 0.99632 0.99633 0.99632 0.99287 0.99632
UNSW2018 BoTIoT 2 0.99989 0.99996 0.99988 0.99995 0.99991
Average 2 0.99782 0.97821 0.98777 0.98863 0.97827

The bold values highlights the best performing model’s accuracy on a particular dataset. If more than one
values are bold for a dataset, more than one model achieves the highest accuracy

4Gradient Boosting Classifier
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Table 7 Detailed information about the datasets used for experiment
Dataset Records Features Benign (%) Malicious (%) NA? UnitValue®
CICIDS2017 BoT 191,033 79 98.97 1.029 244 10
CICIDS2017 DDoS 225,745 79 43.287 56.713 68 10
CSE-CIC-IDS2018 BoT 1,048,575 80 72.707 27.293 8100 10
CSE-CIC-IDS2018 DDoS 1,048,575 80 34.412 65.588 0 10
CICIDS2019 DNS 5,074,413 88 0.067 99.933 324,788 12
CICDDo0S2019 LDAP 2,181,542 88 0.074 99.926 77,300 14
CICDDo0S2019 SSDP 2,611,374 88 0.029 99.971 84,100 12
CICIDS2019 SYN 1,582,681 88 0.025 99.975 404,634 12
DoHBrw2020 269,643 35 7.346 92.654 688 0
NBaloT2018 Mirai 498,164 116 12.477 87.523 0 0
UNSW2018 BoTIoT 3,668,522 46 0.013 99.987 0 0
UNSW NB15 2,540,047 48 12.649 87.351 2,778,024 0
4Total count of NA values
4Total number of columns with a single value
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inrecent years and include new kinds of attacks. Table 7 gives
detailed information on all the datasets used in this work. For
DDoS attack detection, we considered CICIDS2017 DDoS,
CSE-CIC-IDS2018 DDoS, and CICDDOS2019 DDoS. The
CICIDS2017 BoT, CSE-CIC-IDS2018 BoT, NBaloT2018
Mirai, UNSW2018 BoTIoT, and UNSW NB 15 datasets were
considered for the botnet attack. The CICIDS 2017 BoT and
CICIDS 2017 DDoS dataset are subsets of the CICIDS2017
[25] dataset created by the Canadian Institute for Cyber-
security. The CICIDS 2017 BoT has 99% benign and 1%
malicious flows, while the CICIDS 2017 DDoS has 43%
benign and 57% malicious flows. The CSE-CIC-IDS2018
BoT and DDoS are subsets of the CSE-CIC-IDS2018 [25]
dataset. CSE-CIC-IDS2018 is an updated version of the
CICIDS2017 dataset. We considered the DNS, LDAP, SSDP,
and SYN datasets, a subset of the CICDDOS2019 [26]
dataset. CICDD0S2019 has a large number of malicious

mBenign = Malicious

records with only a few benign records. CICDDo0S2019
DNS and 0.067% benign records, CICDDo0S2019 LDAP
have 0.074%, CICDD0S2019 SSDP have 0.029% and CICD-
Do0S2019 SYN have only 0.025% benign records.

DoHBrw-2020 is the most recent dataset generated by
the Canadian Institute for Cybersecurity. It contains a
hybrid of modern benign and malicious network traffic [27].
NBaloT2018 Mirai is a subset of the NBaloT2018 dataset
collected from nine infected IoT devices [28]. UNSW2018
BoTIoT is extracted from the UNSW BoTIoT dataset that
incorporates legitimate IoT network traffic [29]. The UNSW-
NB15 dataset is a well-structured dataset to evaluate cyber-
attack detection systems created at the University of New
South Wales in 2015 [30]. Figure 10 depicts the distribution
of benign vs. malicious records.
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Table 9 Accuracy of FDM over .
ML models Dataset AdaBoost Bagging GB KNN RF VMFCVD
CICIDS2017 BoT 0.99194 0.98696 0.98892 0.99082 0.98926  0.99207
CICIDS2017 DDoS 0.99838 0.79279 0.89456 0.89815 0.79911 0.99855
CSE-CIC-IDS2018 BoT 0.99199 0.98656 0.98815 0.99537 0.98318 0.99555
CSE-CIC-IDS2018 DDoS 0.99823 0.99824 0.99824 0.99828 0.99824  0.99829
CICDDo0S2019 DNS 0.99986 0.99996 0.99995 0.99997 0.99997 0.99997
CICDDo0S2019 LDAP 0.99983 0.99983 0.99981 0.99984 0.99983 0.99984
CICDDo0S2019 SSDP 0.99989 0.99991 0.99981 0.99985 0.99989 0.99991
CICDDo0S2019 SYN 0.99979 0.99993 0.99978 0.99993 0.99978 0.99994
DoHBrw 2020 0.99993 0.99997 0.99997 0.99996 0.99542 0.99998
NBaloT2018 Mirai 0.99993 0.99993 0.99991 0.99993 0.99993 0.99993
UNSW NBI15 0.99632 0.99633 0.99632 0.99287 0.99632 0.99633
UNSW2018 BoTloT 0.99989 0.99996 0.99988 0.99995 0.99991 0.99996

4.2 Evaluation Metrics

All three detection modes of VMFCVD are evaluated based
on the four evaluation metrics, viz. accuracy, precision, sen-
sitivity, and F1 score. The equation for the same is given
below:

TP + TN
Accuracy = 3)
TP + FP + FN + FP
o TP

Precision = —— 4

TP + FP
Sensitivity(Recall) = —— 5)

ensitivity(Recall) = TP+ FN
F1 Score — Precision * Recall ©)

¥ Precision + Recall
4.3 Experimental Result

The analysis of the experimental results is divided into three
sections. In the first section, we will compare all three modes

of VMFCVD. In the second section, VMFCVD is compared
with ML models’ performance. In the last section, we will
compare the performance of VMFCVD with state-of-the-art
baselines.

4.3.1 Performance Analysis Between FDM, DFDM, and HAM

These three modes are designed to detect an attack in differ-
ent scenarios that primarily affect these modes’ performance.
HAM outperformed FDM and DFDM when comparing accu-
racy, sensitivity, and F1 score. Considering the extensive
dimensionality reduction in FDM, the accuracy of FDM was
quite competitive to HAM. The precision of DFDM outper-
formed FDM for all datasets and topped HAM in many cases.
The highlighted cells in Table 8 show the outperformed val-
ues.

Figure 11 shows the dimensionality reduction in various
datasets. The minimum dimensionality reduction is 85.4 on
the UNSW NBI15 dataset for HAM. The maximum dimen-
sionality reduction we achieved was 98.2%, which was on
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Table 10 Accuracy of DFDM
over ML models for detecting
malicious packets

Table 11 Accuracy of HAM
over ML models

Fig.12 Accuracy (average) of
VMFCVD over ML models

@ Springer

Dataset AdaBoost Bagging GB KNN RF DFDM
CICIDS2017 BoT 0.00169 0.33895 0 0.82462 0 0.28499
CICIDS2017 DDoS 0.99824 0.63935 0.81557 0.82194 0.64761 0.9984
CSE-CIC-IDS2018 BoT 1 1 1 0.99751 1 0.99388
CSE-CIC-IDS2018 DDoS 0.99062 0.9525 0.96161 0.98858 0.95228 1
CICDDo0S2019 DNS 0.99993 0.999981 0.99998 0.99998 0.99998 0.99999
CICDDo0S2019 LDAP 0.99993 0.99994 0.99981 0.99994 0.99994 1
CICDDo0S2019 SSDP 1 0.52123 0.99983 0.99982 1 1
CICDDo0S2019 SYN 0.99998 0.99997 0.99998 0.99998 0.9999 1
DoHBrw 2020 0.99997 0.99999 0.99997 0.99997 0.99995 0.99999
NBaloT2018 Mirai 0.99993 0.99993 0.99991 0.99992 0.99997 0.99997
UNSW NB15 0.98527 0.98526 0.98526 0.98527 0.98527 1
UNSW2018 BoTloT 1 0.99999 0.99949 1 1 1
Dataset AdaBoost  Bagging  GB KNN RF HAM
CICIDS2017 BoT 0.98928 0.99263 0.98919  0.99721  0.98926  0.99721
CICIDS2017 DDoS 0.43027 0.99913 0.99875  0.99904  0.99913  0.99923
CSE-CIC-IDS2018 BoT 0.99199 0.98656 0.98815  0.99537  0.98318  0.99555
CSE-CIC-IDS2018 DDoS ~ 0.99996 0.99996 0.35197  0.99991  0.71474  0.99997
CICDDo0S2019 DNS 0.99983 0.9999 0.99925  0.99997  0.99994  0.99998
CICDDo0S2019 LDAP 0.99998 0.99999 0.99991  0.99998  0.99998  0.99999
CICDDo0S2019 SSDP 0.99996 0.99999 0.99992  0.99997  0.99998  0.99999
CICDDo0S2019 SYN 0.99999 0.99999 0.99987  0.99999  0.99999  0.99999
DoHBrw 2020 0.99993 0.99997 0.99997  0.99996  0.99542  0.99998
NBaloT2018 Mirai 0.99993 0.99995 0.99995  0.99995  0.99994  0.99995
UNSW NB15 0.99003 0.9963 0.9902 0.99635  0.99313  0.99641
UNSW2018 BoTIoT 1 1 1 1 1 1
1.0100000
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Lal\'jlll? éf’DIA()?;r:g;e?g f-the-art Dataset State of the art VMFCVD Accuracy

baselines Reference Accuracy FDM DFDM HAM
CICIDS2017 BoT 1] 0.46474 0.99207 0.99053 0.99721
CICIDS2017 BoT 2] 0.8719 0.99207 0.99053 0.99721
CICIDS2017 DDoS ] 0.9967 0.99855 0.99822 0.99923
CICIDS2017 DDoS 3] 0.982 0.99855 0.99822 0.99923
CICIDS2017 DDoS 1] 0.82 0.99855 0.99822 0.99923
CICIDS2017 DDoS 31] 0.99879 0.99855 0.99822 0.99923
CSE-CIC-IDS2018 BoT [33] 0.9992 0.99555 0.99265 0.99555
CSE-CIC-IDS2018 DDoS [9] 0.9987 0.99829 0.99823 0.99997
CICDDo0S2019 DNS [14] 0.9975 0.99997 0.99994 0.99998
CICDDo0S2019 LDAP 14] 0.9996 0.99984 0.99924 0.99999
CICDDo0S2019 LDAP 3] 0.953 0.99984 0.99924 0.99999
CICDDo0S2019 LDAP 2] 0.9995 0.99984 0.99924 0.99999
CICDDo0S2019 SSDP 14] 0.9991 0.99991 0.99988 0.99999
CICDDo0S2019 SSDP 4] 0.86 0.99991 0.99988 0.99999
CICDDo0S2019 SYN 4] 0.9998 0.99994 0.99977 0.99999
DoHBrw 2020 5] 0.9766 0.99998 0.99993 0.99998
DoHBrw 2020 6] 0.9999 0.99998 0.99993 0.99998
NBaloT2018 Mirai 71 0.928 0.99993 0.99993 0.99995
NBaloT2018 Mirai 8] 0.9998 0.99993 0.99993 0.99995
NBaloT2018 Mirai 9] 0.99988 0.99993 0.99993 0.99995
NBaloT2018 Mirai 0] 0.9998 0.99993 0.99993 0.99995
UNSW NBI15 3] 0.9819 0.99633 0.98705 0.99641
UNSW NB15 41] 0.9021 0.99633 0.98705 0.99641
UNSW NBI15 2] 0.9875 0.99633 0.98705 0.99641
UNSW2018 BoTIoT 31] 0.97 0.99996 0.99988 1
UNSW2018 BoTIoT [35] 0.9996 0.99996 0.99988 1
UNSW2018 BoTIoT [32] 0.99912 0.99996 0.99988 1

The bold values highlights the best performing model’s accuracy on a particular dataset. If more than one
values are bold for a dataset, more than one model achieves the highest accuracy

the NBaloT2018 Mirai dataset for FDM. The average reduc-
tion was 97.03% for both FDM & DFDM and 91.8% average
for HAM. The overall dimensionality reduction we achieved
for VMFCVD was 95.28

4.3.2 Performance Comparison of VMFCVD with ML Models

The accuracy of VMFCVD’s FDM outperformed the ML
algorithms used in this work. The VMFCVD’s performance,
shown in Table 9, shows that VMFCVD outperforms ML
algorithms on all the datasets experimented on within this
work. However, on eight occasions, ML models reached the
accuracy of VMFCVD.

Table 10 shows the accuracy of detecting malicious pack-
ets when experimenting with the cluster of FDM. In this
performance comparison, DFDM dominates ML models
most of the time.

The accuracy of VMFCVD’s HAM outperformed the ML
algorithms used in this work. The VMFCVD’s performance
in Table 11 shows that it outperformed ML algorithms on
all the datasets experimented on within this work. However,
seven out of 110 comparisons, one of the ML models reached
the performance of VMFCVD.

4.3.3 Performance Comparison of VMFCVD with
State-of-the-art Baselines

In this section, we compare the accuracy of all three modes
of VMFCVD with state-of-the-art baselines. Table 12 shows
that VMFCVD outperformed other studies in terms of clas-
sification accuracy. HAM topped all different modes of
VMFCVD and recent ML models, as shown in Table 12.
Despite the significant dimensionality reduction in FDM, the
performance of FDM is better in most of the recent studies.
Although DFDM is dedicated to detecting malicious pack-
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ets efficiently, its overall accuracy is comparable to recent
studies. It was better in most cases, as shown in Table 12.
Figure 12 depicts the performance comparison of
VMFCVD over ML models. The accuracy of ML models
ranged from 43% to 100%. The accuracy of VMFCVD was
always above 98.7%, with an overall average of 99.82%.

5 Conclusion and Future Work

DDoS attacks continue to undermine the availability of
online services despite the enormous effort made by
researchers and industries to defend them. Existing systems
suffer from high processing overhead and are validated on
a limited number of datasets. In this work, the extensive
work on feature selection and then systematic approach to
the formation and selection of best clusters gives a dimen-
sionally reduced high-quality dataset created from noisy
datasets for various VMFCVD modes. VMFCVD takes
low processing overhead when the server is under attack.
Extensive experiments were performed to evaluate its effec-
tiveness. It is evaluated on the CICIDS2017 (BoT & DDoS),
CSE-CIC-IDS2018 (BoT & DDoS), CICDD0S2019 (DNS,
LDAP, SSDP & SYN), DoHBrw2020, NBaloT2018 (Mirai),
UNSW2018 BoTIoT, and UNSW NB 15 datasets. The exper-
imental results show that VMFCVD outperformed other
studies in terms of classification accuracy. The extent to
which we have reduced the dataset is maximal compared
to any of the previous studies. In some cases, VMFCVD
reduced the dataset by 98.2%, maintaining an accuracy of
99.99%. As of future work, we plan to create a generic DDoS
and botnet dataset that can be used to train the model when
implemented on a live server. We plan to include a module
to identify and block devices if multiple malicious network
traffic come from them.
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