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Abstract: We describe the application of a generic stability framework for a teleoperation system
under time-varying delay conditions, as addressed in a previous work, to a scaled-four-channel (γ-4C)
control scheme. Described is how varying delays are dealt with by means of dynamic encapsulation,
giving rise to mu-test conditions for robust stability and offering an appealing frequency technique to
deal with the stability robustness of the architecture. We discuss ideal transparency problems and we
adapt classical solutions so that controllers are proper, without single or double differentiators, and
thus avoid the negative effects of noise. The control scheme was fine-tuned and tested for complete
stability to zero of the whole state, while seeking a practical solution to the trade-off between stability
and transparency in the Internet-based teleoperation. These ideas were tested on an Internet-based
application with two Omni devices at remote laboratory locations via simulations and real remote
experiments that achieved robust stability, while performing well in terms of position synchronization
and force transparency.

Keywords: teleoperation; robust stability; time-varying delays; transparency

1. Introduction

A teleoperation system consists of master and slave mechanical systems where the master is
directly manipulated by a human operator and the slave, operating in a remote environment, is
designed to track the master closely. The main issues in the analysis and synthesis of these systems
are stability and transparency. Transparency refers to the level of achievement of an ideal situation of
the operator acting on the remote environment. In practice, there is a compromise between these two
goals mainly due to the presence of time delays generated by the communication channel [1].

Given this compromise, many control schemes for teleoperation have been proposed, broadly
classified in terms of two main frameworks, namely, intrinsically stable schemes (passivity-based), and
delay-dependent stability schemes [2]. In early works on constant delay, stability was addressed by
means of frequency, Laplace or passivity techniques applied to linear time-invariant (LTI) master-slave
two-port systems [1–5].

In regard to transparency properties, the most successful control scheme in achieving full
transparency under ideal conditions is the four-channel (4C) control scheme [1,2,4,6]. The specialized
literature contains very detailed analyses of transparency and control architectures based on four, three
and two channels, that, in general assume constant delays (see especially [4] and references therein).

However, in recent years a new line of research on Internet-based teleoperation [6–11] exposes the
system control loop to the time-varying delay of a packet-switched network—the subject of a tutorial
presented by Hokayem and Spong [12].
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Control schemes designed within the passivity framework using scattering and two-port network
theory concepts have been improved—by Chopra, Spong and Lozano [13]—by means of an adaptive
coordination architecture that provides robust stability against constant delay in network and position
tracking. Reset control techniques have also been used to enhance performance [14] and, more recently,
passivity-based controllers have also been described that include scattering-based, damping injection
and adaptive controllers [15].

Other research lines refer to time-delay compensation to improve teleoperation performance and
stability, such as a passivity-based approach to constant delay [16] or methods based on the concept
of network disturbance and the communication disturbance observer [9,17,18]. All these theoretical
approaches assume a global delay given by τ = τm + τs (the sum of the delays between master and
slave and vice versa) and a Laplace delay block e´τs representing the global delay, which can commute
with the other LTI blocks in the control loop. Therefore, although experimental results for simulated
time-varying delay based on these techniques have been described [9,17,18], the stability condition for
constant delay cannot apply. The loop must maintain all the time-varying delay channels of the control
scheme because these cannot be combined in a single delay: time-varying delays do not commute with
LTI systems.

Focusing on Internet-based teleoperation based on delay-dependent control schemes which can
provide better transparency properties, the real problem is to establish delay-dependent conditions
for systems with two internal control loops (master and slave) ”connected” by (time-varying)
delayed signals. This problem can be solved—to name just two possible approaches—by
applying delay-dependent stability tools developed for time-domain techniques that are based on
Lyapunov-Krasovskii functionals, with a formulation of stability obtained via easily computable LMI
conditions (see [6,10,19,20] and references therein), or by using approaches based on small-gain type
theorems in the input-to-state stability framework [21], which can be used even when passivity is lost.

More specifically, referring to previous research by us, focusing on the stability of the
delay-dependent teleoperation control schemes, we defined a generic approach to modelling any
teleoperation setup as a negative single-feedback loop containing an LTI block and an uncertain
time-varying delay [11]. The main contribution of this approach was the possibility of deriving
frequency-domain conditions for robust stability in the presence of time-varying delays and parametric
uncertainties. As a case study, the two-channel position-error (PE) control scheme was modelled,
implemented and experimentally tested for the Internet-based haptic teleoperation of a laboratory 3D
crane in normal operation conditions, that is, without contact with the environment.

Using this generic approach, we presented preliminary results [22] on the 4C control scheme
for teleoperating simulated manipulators, as more flexible than 3C [23] or 2C [24] versions. Further
work [25] addressed the robust stability of simulated teleoperated systems, with the 4C architecture
affected by time-varying communication delays, by using disturbance observers that are relevant
when only position (but not force) measurements are available.

The main differences between our approach [6,22,25] and other delay-dependent proposals
are that we look for: (a) complete stability to zero of the whole state; and (b) robustness against
continuous-time time-varying delay. The first goal implies that, in the absence of external inputs,
the whole state should converge to zero. In particular, the nominal, non-delayed closed-loop system
should have well-posed dynamics dx/dt = Ax, with stable closed-loop eigenvalues, Real(Eig(A)) < 0.
This excludes schemes where master and slave positions mutually converge xm Ñ xs but do not tend
to zero. It also excludes cases where the master or the slave ports should be closed by dissipative
port terminations to ensure stability. The first goal is important in applications where master or slave
devices could be released and we want the resulting free motion to tend to zero (a fixed safe position
in the workspace).

It is well-known [4] that 4C schemes with perfect transparency do not have well-posedness
and complete stability to zero of the state vector. This is the reason why, starting out with the 4C
architecture [6,22,25], we introduced a scaling parameter γ to achieve complete stability to zero of the
whole state.
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The second goal is to ensure robust stability in Internet-based teleoperation, that is, under
time-varying delay. We address the problem of uncertain delays from a continuous-time perspective
(not in discrete-time [26,27]) and for time-varying delays (more realistic than uncertain but constant
delays [28]). The induced problem is more difficult but, since useful delay encapsulations have been
described in the literature [29], we show how to adapt these delay bounds to achieve our second goal
of robustness against continuous-time time-varying delay.

The main differences between our previous work and the present work—in other words, the
novelty of the present paper—is that here we explicitly discuss ideal transparency issues and rearrange
previous solutions [22,25] so that now the resulting controllers are proper, that is, they do not contain
single or double differentiators and so avoid problems of noise. We also validated the ideas with
simulations and real-life experiments on an Internet teleoperation setup that coordinated two Omni
haptic devices between remote laboratory setups in Spain (University of Vigo, Vigo, Spain) and the UK
(University of Manchester, Manchester, UK).

The paper is organized as follows: in Section 2 the model for robust stability in 4C-based
teleoperation is introduced and in Section 3 a robust stability condition for this control scheme
is defined. Section 4 describes the haptic teleoperation case study. Section 5 presents the analysis and
simulation results and Section 6 presents the experimental results. Finally, Section 7 concludes the
paper with a discussion.

2. Model for Robust Stability in 4C Based Teleoperation

Consider the generic teleoperation setup depicted in Figure 1, consisting of an exchange of signals
through a communication channel between the master side (left) and the slave side (right). The master
side is formed of the plant 1/Pm and the controller Km. The plant is modelled as a mechanical
system with coordinates (positions) given by the n ˆ 1 vectors xm, xs. In the Laplace domain, if
xmp0q “

.
xmp0q “ 0, we have:

PmpsqXmpsq :“ Fmpsq, PspsqXspsq :“ Fspsq (1)

Note that we use lowercase and uppercase letters for time-domain and Laplace domain
signals, respectively.
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Figure 1. Generic teleoperation system.

The input of the master plant is the master force fm “ fh ´ fmc, where fh is the force applied by
the human operator and fmc is the force from the controller. The plant has two outputs, namely, the ny

signals that send information to the slave (ym) and the nz signals used by the local controller (zm).
On the slave side, fe is the force from the environment. The controller force fsc enters additively in

fs “ fe ` fsc.
Master and slave exchange signals through the communication channel. Taking into account our

theoretical [10], and experimental [11] discussions on delay bounds using the Internet User Datagram
Protocol (UDP), the delay τ(t) can be assumed in a non-restrictive way from teleoperation point of
view, to be an unknown time-varying function for which the upper bounds on the magnitude and the
variation satisfy @t ě 0:
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0 ď τptq “ h` ηptq ď hmax, |ηptq| ď κ ď h (2)
ˇ

ˇ

.
τptq

ˇ

ˇ ď d ă 1 (3)

The time-varying delay can be described by the operator D which is a (nonlinear) system used (in
the time domain) in any of the equivalent notations: yjd “ Djpyjq “ Dj ˝ yj “ Dj yj, pj “ m, sq . This
means that:

ymdi
ptq “ Dmymiptq :“ ymipt´ τmptqq, ysdi

ptq “ Dsysiptq :“ ysipt´ τsptqq (4)

where Dm, Ds are the corresponding master and slave time-delay operators. To simplify matters we also
extend the operator D to the Laplace domain in the equivalent forms Yjd “ DjpYjq “ Dj ˝Yj “ Dj Yj,

which simply means that: Yjdpsq “ Dj Yjpsq ô Yjdpsq “ L
´

yjdptq
¯

and yjdptq “ Dj yjptq.
We now consider a 4C control scheme in the most general and representative case of

delay-dependent schemes. Here, the master and slave exchange, through the communication channel,
velocities or positions and forces in both directions. The local controllers are defined in terms of the
applied external force, their own velocity/position (master/slave) and the delayed velocity/position
and force (slave/master) from the other side. When the system exchanges positions and forces (see
Figure 2), the controllers Km, Ks can be defined as:

fmc “ Cmxm ` C2 fsd ` C4xsd ´ C6 fh (5)

fsc “ ´Csxs ` C3 fmd ` C1xmd ` C5 fe (6)
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Following the procedure described in a previous work [11], we remodeled this whole system to
obtain a single feedback loop containing an LTI block and an uncertain time-varying delay block with
the same dimension as the number of the signals exchanged between the master and slave. For this
purpose, we state the following Proposition 1 to obtain the model for 4C-based teleoperation:

Proposition 1. A teleoperation setup as described in Figures 1 and 2 given by Equations (1)–(5), can be
formulated as a compact model for robust stability analysis using a generic approach (as developed
in [11]) in the form given by equations Equation (7), Equation (8) and the block diagram in Figure 3:

ΠpsqXpsq “ ´CpsqDDpsqXpsq `ΦpsqFpsq (7)

with:
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Π “

˜

Pm ` Cm 0
0 Ps ` Cs

¸

, X “

˜

Xm

Xs

¸

, C “

˜

01ˆ2 C4 C2

´C1 ´C3 01ˆ2

¸

,D “

˜

I2 ¨Dm 02ˆ2

02ˆ2 I2 ¨Ds

¸

,

D “

¨

˚

˝

´

1 Pm

¯T
02ˆ1

02ˆ1

´

1 Ps

¯T

˛

‹

‚

, Φ “

˜

1` C6 0
0 1` C5

¸

, F “

˜

Fh
Fe

¸

(8)
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Proof: The proof of this proposition is developed in Appendix A. 2

Remark 1. The model described by Equation (7) is directly represented by Figure 3, where four
time-varying delays channels inherited from Figure 1 are maintained, bearing in mind that they cannot
be combined in a single delay because time-varying delays do not commute with LTI systems.

Ideal Transparency Conditions

Note that, from the teleoperation loop in Figure 3, we can also obtain the zero-delay (D = I ñ
Yd = Y) closed loop dynamics for studying ideal behavior and transparency properties, considering:

Xpsq “ pΠpsq ` CpsqDpsqq´1 ΦpsqFpsq “: ΛpsqFpsq (9)

That is:
˜

xm

xs

¸

“ Λ ¨

˜

fh
fe

¸

ñ

#

xm “ ∆Λ
´1 ¨ pΛ11 fh `Λ12 feq

xs “ ∆Λ
´1 ¨ pΛ21 fh `Λ22 feq

(10)

with the following values:

Λ11 “ pPs ` Csq ¨ p1` C6q , Λ12 “ ´pC4 ` C2Psq ¨ p1` C5q

Λ21 “ pC1 ` C3Pmq ¨ p1` C6q , Λ22 “ pPm ` Cmq ¨ p1` C5q

∆Λ “ pPm ` Cmq ¨ pPs ` Csq ` pC1 ` C3Pmq pC4 ` C2Psq

(11)

The previous admittance matrix definition can be associated with the impedance Z or hybrid
H models:

˜

fh
fe

¸

“ Z ¨
˜

xm

xs

¸

ñ

#

fh “ ∆Z
´1 ¨ pΛ22xm ´Λ12xsq

fe “ ∆Z
´1 ¨ p´Λ21xm `Λ11xsq

, ∆Z “ p1` C5q ¨ p1` C6q (12)

˜

fh
xs

¸

“ H ¨
˜

xm

fe

¸

ñ

#

fh “ h11xm ` h12 fe

xs “ h21xm ` h22 fe
(13)
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The ideal transparency properties are usually defined on the H matrix, regarding which:

h11 “ h22 “ 0 transparency, h12 ¨ h21 “ ´1 condition set (14)

Comparing Equations (13) and (14) with Equation (9), we obtain:

h11 Ñ 0 ñ ∆Λ Ñ 0 , h12 “ ´
Λ12
Λ11

“ ´1 ñ Λ12 “ Λ11

h21 “
Λ21
Λ11

“ 1 ñ Λ21 “ Λ11 , h22 “ 0 ñ Λ11Λ22 ´Λ12Λ21 “ 0 ñ Λ22 “ Λ11
(15)

Therefore, these properties can also be analyzed through Λ and Z matrix in the following form:

Transparency and Condition set ” Zideal “
1

∆Z

˜

Λ11 ´Λ11

´Λ11 Λ11

¸

, Λideal “
1

∆Λ

˜

Λ11 Λ11

Λ11 Λ11

¸

with ∆Λ Ñ 0 (16)

3. Robust Stability for 4C Based Teleoperation

Below we apply our previously developed approach to stability under time-varying delay in
teleoperation [11,22] to the 4C control scheme. The time-varying delay is an uncertainty that may
give rise to instability. To ensure robust stability, of necessity we have to impose some limits on
maximum delay and maximum delay variation. Our treatment of time-varying delay is based on an
encapsulation described in the literature [29] and adapted by us to a 4C teleoperation setup. This
delay encapsulation [29]—based on the concept of the integral quadratic constraint (IQC), which
is a powerful framework for robust stability—is combined with input-output stability criteria and
µ-analysis and synthesis techniques in order to achieve a final robust stability condition (Theorem 1).

Proposition 2. A teleoperation setup, as stated in Proposition 1 and depicted in Figure 3, can be
modeled as a negative single-feedback loop containing an LTI block G(s) and an uncertain time-varying
delay block D , shown in Figure 4a, with:

Gpsq “ DpsqΠ´1psqCpsq (17)

G “

¨

˚

˚

˚

˝

02ˆ2
pPm ` Cmq

´1 C4 pPm ` Cmq
´1 C2

Pm pPm ` Cmq
´1 C4 Pm pPm ` Cmq

´1 C2

´pPs ` Csq
´1 C1 ´pPs ` Csq

´1 C3

´Ps pPs ` Csq
´1 C1 ´Ps pPs ` Csq

´1 C3
02ˆ2

˛

‹

‹

‹

‚

(18)

Theorem 1. Consider a 4C-based teleoperation system, modeled by Equations (7) and (8), directly represented by
Figure 3 and transformed into Figure 4a by Proposition 2. Given G(s) as defined in Equation (15), let φ(s) [29]:

ϕpsq “ k ¨
h2

maxs2 ` c ¨ hmaxs
h2

maxs2 ` ahmaxs` k ¨ c
(19)

with k “ 1` 1{
?

1´ d, a “
?

2kc where c is any positive real number and delay bounds hmax and
where d is as defined in Equations (2) and (3). If necessary, [29] provides extensions of the delay
encapsulations by another multipliers ϕ in Equation (19) that deal with great variability. A sufficient
condition for stability of the delayed system as described in Figure 4a, with a complex diagonal
structured uncertainty, is given by:

Γ “ max
ωPr0,8s

µ rHpjωqs “ max
ωPr0,8s

ρ rHpjωqs ă 1 (20)

where:
Hpsq “: ϕpsq ¨ pI ` Gpsqq´1 Gpsq (21)
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and where µ p¨q is the structured singular value (SSV) with respect to a repeated complex scalar
uncertainty, which is, in turn, equal to ρ p¨q, the spectral radius of a matrix (the maximum of the norms
of the eigenvalues).

Proof. This result is obtained in two ways. First, in applying the loop transformation theorem (the
loop depicted in Figure 4a is stable if the loop depicted in Figure 4b is stable) and the small gain
theorem to Figure 4b, whereby‖ Hpsq ‖L2

¨ ‖ ∆ ‖L2
ă 1, since ‖ ∆ ‖L2

ď 1 by [29], a sufficient condition
is ‖ Hpsq ‖L2

ă 1. Second, using the µ-techniques for robust stability [30] we can interpret Figure 4b
as a nominal system H(s) connected to a dynamic or complex uncertainty ∆ that is actually diagonal
(more details are given in [11]). 2

Remark 2. As a prerequisite for robust stability, we must first satisfy nominal stability. Hence, H(s)
must be Hurwitz-stable, that is, all the λi eigenvalues must verify real pλiq ă 0 @i, i “ 1 . . . n .
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This frequency approach based on IQCs combined with µ-analysis and synthesis techniques is
a powerful framework for robust stability. Therefore, using the stability condition of Equation (20)
based on the system in Equation (21), for any delay satisfying Equations (2) and (3) and for
some designed closed-loop (non-delayed) dynamic in G, we can ensure robust stability under
time-varying delays.

4. Haptic Teleoperation Case Study

The previous 4C architectural framework was applied to remote teleoperation between master and
slave haptic devices located in laboratories in the University of Vigo and the University of Manchester.

Below we describe the details of the setup and of master and slave device identification. We then
describe a scaled control scheme γ-4C in which the stability factor γ lets us obtain a practical and
internally stable solution to Internet-based teleoperation, where all the controllers are proper (without
differentiators), as is usual in classical solutions. Further sections will describe simulations and
experimental results.

The master and slave sides consist of two Phantom Omni haptic devices manufactured by
SensAble Technologies Inc. (Wilmington, MA, USA). In terms of degree of freedom (DoF), these
devices have 6-DoF position sensing and 3-DoF force actuation. To focus on the robust stability issue,
we limited movements to 1-DoF—rather than multi-DoF—using the first rotational coordinate (the
base rotation) as the free DoF. In this way, the two Omnis rotated around their vertical axes, while the
shoulder, elbow and stylus were blocked.

Thus, the master and slave positions were (xm, xs), the sensed Omni base angles in radians (rad).
The actuations are (fm, fs), which are the torque inputs to the motors for vertical axis rotation in machine
units (we did not have access to physical units).

We concentrated on 1-DoF movements around a fixed position (the “zero” of the Omnis).
Although the Omnis are robotic nonlinear systems, given the linearization principle, it was expected
that the local dynamics from forces to positions could be captured as is usual by models in the form
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Gi(s) = 1/(s(Ms + B)) [31]. Note that here, for simplicity sake, we use the terms “forces” and “positions”
to denote torques and angles. Note also that, since the forces are in machine units, the inertia-mass M
and friction B coefficients were given in machine or virtual units.

Before identifying the models Gi(s), our experiments showed that there was a deadzone or static
friction at the force inputs. This meant that the effective force fef was smaller than the applied or
written force fi. This effect can be modelled by a deadzone function fef = DZ(fi; Dpos, Dneg) in the form:

fe f “ max
!

0, fi ´Dpos

)

i f fi ą 0, fe f “ min
!

0, fi `Dneg

)

i f fi ă 0 (22)

Although this static friction slightly damaged linearity, producing small steady-state errors,
this was easily mitigated by pre-compensation at input by an inverse function in the form
fi = DZ(f ; ´Dpos, ´Dneg) with negative values ´Dpos, ´Dneg. If the deadzone (asymmetric) widths Dpos,
Dneg were estimated well, the composition of these two functions would give rise to the identity, fef = f,
thus linearizing the system.

After linearizing the devices by deadzone compensation, the linear models Gi(s) = 1/(s(Ms + B)),
were obtained, by a standard procedure [24] applied in closed -loop (proportional controller) square
and triangular references, recording force inputs and position outputs and performing standard
least-squares identifications of M, B. The results (in machine units, m.u.) were:

M “ 0.00118 pm.u.qB “ 0.0199 pm.u.q (23)

Therefore, for the teleoperation setup described in Figure 1 formed of two identical OMNI
Phantoms as the master and slave systems, for each DoF, the linearized dynamic models were:

Pm “ Ms2 ` Bs “ Ps “ P (24)

Seeking a practical solution to Internet-based teleoperation, we fine-tuned a scaled 4C control
scheme γ-4C. We also imposed internal stability, that is, the closed-loop system had to be
Hurwitz-stable. The operator and environment were modelled as external forces.

These requirements were met in the scheme depicted in Figures 1 and 2 and given by
Equations (1)–(5), with master and slave systems as in Equation (24) and with the controllers in
Equation (5) defined in the following form:

For Cm “ Cs “ K ą 0 and γ ą 1 :
C4psq “ ´Cs

γ , C1psq “ Cm, C2 “ ´
1
γ , C3 “ 1, C5 “ C6 “ K1

(25)

The Λ and Z matrix in this γ-4C scheme with controllers given by Equation (25) take the values:

Λpsq “ p1`K1q

∆Λ

˜

pP` Kq 1
γ ¨ pP` Kq

pP` Kq pP` Kq

¸

, ∆Λ “ pP` Kq2 ¨
´

1´ 1
γ

¯

Z “ 1
p1`K1q

2

˜

pP` Kq ´ 1
γ pP` Kq

´ pP` Kq pP` Kq

¸

(26)

Note that the control parameters in Equation (5) with the values selected in Equation (25) were not
eight independent controllers. Due to the transparency restriction requirements, there were ultimately
only a minimum of two DoFs in the design: the gain K and the coefficient γ (K’ can be zero). The gain K
was the only parameter that directly influenced the closed-loop poles (∆Λ = 0) in the non-delayed case,
as seen in Equation (26). The value k > 0 was necessary to ensure non-delayed system stability. We
could thus tune k > 0 from pole-placement principles, bearing in mind that the feedback loop would be
affected by a (time-varying) delay. As for the coefficient γ, this ideally should be set to γ = 1 to ensure
perfect transparency, but to avoid singularity in the feedback loop impedance (admittance) matrix, it
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was set to γ > 1. For greater transparency, γ should be as close as 1 as possible, but has to be greater
than 1 to ensure robust stability and loop well-posedness.

Remark 3. If γ = 1 + ε, with εÑ 0, the teleoperation system with the controllers defined by Equation (25)
verify the transparency-optimized conditions for zero delay Equation (16). But in the ideal case ε = 0,
the impedance matrix Equation (12) loses rank and thus the admittance model Equation (10) is thus
not well-defined (ill-posed).

Remark 4. To avoid the previous issue, the γ factor in Equation (25) can be selected to verify
well-posedness and robust stability conditions under Internet time-varying delay, while maintaining
the transparency properties of the system as much as possible. This control scheme therefore gives
internal stability and a practical solution to the trade-off between performance and stability under
time-varying delay.

Remark 5. The proposed control scheme in Figures 1 and 2 as given by Equation (5) allows proper
controllers in Equation (25) to be selected based on ideally optimized transparency, that is, they do not
contain single or double differentiators like classical 4C solutions and so avoid negative effects with
noise. See the explanation in Appendix B.

Remark 6. The controllers defined in Equation (25) also provide robust stability and performance
against parametric uncertainty. The closed-loop poles are now given by (Mms2 + Bms + K) (Mss2 + Bss +
K) = 0 and, consequently, for zero delay, the system will be stable iff K, Mm,s = M ˘ ∆M, Bm,s = B ˘ ∆B >0.

These remarks are further analyzed in the following sections.

5. Analysis and Simulation Results

We first describe a simulation case for use with Simulink and Matlab, considering linear dynamic
models for the master and slave, the rounded identified values given by M = 0.001, B = 0.02 and the
controllers as stated in Equation (25), with K = 0.1 and K’ = 0.

To justify choosing this control scheme based on performance criteria, using this simulation case
and applying zero delay, we compared our scheme with some frequently used two- and three-channel
(2C and 3C) control schemes. These schemes can be obtained by canceling certain controller parameters
in Equation (25), as shown in Table 1.

Table 1. Control Schemes (Pm = Ps = P = 0.001s2 + 0.02s, Cm = Cs = K = 0.1, C5 = C6 = K’ = 0).

C1 C2 C3 C4 ∆Λ ∆ΛΛ

PE K 0 0 ´K P2 ` 2PK
si = 0, ´20, ´10 ˘ 10i

ˆ

P` K K
K P` K

˙

FP 0 0 1 ´K P2 ` PK` K2

si = ´18.7 ˘ 5i, ´1.3 ˘ 5i

ˆ

P` K K
P P` K

˙

PF K ´1 0 0 P2 ` PK` K2

si = ´18.7 ˘ 5i, ´1.3 ˘ 5i

ˆ

P` K P
K P` K

˙

3C-i K ´1 0 ´K P2 ` PK
si = 0, ´20, ´10, ´10

ˆ

P` K P` K
K P` K

˙

3C-ii K 0 1 ´K P2 ` PK
si = 0, ´20, ´10, ´10

ˆ

P` K K
P` K P` K

˙

4C (γ = 1.07) K ´1/γ 1 ´K/γ pP` Kq2 ¨
´

1´ 1
γ

¯

si = ´10, ´10, ´10, ´10

˜

P` K 1
γ pP` Kq

P` K P` K

¸

Note that the 4C scheme results were obtained for γ = 1.07 « 1 to avoid singularities. The selected
value in K provided an adequate time response by fixing equal and real closed-loop poles, that is, the
linear model of the system had critical damping and so did not overshoot.

Performance can be studied by simulations that apply a simulated sine reference force (fh)—like
the force imposed by a human operator—to move the master. The slave will follow the master in free
motion in the interval t = (0, 10) and (18, 30) s and with an environment step force fe simulated from
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t = 10 s and t = 18 s Note that the operator and environment are not assumed to be in contact or to
be passive.

The best results for tracking properties were obtained for the schemes which approximated the
ideal transparency conditions (γ-4C) or, at least, the schemes (PE, 3Ci, 3Cii) in which conditions were
achieved in the steady state (s Ñ 0). The simulation results, for brevity, are shown only for these
schemes (Figures 5–8). Only the γ-4C scheme provided internal stability to the system. Because the
other schemes have a closed-loop pole at the origin, without external forces, some states of the system
tended to the same value (in this case xm = xs) but not to zero, for example, PE in Figure 9a. However,
the γ-4C scheme in Figure 9b, without external forces, drove the master and slave to their zero states.
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Figure 5. Simulated sine reference force: PE control scheme with hmax = 0, d = 0. (a) Positions; (b) Forces.
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Figure 6. Simulated sine reference force: 3C-i control scheme with hmax = 0, d = 0. (a) Positions; (b) Forces.
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Figure 7. Simulated sine reference force: 3C-ii control scheme with hmax = 0, d = 0. (a) Positions; (b) Forces.
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Figure 8. Simulated sine reference force: γ-4C control scheme with hmax = 0, d = 0. (a) Positions;
(b) Forces.
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Figure 9. Simulated fh = fe = 0 with hmax = 0, d = 0. Positions. (a) PE; (b) γ-4C.

Furthermore, it may happen that, for some input forces as used in remote teleoperation, the
master and slave positions are not bounded for systems without internal stability, although position
tracking is accomplished—for instance, one of the schemes in Figure 10 and the solution given for the
4C scheme in Figure 11.
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Figure 10. Simulated ramp-step reference force: PE control scheme with hmax = 0, d = 0. (a) Positions;
(b) Forces.
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Figure 11. Simulated ramp-step reference force: γ-4C control scheme with hmax = 0, d = 0. (a) Positions;
(b) Forces.

Finally, referring back to Remark 6, we used the γ-4C controllers defined in Equation (25) with
master plant as in Equation (24), except that now the slave model was defined as Ps “

M
3 s2 ` 2Bs. The

results can be seen in Figure 12. Due to the fact that the models were different, the master and slave
forces—obtained from the external forces and local proportional controllers—were also different in
order to accomplish position tracking.
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Figure 12. Simulated sine reference force: γ-4C control scheme, Ps‰ P, with hmax = 0, d = 0. (a) Positions;
(b) Forces.

Once the performance of the different schemes was analyzed, we studied stability when the
time-varying delay was considered. The idea was to maintain as much as possible the ideal tracking
properties obtained by the standard controllers in the 4C control scheme by increasing, by means of
the γ factor, the stability margin in practical conditions, that is, when there was time-varying delay in
signals transmission.

Once the non-delayed part of the master and slave dynamics were fixed (including the gain K),
only γ remained to be chosen. All the delay uncertainty was characterized by two measures: the
maximum delay hmax and the maximum delay rate d.

The stability condition in Equation (20) is based on the Hpsq “: φpsq ¨ pI ` Gpsqq´1 Gpsq system in
Equation (21). The closed-loop (non-delayed) system G(s) only depended on γ, and the “multiplier”
φ in Equation (19) depended on hmax, d. Thus the condition in Equation (20) took the form
Γ pγ, hmax, dq ă 1. It is important to emphasize that Equation (20) involves the spectral radius of
the frequency response H(jω) of some H(s) depending on (γ, hmax, d) in a complex way. Thus, Equation
(20) had to be treated numerically (not analytically).

There was an easy way to deal with Equation (20) numerically: the delay uncertainty parameters
(hmax, d) could be discretized in the ranges of interest, and for each discretized value, the minimum
γ could be computed. These computations can be represented in the form of 3D surfaces and the
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designer can use the numerical results to decide, depending on the expected delay uncertainty, the
adequate tuning of γ to be included in the controllers.

The stability analysis could be assessed applying Theorem 1 and using Matlab. In all cases it had
to be proved, firstly, that the system verified the nominal stability condition given in Equation (22).
Here we show, briefly as Figure 13, the effect on stability (from the results on SSV) of different bounds
on the delay, fixing the stability factor at γ = 12, which was the value selected for the experiments
described in the next section. Note that the delay variation was the most critical aspect of stability.
The results depicted in Figure 14 show the minimum value of the stability factor γ (z axis) needed to
ensure the stability of the system given the bounds on the delay (hmax, d).
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6. Experimental Results

In order to test the above simulation results, real experiments were conducted from the haptic
teleoperation case study as described above. The Omni devices were connected to the computer
through a FireWire connection. The computers contained the local controllers implemented under
Matlab/Simulink and Quarc real-time control software as a real-time machine for the experiments. The
Quarc software managed the interface with the haptic device using Quarc Phantom Omni software
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and also collected and saved all exchanged data. The sampling period in the experiments was set
to 1 millisecond. The two devices were remotely coordinated under programmed force profiles like
the human and environment external forces, and the experimental data validated the stability and
performance results in the theoretical part.

We describe results for three experiments. The first experiment (Figure 16) reproduced real local
teleoperation of the Omni devices at the University of Vigo, artificially increasing a time-varying
delay between master and slave. The simulation case depicted in Figure 15 is compared with this first
experiment as depicted in Figure 16.
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Figure 15. Local teleoperation using linear models of master and slave with hmax = 0.5 s and d = 0.45.
(a) Positions; (b) Forces.
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Figure 16. Local teleoperation using haptic devices with hmax = 0.5 s and d = 0.45. (a) Positions;
(b) Forces.

The results were very similar to the simulation results, although the difference between
the linear identified models used in the simulation case and the OMNI nonlinear dynamic with
a pre-compensated deadzone Equation (22) can be appreciated.

The second experiment (Figure 17) reproduced real remote teleoperation between the University of
Vigo and the University of Manchester using linear models of master and slave like the corresponding
simulation model described in Section 5. Here we could analyze the impact of time delays separately
from model uncertainty and nonlinearities issues. The final experiment (Figure 18) tested real remote
teleoperation between the master haptic device located at the University of Vigo and the slave haptic
device located at the University of Manchester. Note that, for implementation over the haptic devices,
the deadzone was pre-compensated at the input Equation (22) by an inverse function in the form
explained in Section 4. In general, this function caused the system to be more oscillating than the linear
model and to have a small steady-state error.
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Figure 17. Remote teleoperation between Vigo and Manchester using linear models of master and
slave. (a) Positions; (b) Forces.
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Figure 18. Real remote teleoperation between Vigo and Manchester using haptic devices. (a) Positions;
(b) Forces.

The data (forces and positions) were exchanged between the master and the slave computers
by a transmission of UDP packets. Each packet was composed of time stamps and the transmitted
value with a fixed size of 68 bytes. Figure 19 shows some experimental data for connections via
Internet between Vigo and Manchester. The delay was measured in terms of the round trip time
(RTT) communication. The maximum delay was near hmax = 0.028 s, with very low variation tested
with a transmission rate of 1000 packets per second (Figure 19a). The test over the communication
channel also revealed that variations in time delay never exceeds d = 0.45, as can be seen in Figure 19b.
It should be noted that the communication network used in the experiment belongs to the GÉANT
pan-European research and education network, which has very good quality linkage between facilities.
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Figure 19. Experimental delay bounds between Vigo and Manchester. (Top) Magnitude; (Bottom) Variation.
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7. Conclusions

In this paper we have extended our generic framework to stability under time-varying delay [11]
to scaled 4C or γ-4C teleoperation. The application of the theoretical framework to the four channel
case, with time-varying delays, gave rise to an encapsulated delay uncertainty, size 4 ˆ 4 and diagonal.
Assuming symmetric delays, the related structured singular value or µ-value was equal to the spectral
radius of the linear subsystem. The approach represents an appealing frequency technique to deal
with the stability robustness of the architecture.

The main novelty of the present research compared to previous related research is that we have
explicitly discussed the problems associated with ideal transparency and that we have rearrange
previous 4C solutions [22,25] so that the resulting controllers are proper, that is, they do not contain
single or double differentiators and so avoid problems of noise. We have also validated this
research through new simulations and real-life experiments using an Internet teleoperation setup that
coordinates two Omni haptic devices between remote laboratory setups in Spain (University of Vigo)
and the UK (University of Manchester).

The experiments achieved remote device coordination under programmed force profiles.
This required resolving a large number of practical issues related to hardware, software and
communications. Some important practical problems were related to linearized model identification
and to deadzone or static friction in the Omni devices, which had to be pre-compensated. Finally, the
architecture was fine-tuned and successfully tested, obtaining complete stability to zero of the whole
state and robustness against continuous-time time-varying delay for Internet-based teleoperation.
The real and simulated experiments give similar results, thus validating the models. Stable remote
teleoperation also performed adequately in terms of position synchronization and force transparency.

This research has several possible extensions to future work. First, time-varying delay uncertainty
was treated here by means of encapsulation [29], but exploring other novel approaches to uncertain time
delays could improve the robustness analysis, for example, Lyapunov-Krasovskii functionals [32]. The
generic framework based on IQCs [33] is also a potentially powerful tool in addressing teleoperation
robustness. Second, one of the main difficulties encountered was the problem of deadzones as,
although the coarse values of the (asymmetrical) deadzone widths can easily be estimated, the related
static friction does not repeat well from one experiment to another. Since deadzone is a static monotone
bounded uncertainty, it could potentially be addressed by means of the IQC approach that uses
Zames-Falb multipliers to deal with robust stability [34].
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Appendix A

In the proposed scheme the master and slave are modeled as mechanical systems given by the
following equation in Laplace domain Equation (A1):

PmpsqXmpsq :“ Fmpsq, PspsqXspsq :“ Fspsq (A1)

The output vector of the plant ym = (xm fm)T that sends information to the slave in the 4C scheme
is a ny ˆ 1 = 2 ˆ 1 vector because the system exchanges both positions and forces. It can be expressed
in Laplace domain as a function of the scalar Xm:

Ympsq “ pD1m `D2ms`D3mPmpsqqXmpsq “: DmpsqXmpsq

ñ Dm “

˜

1
Pm

¸

, D1m “

˜

1
0

¸

, D2m “

˜

0
0

¸

, D3m “

˜

0
1

¸

(A2)
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The other output of the plant zm, used by the local controller, is a nz = 1 signal which is the
position. Hence:

Zmpsq “ pE1m ` E2msqXmpsq “: EmpsqXmpsq ñ Em “
´

1 0
¯

(A3)

A generic controller in the Laplace domain that uses the previous notation (see Figure 1) can be
described by:

Fmcpsq “ C1mpsqZmpsq ` C2mpsqYsdpsq ` C3mpsqFhpsq (A4)

where the values of Cim can be obtained by comparing the master controller in 4C as expressed in (5)
with Equation (A4).

C1m “ Cm, C2m “
´

C4 C2

¯

, C3m “ ´C6 (A5)

Combining all the previous equations, and omitting, for simplicity sake, dependence on s,
we obtain:

PmXm “ Fm “ Fh ´ Fmc “ Fh ´ C1mEmXm ´ C2mYsd ´ C3mFh,
pPm ` C1mEmqXm “ ´C2mYsd ` pI ´ C3mq Fh

(A6)

On the slave side, the environment force is fe, whereas the controller force is fsc and
thus fs “ fe ` fsc. Hence:

pPs ´ C1sEsqXs “ C2sYmd ` pI ` C3sq Fe

C1s “ ´Cs, C2s “
´

C1 C3

¯

, C3s “ C5, Es “
´

1 0
¯

Ds “

˜

1
Ps

¸

, D1s “

˜

1
0

¸

, D2s “

˜

0
0

¸

, D3s “

˜

0
1

¸ (A7)

In compact form, with 0rˆ c as a zero matrix with r rows and c columns s:

˜

Pm ` C1mEm 0
0 Ps ´ C1sEs

¸

¨

˜

Xm

Xs

¸

“ ´

˜

01ˆny C2m

´C2s 01ˆny

¸

¨

˜

Ymd
Ysd

¸

`

˜

I ´ C3m 0
0 I ` C3s

¸

¨

˜

Fh
Fe

¸

(A8)

That is:
ΠpsqXpsq “ ´CpsqYdpsq `ΦpsqFpsq (A9)

Now Yd = (Ymd Ysd)T can be obtained as a function of Y = (Ym Ys)T by applying the time-delay
expressions in Equations (2)–(4), with Iny as the ny = 2 order identity matrix:

˜

Ymd
Ysd

¸

“

˜

Iny ¨Dm 0nyˆny

0nyˆny Iny ¨Ds

¸

¨

˜

Ym

Ys

¸

, or Yd “ DY, (A10)

Considering Equation (A2) and the corresponding slave equation, we obtain:

˜

Ym

Ys

¸

“

˜

Dm 0nyˆ1

0nyˆ1 Ds

¸

¨

˜

Xm

Xs

¸

, or Y “ DX (A11)

Finally, replacing Equations (A10) and (A11) in Equation (A9), we have a complete description of
the system:

ΠpsqXpsq “ ´CpsqDDpsqXpsq `ΦpsqFpsq (A12)

Appendix B

Here we reproduce the classical implementation of the 4C control scheme, but maintaining the
sign conventions as in Figure 1, that is, with the same definition of fm “ fh ´ fmc, fs “ fe ` fsc.
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In this case, the master and slave systems exchange external forces fe and fh, instead of fm and fs in our
proposal. Accordingly, Equation (5) results as follows:

fmc “ Cmxm ` C2 fed ` C4xsd ´ C6 fh
fsc “ ´Csxs ` C3 fhd ` C1xmd ` C5 fe

(B1)

and the addmitance matrix definition for zero delay is now given by:

Λ “ pΠ` CDq´1 Φ “

˜

Pm ` Cm C4

´C1 Ps ` Cs

¸´1

¨

˜

1` C6 ´C2

C3 1` C5

¸

(B2)

˜

xm

xs

¸

“ Λ ¨

˜

fh
fe

¸

ñ

#

xm “ ∆Λ
´1 ¨ pΛ11 fh `Λ12 feq

xs “ ∆Λ
´1 ¨ pΛ21 fh `Λ22 feq

(B3)

with the following values:
Λ11 “ pPs ` Csq ¨ p1` C6q ´ C4C3

Λ12 “ ´pPs ` CsqC2 ´ C4 p1` C5q

Λ21 “ C1 p1` C6q ` C3 pPm ` Cmq

Λ22 “ ´C1C2 ` pPm ` Cmq ¨ p1` C5q

(B4)

∆Λ “ pPm ` Cmq ¨ pPs ` Csq ` C1C4 (B5)

The transparency conditions are achieved by selecting:

For Cm, Cs : C4psq “ ´ pPm ` Cmq , C1psq “ Ps ` Cs, C2 “ ´p1` C6q , C3 “ 1` C5 (B6)

Note that for ∆Λ Ñ 0 , C1 and C4 must be not proper.
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