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Abstract

Background: Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of
irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes
develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed
to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR.
Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and
intervention of diabetic retinopathy.

Methods: A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case
and control subjects, patients with PDR (PDR, n = 21) or those with a duration of diabetes of ≥10 years but without
diabetic retinopathy (NDR, n = 21) were assigned to the present case-control study. Distinct metabolite profiles of
serum were examined using liquid chromatography-mass spectrometry (LC-MS).

Results: The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways
(P < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine
metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism,
and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways.
Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and
cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively.

Conclusions: This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were
identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine
might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no
prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new
pathogenic pathways for diabetic retinopathy.
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Introduction
Diabetic retinopathy (DR) is one of the most common
microvascular complications associated with diabetes and
the leading cause of irreversible blindness in adults world-
wide [1]. The number of diabetic patients in China ranks
first in the world, and more than 1.6 million are legally
blind due to diabetic retinopathy [2]. Therefore, there is an
urgent need in China for early detection and intervention
with respect to this clinically significant disease. Current
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studies suggest that glucose level and duration of disease
are major systemic risk factors for the development and
progression of microvascular complications, including DR
[3, 4]. However, these risk factors could not explain the
great variability that characterizes the evolution and rate of
progression of the retinopathy in different diabetic pa-
tients, suggesting other factors may also involve [5]. It is a
fact that many patients with intensive control of glycemic
continue to develop DR, while patients with poor glycemic
control may not progress DR. There is increasing evidence
to suggest that “metabolic memory” might contribute to
these different developmental phenotypes of DR [6]. The
term metabolic memory refers to continual epigenetic
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modification caused by improper glycemic control in the
early stage of diabetes, such individuals continue to pro-
gress diabetes complications even after glycemic control
reaches the normal range for a period of time [7]. The
mechanism of metabolic memory may as a result of influ-
ences of gene–environment interactions [7]. Detection of
epigenetic signatures in DR could be valuable for timely
diagnosis and prompt treatment to prevent progression of
the disease [8]. Therefore, the discovery of biomarkers that
lead to variations in the progression of DR thus become es-
sential as these biomarkers will provide insight on the
pathogenic pathways that are currently unknown and may
serve as new strategies for the early diagnosis and interven-
tion of diabetic retinopathy [4].
Metabolomics, a newly discovered “omics” field, detects

the overall and dynamic changes of whole endogenous
metabolites in organisms including nucleic acids, proteins,
lipids and other small molecules [9]. It is currently recog-
nized as a very powerful tool that is complementary to
genomic, transcriptomic, or proteomic data. In the past
decades, metabolomics has been increasingly used to
identify biomarkers associated with metabolic diseases
[10]. DR is a complex metabolic disease relates to the
interplay of genetic and environmental factors [11], thus
the discovery of distinct metabolic signature of DR and
the associated pathways could help improve our under-
standing of the pathophysiology and mechanisms of dis-
ease. Barba et al. [12] identified metabolite markers of DR
in the vitreous humor. However, the invasiveness of vitre-
ous sampling limits the potential for study replication and
Fig. 1 Inclusion and exclusion flowchart of the case-control study. NPDR, n
clinical translation of any biomarkers identified from vitre-
ous fluid. In contrast, plasma or serum remains the choice
of metabolic fluid [6]. In the present study, we aimed to
investigate the plasma metabotype of proliferative DR
(PDR) (a sight-threatening retinopathy), and to identify
novel metabolite markers of PDR. The investigation of
metabolite markers of DR will be helpful to explore the
mechanism of the occurrence and progression of DR in
different stages of disease.
Materials and methods
Sample selection
Participants with type 2 diabetes (T2D) and extreme eye
phenotype from our previous cohort study [13] performed
a case-control study to find a plasma metabolite specific to
eye damage. We chose patients with glycated hemoglobin
A1c (HbA1c) ≥7.5% (58mmol/mol) for eye phenotype
screening. To match clinical parameters between case and
control subjects, patients with sight-threatening PDR (case
subjects) or those with a duration of diabetes of ≥10 years
but without any degree of DR (non-diabetic retinopathy,
NDR) (control subjects) were assigned (Fig. 1). Those indi-
viduals complicated with other eye diseases or with severe
impairment of liver, kidney or heart function were ex-
cluded from selection.
Baseline test
All of the participants’ medical histories were obtained
and patients received a physical examination that
on-proliferative DR; NDR, non-DR; PDR, proliferative DR
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included recording age, sex, duration, blood pressure, and
body mass index (BMI). Patients underwent blood and
urine laboratory tests that included fasting plasma glucose,
total cholesterol, triglycerides, High density lipoprotein
cholesterol (HDL-c), Low density lipoprotein cholesterol
(LDL-c) serum creatinine, and HbA1c. K2EDTA tubes
were used to collect blood samples. Tubes were centri-
fuged at 3000 g for 10min (4 °C) to separate plasma from
whole blood. Plasma aliquotswere stored at − 80 °C.

Assessment of DR grading
Eye phenotype screening were conducted between April
2015 and July 2017 in Beijing, Tongren Hosppital, China.
The presence of DR was diagnosed using digital retinal
photographs (2 eyes × 2 fields) taken by using a TRC-
NW7SF (Topcon Co. Tokyo, Japan) non-mydriatic camera
at 45°. These photographs were subsequently examined in-
dependently by 2 qualified retinal photography graders in
accordance with quality assurance protocols. The severity
of DR was graded based upon the international clinical
Fig. 2 Workflow overview of the comprehensive analysis of metabolomics
diabetic retinopathy and diabetic macular edema disease
severity scale [14].
Sample preparation
Before the analysis, frozen plasma was thawed and dis-
solved at 4 °C. We then added a mixture of acetonitrile/
methanol (75:25 v/v, 300 μL) to the plasma (100 μL) in a
1.5-mL tube to precipitate proteins. This mixture was
allowed to stand for 10min after vortexing for 60 s, and
then we centrifuged the samples at 12000 rpm for 10min
at 4 °C. The supernatant was transferred to a new eppen-
dorf tube and then evaporated to dry in a speedvac con-
centrator. Afterward, the residues were re-suspended in
the 100 μL mobile phase prior to LC-MS analysis. Quality
control (QC) samples were prepared by mixing the same
amount of serum from each sample and using the same
procedures as the test samples to extract metabolites. One
QC was inserted into every five samples regularly before
and after operation.
in patients with type-2 diabetes
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LC-MS (liquid chromatography-mass spectrometry)
analysis
The ultra-performance liquid chromatography combined
with quadrupole time-of-flight tandem mass spectrometry
(UPLC Q-TOF MS) analysis was performed on Nexera X2
system (Shimadzu, Japan) coupled with a Triple TOF 5600
quadrupole-time-of-flight mass spectrometer (AB SCIEX,
USA) as previous described [15]. In brief, liquid chroma-
tography separation was performed on a ZORBAX Eclipse
Plus C18 column (2.1 × 100mm, 3.5 um, Agilent, USA)
maintained at 45 °C. The injected sample volume was
10 μL for each run in the full loop injection mode, and the
flow rate of the mobile phase was 0.5mL/min. In RPLC
mode, gradient elution was performed with the following
solvent system: (A) 0.1% formic acid-water and (B) aceto-
nitrile with 0.1% formic acid. The gradient started with
98% A, which decreased to 10% A in 13min, holding at
10% A for 3min; and then moved to 98% A immediately,
holding at 98% A for 4min. Mass spectrometric experi-
ments were performed on a Triple TOF 5600+ orthogon-
ally accelerated time-of-flight mass spectrometer (AB
Sciex, USA) equipped with an electrospray ion source. We
acquired data in positive- and negative-V-geometric modes
for each chromatographic separation technique for LC-MS
analysis. The capillary voltages were set to 2500 V and
3000 V, cone gas at 50 L/h, desolvation gas at 600 L/h,
source temperature at 120 °C, and desolvation temperature
at 500 °C. The scan range was from 50 to 1500m/Z in the
full scan mode, and data were collected in centroid mode.
We used independent reference lock-mass ions via Analyst
Table 1 Baseline demographics in this study

NDR

n 21

Gender (male/Female) 9/12

Age (years) 55 (50–58)

Diabetes duration(years) 15 (11.5–20)

BMI (kg/m2) 26.9 (24.21–29.74)

SBP (mmHg) 129 (120–141.5)

DBP (mmHg) 78 (70.5–82.5)

Cr (umol/L) 60 (52.75–72.98)

TG (mmol/L) 1.87 (1.43–3.19)

TC (mmol/L) 4.69 (3.88–5.73)

LDL-c (mmol/L) 2.86 (2.19–3.54)

HDL-c (mmol/L) 0.96 (0.83–1.19)

HbA1c (%) 9.2 (8.35–10.10)

Albuminuria 5

Microalbuminuria (20-200 ng/min) 4

Macroalbuminuria (> 200 ng/min) 1

Data are median (25th, 75th interval) unless otherwise indicated. Statistical analyses
0.01, NDR vs. PDR group
Cr creatinine, SBP systolic blood pressure, DBP diastolic blood pressure, HDL-C HDL
TF 1.6 and MarkerView 1.2.1 to ensure mass accuracy dur-
ing data acquisition.
Metabolites identification
By using MarkerView software to pre-process the raw
UPLC Q-TOF MS data, such as retention time alignment,
peak discrimination, filtering, alignment, matching, and
identification, we generated a peak table with retention
time (tR), m/z value and corresponding peak intensity.
Multivariate analysis by MetaboAnalyst 4.0 program
(http://www.metaboanalyst.ca/MetaboAnalyst/) including
unsupervised principal component analysis (PCA) and su-
pervised projections to latent structures-discriminant ana-
lysis (PLS-DA) were then used to identify differentiated
metabolites between the 2 groups. The assigned metabolite
ions were identified based on m/z and screened in the
Human Metabolome Database HMDB (http://www.hmdb.
ca/) [16]. The mass tolerance for the HMDB database
search was set at 0.05 Da. We also considered the chroma-
tographic retention behavior to reduce false-positive
matches. An overview of workflow with respect to the
comprehensive analysis of metabolomics in patients with
type 2 diabetes is summarized in Fig. 2.
Statistical analysis
Mann-Whitney U test were first performed to compare
the PDR group with NDR groups. Multivariate
analysis—including unsupervised principal component
analysis (PCA) and supervised projections to latent
PDR P-value

21 –

9/12 –

49 (46–56.5) 0.194

11 (8–15.5) 0.014*

25.8 (23.86–28.20) 0.473

132 (122–139) 0.537

74 (70–80.5) 0.348

75.5 (59.7–98.5) 0.041

1.97 (1.49–2.98) 0.843

4.91 (4.24–5.57) 0.792

2.97 (2.43–3.55) 0.726

1.03 (0.89–1.10) 0.770

8.1 (7.57–8.75) 0.000**

15 0.002†**

8

7

were by Mann-Whitney U test. † Pearson Chi-suuare test. *P < 0.05 and ** P <

cholesterol, LDL-C LDL cholesterol, TC total cholesterol, TG triglyceride

http://www.metaboanalyst.ca/MetaboAnalyst/
http://www.hmdb.ca/
http://www.hmdb.ca/
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structures-discriminant analysis (PLS-DA)—were used to
determine the distributions and find the metabolic differ-
ences between 2 groups using MetaboAnalyst 4.0 (http://
www.metaboanalyst.ca/MetaboAnalyst/). The PLS-DA
models were cross-validated using a 10-fold method with
unit variance scaling. The parameter R2 was used to evalu-
ate the fitting condition for the PLS-DA models, and Q2

was used to assess predictive ability. Negative or very low
Q2 values indicated that the differences between groups
were not statistically significant. The PLS-DA model
removes variation in the X matrix that is not correlated
with the Y matrix. Thus, normally only 1 predictive com-
ponent is used for the discrimination between 2 classes.
Comparisons of 2 groups related to the intensities of

integrated regions were made by the 2-tailed Welch’s t
test, which was performed using MetaboAnalyst 4.0, and a
p-value < 0.05 was considered statistically significant.
Volcano plots were calculated using a combination of
fold-change and t tests, and the peaks that exhibited a
statistically significant difference between 2 groups were
Fig. 3 Score plots of the PCA and PLS-DA models. a Score plot of the PCA mo
were well separated in the PLS-DA score plot, indicating that they had marked
used to perform multivariate pattern recognition. We then
identified those peaks that showed consistent up-
regulation or down-regulation; and the intensity data of
these regions were used in box-plot analysis, hierarchical
cluster analysis, and metabolic pathway analysis.

Pathway analysis
In our study, the different chemical metabolites were eval-
uated using the Metaboanalyst web portal for pathway
analysis and visualization (http://www.metaboanalyst.ca/).
Additional pathway enrichment statistics were analyzed
using Metabolite set enrichment analysis (MSEA) (http://
www.msea.ca/MSEA/faces/Home.jsp). Pearson’s r correl-
ation was calculated to evaluate relationships between/
among the biomarkers (P < 0.05, impact > 0.01).

Results
Demographic and clinical information
Of the 1024 consecutive patients with T2D screened,
537 had a HbA1c > 7.5%. According to the inclusion and
del for samples collected from 2 isolates of sample data; b the 2 groups
ly different metabolic characteristics

http://www.metaboanalyst.ca/MetaboAnalyst/
http://www.metaboanalyst.ca/MetaboAnalyst/
http://www.metaboanalyst.ca/
http://www.msea.ca/MSEA/faces/Home.jsp
http://www.msea.ca/MSEA/faces/Home.jsp
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exclusion criteria of the case-control study, 21
sight-threatening PDR and 21 NDR with a diabetes dur-
ation ≥10 years were assigned as case and control sub-
jects (Fig. 1). Characteristics of the participants in this
study are summarized in Table 1. No significant differ-
ences were found between the groups with respect to
age, gender, blood pressure, BMI, TG, TC, or LDL-c and
HDL-c; however, there were differences in duration of
diabetes, HbA1c, and albuminuria between PDR and
NDR groups. Apparently, glucose in the NDR group was
even more poorly controlled than in the PDR group.
Diabetic patients with PDR were prone to albuminuria,
which was associated with diabetic nephropathy.
Metabolomics changes between NDR group and

PDR group.
A total of 7735 m/z were identified in both groups by

LC-MS analysis. A score plot of the PCA model for sam-
ples collected from the 2 isolates of sample data is
shown in Fig. 3a. To improve the separation of the 2
groups, we used PLS-DA to visualize the metabolic dif-
ferences between them. The 2 groups were well sepa-
rated in the PLS-DA score plot, indicating that they had
markedly different metabolic characteristics (Fig. 3b).
Considering the p values and fold-changes (FC), we drew
a volcano map (Additional file 1). Based upon our cri-
teria of FC > 1.5 or FC < 0.5 and p < 0.05, 1027 different
metabolites were identified after HMDB database
screening. These metabolites mainly included carboxylic
acids and derivatives (37.79%); fatty acyls and fatty acid
esters (26.16%); pyrimidine nucleotides (19.19%); amino
acids, peptides, and analogues (7.56%); and other
markers (Fig. 4).
Fig. 4 Metabolite classification analysis. Pie chart of differentially metabolomic
derivatives (37.79%), fatty acyls and fatty acid esters (26.16%), pyrimidine nucleo
Models analysis
We constructed PCA and PLS-DA models to disclose the
metabolic differences between classes, which were often
confounded by the influences of diurnal variation, normal
physiologic status, and other effects unrelated to re-
sponses of interest. All of the models were cross-validated
by default using a 10-fold method, the validity of the
models against over-fitting was assessed by the parameter
R2, and the predictive ability was described by Q2. R2 and
Q2 were 0.97 and 0.94 in PLS-DA model, respectively. Re-
sults showed great applicability of the PLS-DA model, and
the established PLS-DA model was capable of differentiat-
ing case groups from control groups.

Pathway analysis
These 1027 metabolites were enriched in 62 KEGG PATH-
WAY Database (Additional file 1), of which 9 pathways were
enriched significantly (P < 0.05, impact> 0.01) with impact
factors of 0.21, 0.65, 0.37, 0.36, 0.27, 0.22, 0.18, 0.47, and
0.54, respectively (Fig. 5a, b). These pathways were pyrimi-
dine metabolism; alanine, aspartate and glutamate metabol-
ism; caffeine metabolism; beta-alanine metabolism; purine
metabolism; cysteine and methionine metabolism; sulfur
metabolism; sphingolipid metabolism; arginine and proline
metabolism; 63 metabolites (Additional file 2) were identi-
fied in the aforementioned 9 pathways and a corresponding
heatmap is shown in Fig. 5c.

Biomarkers for PDR diagnosis
We identified 63 compounds that contributed to the vari-
ations in the analyzed sample groups, and used them as
potential markers to explain the variation between the
s showed that the 1027 metabolites mainly involved carboxylic acids and
tides (19.19%), amino acids, peptides, and analogues (7.56%) and others



Fig. 5 Non-targeted metabolomics pathway analysis. a Pathway enrichment analysis. The size and color of each circle was based on pathway
impact value and p-value, respectively. b 9 pathways differ between the NDR and PDR group, particularly, in Pyrimidine metabolism, Alanine,
aspartate and glutamate metabolism, Caffeine metabolism, beta-Alanine metabolism, Purine metabolism, Cysteine and methionine metabolism,
Sulfur metabolism, Sphingolipid metabolism, Arginine and proline metabolism. c Heatmap of non-targeted plasma metabolomics show 63
compounds play important roles in 9 above-mentioned pathways indicated significantly different metabolites between NDR and PDR group
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NDR and PDR groups; In order to better screening
metabolic compounds, we set a more strict selection
criteria with P < 10E-05, an area under the curve
(AUC) ≥0.95 and a VIP (Variable important in the
projection) > 1 (Table 2). Seven metabolites were
recognised afterward. The top 4 metabolites (P <
Table 2 Metabolite markers identified from discovery metabolomic

Metabolite Fold-Change (PDR/NDR) Vip Elements

Fumaric acid 4.235 1.1898 HMDB000

Uridine 4.2748 1.1764 HMDB000

Acetic acid 2.1932 1.9268 HMDB000

Cytidine 8.6763 1.0932 HMDB000

3-Sulfinoalanine 0.57541 1.155 HMDB000

3-Methylxanthine 4.5202 1.0224 HMDB000

Sulfate 1.8943 1.3454 HMDB000
10E-11) were selected as candidate biomarkers for
PDR, namely, fumaric acid, uridine, acetic acid, and
cytidine. The P values of these biomarkers were
7.90E-17, 6.10E-16, 1.48E-13, and 5.87E-12, respect-
ively; and the AUCs were 0.96, 0.95, 1.0, and 0.95, re-
spectively (Fig. 6).
profiling

Query_mass Adduct Trend AUC P-value

0134 114.9904 M-H ↑ 0.96 7.90E-17

0296 243.0613 M-H ↑ 0.95 6.10E-16

0042 60.9867 M + H ↑ 1.0 1.48E-13

0089 242.0796 M-H ↑ 0.95 5.87E-12

0996 151.9927 M-H ↓ 1 1.06E-11

1886 165.0393 M-H ↑ 0.96 1.02E-09

1448 96.9718 M + H ↑ 0.96 2.28E-05



Fig. 6 Receiver operating characteristic (ROC) curve analysis was performed to evaluate the use of metabolites as biomarkers for PDR.
a The P value and AUC for fumaric acid were 7.90E-17 and 0.96, respectively; b the P value and AUC for uridine were 6.10E-16 and 0.95, respectively; c the
P value and AUC for cytidine were 5.87E-12 and 0.95, respectively; and (d) the P value and AUC for acetic acid were 1.48E-13 and 1.0, respectively
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Discussion
Diabetic retinopathy, acknowledged as a chronic meta-
bolic disease, is the mainly cause of blindness among
working-age adults throughout the world [1]. Without
treatment, it easily leads to vision loss and affect the qual-
ity of life. Thus, early detection and intervention are of
great significance. The pathogenesis of diabetic retinop-
athy is related to hyperglycemia-induced persistent meta-
bolic disorders, inflammation, oxidative stress, etc. [17]. It
is an indisputable fact that proliferative diabetic retinop-
athy (PDR) also occurs in some patients whose blood
glucose control is up to standard, suggesting other patho-
genic factors contribute to this phenomenon [5]. There-
fore, for better understanding the mechanism of the
occurrence and development of the disease, it is essential
to identify the biomarkers that lead to different pheno-
types of diabetic retinopathy, which relates to the interplay
between genetic and environmental factors. Recently,
metabolomics has gained attention as an attractive tool
for biomarker identification in metabolic disorders. In the
present study, we used LC-MS-based metabolomic profil-
ing to identify metabolic markers in diabetic patients with
sight threaten proliferative diabetic retinopathy (PDR) in
comparison to diabetics without retinopathy (NDR). Our
aims were as follows: 1) to identify metabolic signatures
that could distinguish patients with PDR from those with
long duration but without DR, and 2) to identify the meta-
bolic pathways that respond to DR.
We firstly reported that Fumaric acid, identified from

metabolomic profiling, was associated with PDR and it
might be a new biomarker and potential therapeutic tar-
get for DR. In our study, we observed high level of fu-
maric acid in the PDR group, and the AUC for detecting
diabetic retinopathy was 0.96 (95% CI, 0.91–1). Fumaric
acid is a small-molecule metabolite that recently be
identified as an epigenetic modifier. Even though, its
roles in DR have not yet been elucidated, some studies
reported high levels of fumaric acid in many tumors and
biofluids that surround tumors [18]. Studies suggested
this metabolite might be involved in hypoxia in tumors,
while the HIF transcription factor (HIF-α) was the major
regulator in response to hypoxia [7, 19]. Moreover, Scia-
covelli et al. [20] found excessive fumaric acid accumula-
tion in renal cell cancer in response to an epigenetic
change in micro RNA200. Previous findings suggested
that both HIF-α [17, 21] and micro RNA200 [21, 22]



Zhu et al. Nutrition & Metabolism           (2019) 16:37 Page 9 of 11
played an important role in the formation of diabetic
retinopathy. Retina is an organ with high metabolism
and oxygen consumption in body, and is thought to be
particularly susceptible to hyperglycemia-related oxida-
tive stress [23–25]. Abnormal metabolism induced by
hyperglycemia could also result in the overproduction of
free radicals that can lead to oxidative stress and damage
to tissues in and around retinal vessels [26]. Retinal
microvascular dysfunction—resulting in retinal ischemia
and hypoxia—could also aggravate oxidative stress,
which is thought to be one of the crucial factors in the
pathogenesis of DR [27]. These events suggested fumaric
acid may play a role in tissue oxidative stress. Therefore,
we ultimately hypothesized that fumaric acid was associ-
ated with diabetic retinopathy, and that it might be a
new biomarker and potential therapeutic target for DR.
Further studies should be carried out to confirm this re-
sult and to investigate the mechanism of fumaric acid in
DR development.
An earlier metabonomic study demonstrated an associ-

ation of pyrimidine metabolism with the development of
non-proliferative DR using gas chromatography-mass
spectrometry (GC-MS) [28]. These investigators found
higher levels of cytidine (P = 0.001) and thymidine (P =
0.001) in plasma samples from T2D patients with early
stage of DR compared to those without DR, and cytidine
had the highest AUC (0.849 ± 0.048). Pyrimidines are vital
biomolecules that participate in a wide range of biological
functions, including syntheses of DNA, RNA, lipids, and
carbohydrates [29] and pyrimidine derivatives are already
being used as antidiabetic medications [30]. In our study,
we observed increased levels of cytidine in PDR patients,
which was similar to previous findings. Cytidine, a pyrimi-
dine molecule, is considered as the precursor of the cyti-
dine triphosphate (CTP), which influences metabolism of
phospha-tidylcholine (PC) and phosphatidylethanolamine
(PE) biosynthesis. Besides that, alteration of cytidine could
induce the abnormality of the salvage pathway of pyrimi-
dine nucleotide, followed by the dysfunction of phospho-
lipid [28]. Previous studies reported the concentration of
phospholipids decreased with the development of diabetic
microvascular complications [31]. Therefore, we suppose
that cytidine may serve as a potential biomarker for the
diagnosis of diabetic retinopathy and evaluation of treat-
ment. In current study, the concentration of uridine also
changed significantly in the PDR group. Uridine is pro-
duced from cytidine by cytidine deaminase [32]. As a
member of pyrimidine, it is also a promoting metabolic
biomarker of diabetic retinopathy which is related to pyr-
imidine metabolism.
There are few metabolomics studies of diabetic retin-

opathy in the literature. Two previous studies concern-
ing vitreous samples from patients with PDR and
control patients without diabetes have suggested a
dysregulation in several biochemical pathways, including
the arginine to proline pathway [33], polyol pathway,
and ascorbic acidic pathways [12]. Another two studies
were performed on plasma samples from patients with
NPDR to study the metabolic signature of DR. Chen et
al. [6] also demonstrated significant enrichment of the
pentose phosphate pathway. Paris et al. [33] used LC-
MS to generate and validate the metabolomic profile of
vitreous samples, and pathway enrichment analysis re-
vealed that arginine metabolism was the pathway
perturbed in the DR group. Our study supports a dys-
regulation of pathways, including arginine and proline
metabolism. Elevated levels of arginine and ornithine
were observed in patients with PDR, potentially impli-
cating a compromised Mueller glial cell metabolism in
the disruption of neurovascular crosstalk within the ret-
ina and progression of diabetic retinopathy [34, 35].

Limitations
The relatively small sample size of our study might be in-
sufficient to make conclusive statements regarding meta-
bolic status in DR patients. Larger cohorts of diabetic
patients need to be enrolled and metabolomic analyses
performed to confirm our findings. The exact mecha-
nism(s) underlying this disease remains elusive and re-
quires further study.

Conclusion
Herein, we generated a metabolomic profile between PDR
and NDR groups in plasma of diabetic patients, and we
found fumaric acid, cytidine, uridine, and acetic acid to be
correlated with DR. Fumaric acid was firstly reported as a
novel metabolite marker with no prior reports of associ-
ation with diabetes or DR. Our study also replicated previ-
ous findings showing significant impairment in the
metabolism of pyrimidines, arginine, and proline, which
was identified as metabolic dysregulations associated with
DR. Further research is required to replicate these findings
and determine longitudinal associations with disease.

Additional files

Additional file 1: KEGG PATHWAY Database. (XLSX 12 kb)

Additional file 2: Metabolites Database. (XLSX 13 kb)
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