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Abstract  
The pathophysiology of migraine is complex. Neuroimaging studies reveal functional and structural changes in the brains of migraine pa-
tients. We sought to explore regional volume differences in intracranial structures in patients with episodic and chronic migraine. Sixteen 
episodic migraine patients, 16 chronic migraine patients, and 24 normal controls were recruited and underwent 3.0 T MRI scanning. The 
volumes of 142 brain regions were calculated by an automatic volumetric algorithm and compared with clinical variables. Results demon-
strated that the volumes of specific regions in the frontal and occipital lobes, and the right putamen, were increased and the volume of 
the fourth ventricle was decreased in the episodic migraine patients compared with controls. The volumes of the left basal forebrain, optic 
chiasm, and, the fourth ventricle were decreased in the chronic migraine patients, while the occipital cortex and the right putamen were 
larger. Compared to episodic migraine patiants, chronic migraine patients displayed larger left thalamus and smaller frontal regions. Cor-
relation analysis showed that headache frequency was negatively correlated with the volume of the right frontal pole, right lateral orbital 
gyrus, and medial frontal lobes and positively correlated with the volume of the left thalamus. The sleep disturbance score was negatively 
correlated with the volume of the left basal forebrain. This suggests that migraine patients have structural changes in regions associated 
with pain processing and modulation, affective and cognitive processing, and visual perception. The remodeling of selective intracranial 
structures may be involved in migraine attacks. This study was approved by the Ethics Committee of Chinese PLA General Hospital (ap-
proval No. S2018-027-02) on May 31, 2018.

Key Words: brain volume; chronic migraine; frontal lobe; magnetic resonance imaging; migraine; remodeling; thalamus; visual processing 
system

Chinese Library Classification No. R445.2; R747.2; R321.81

Graphical Abstract   

Detecting the volume differences of 142 brain regions among chronic migraine patients, episodic migraine 
patients and normal controls

Chronic migraine 
patients (n = 16)

Episodic migraine 
patients (n = 16)

Normal controls 
(n = 24)

Clinical information, scale 
assessment (VAS, MIDAS, HAMD, 
HAMA, MoCA, and GSDS)

Demographic information, scale 
assessment (HAMD, HAMA, MoCA, 
and GSDS)

Magnetic resonance imaging

Positive brain regions with significant volumetric differences among 
the three groups and correlation with clinical parameters 



1702

Chen XY, Chen ZY, Dong Z, Liu MQ, Yu SY (2020) Regional volume changes of the brain in migraine chronification. 
Neural Regen Res 15(9):1701-1708. doi:10.4103/1673-5374.276360

Introduction 
Migraine is a common neurological disorder which can 
cause significant disability (GBD 2016 Neurology Collabora-
tors, 2019). Episodic migraine (EM) refers to fewer than 15 
headache days per month, while chronic migraine (CM) im-
plies headache occurring ≥ 15 days per month for at least 3 
months with migraine features on ≥ 8 days every month (No 
authors listed, 2018). About 3% of patients may transform 
from EM to CM within a year (Lipton et al., 2015; Scher et 
al., 2017; Borkum, 2018). The prevalence of CM was report-
ed to be 0.6–1.7% in Asia-Pacific region (Stark et al., 2013) 
and 1–2% in the global population (Burch et al., 2019). A 
number of risk factors, such as increased headache frequen-
cy, acute medication overuse, and depression are related 
to the transition from EM to CM, termed “chronification” 
(Buse et al., 2019). CM associated with medication overuse, 
also called “medication overuse headache” (Goudarzi et al., 
2016), returns to episodic form after medication withdrawal, 
and may not actually be CM (No authors listed, 2018). 

The pathogenesis of migraine chronification has been only 
partially revealed. Neuroimaging studies of CM have found 
functional and microstructural alterations in the brainstem, 
hypothalamus, basal ganglia, and cortex, sites that are in-
volved in pain processing. Some of the changes correlate 
with headache frequency and/or duration, while others may 
be associated with mood and emotion, cognitive dysfunc-
tion and insomnia (Coppola et al., 2017; Neeb et al., 2017; 
Schulte et al., 2017; Androulakis et al., 2018; Domínguezet 
al., 2019; Lee et al., 2019; Woldeamanuel et al., 2019). These 
functional and structural alterations reflect central plasticity 
of CM, but whether the changes were the etiology or the 
effects of migraine chronification has yet to be revealed. 
Neuroimaging findings were variable across different stud-
ies, probably due to the diversities of patients’ background, 
clinical aspects, imaging processing methods, and statistical 
power. Previous structural imaging studies have investigated 
alterations in gray matter volume or thickness (Coppola et 
al., 2017; Neeb et al., 2017; Woldeamanuel et al., 2019), iron 
deposition (Domínguez et al., 2019), white matter lesions 
(Zheng et al., 2014; Neeb et al., 2015) and textural features of 
gray matter (Chen et al., 2017). Among those morphometric 
studies, volumetric analysis was most widely performed, and 
may well reflect brain remodeling in migraine. We intended 
to assess for the intracranial volume changes in EM and CM 
by calculating the volume of 142 brain regions according to 
a commercial template (Neuromorphometrics, Somerville, 
MA, USA) using an automatic morphometric algorithm over 
the whole brain. Compared to previous volumetric studies 
that usually investigated the cortical voxelwise microstruc-
tural changes (Coppola et al., 2017; Neeb et al., 2017; Palm-
Meinders et al., 2017), this study directly calculated the vol-
ume differences not only in the cortex, but also in the white 
matter and the ventricles in a more macroscopic view using 
the automatic morphometric algorithm. 

This study investigated the global and regional brain vol-
ume changes in EM and CM patients compared with normal 
controls (NCs), the global and regional brain volume differ-
ences between EM and CM patients, and the correlation of 
altered brain-region volumes with headache duration, fre-

quency, and intensity and the scores for anxiety, depression, 
cognition, and sleep quality in all migraine patients. 
  
Subjects and Methods
Fifty-six subjects were included in this prospective cross-sec-
tional study, comprising 16 EM patients, 16 CM patients 
and 24 NCs. Migraine patients were consecutively recruited 
from the Outpatient Headache Clinic of the Department 
of Neurology of the First Medical Center of Chinese PLA 
General Hospital. Diagnosis of EM and CM fulfilled the cri-
teria of ICHD-3 (No authors listed, 2018) and only migraine 
patients without aura were included, aura being relatively 
uncommon in the Chinese population. Inclusion criteria 
were age 18–60 years old, right-handed, willing to engage in 
the study, and not taking prophylactic medication or acute 
headache medications for more than 10 days per month 
during the last 3 months. Patients with chronic somatic or 
psychiatric disorders such as hypertension, diabetes mellitus, 
hypercholesterolemia, cardiovascular diseases, brain trau-
ma, neoplasm, infection, connective tissue diseases, other 
subtypes of headache, chronic somatic pain, severe anxiety 
or depression before the onset of headache, or substance ad-
diction were also excluded Inclusion and exclusion criteria 
of NCs were similar to those of the patients, except for the 
diagnosis of migraine. 

Demographic information and general headache data were 
collected. All the patients completed a Visual Analogue Scale 
(VAS) (Aicher et al., 2012) for pain and a Migraine Disabil-
ity Assessment (MIDAS) questionnaire (Hung et al., 2006) 
for assessing the impact of headache. The ten-point VAS 
was structured with a score greater than 6 corresponding to 
severe pain, a score of 4–6 indicating moderate pain, and a 
score lower than 4 indicating mild pain. The MIDAS score 
is derived from five questions about missed time from work, 
household work, and missed days of nonwork activities. 
The higher the MIDAS score, the more severe the disabil-
ity caused by migraine. Both patients and NCs underwent 
Hamilton Anxiety Scale (HAMA) (Matza et al., 2010, Nair 
et al., 2015), Hamilton Depression Scale (HAMD) (Zimmer-
man et al., 2013), Montreal Cognitive Assessment (MoCA) 
Beijing Version (www.mocatest.org), and General Sleep Dis-
turbance Scale (GSDS) (Lee, 2007) assessment for evaluating 
anxiety, depression, cognition and sleep quality, respectively. 
A HAMA score 8–14 indicates mild anxiety; 15–23 indicates 
moderate anxiety; and ≥ 24 indicates severe anxiety (Matza 
et al., 2010). A HAMD score of 8–16 indicates mild depres-
sion; 17–23 indicates moderate depression; and ≥ 24 indi-
cates severe depression (Zimmerman et al., 2013). The total 
score of MoCA is 30 and when the score falls below 26, cog-
nitive impairment is present. The lower the MoCA score is, 
the worse the cognitive function. GSDS is a self-rated, 8-point 
scale arranged from 0 (never) to 7 (every day); and higher 
GSDS scores indicate more severely disturbed sleep (Lee, 
2007). The above scales were evaluated by trained doctors. 
This study was approved by the Ethics Committee of Chi-
nese PLA General Hospital (approval No. S2018-027-02) on 
May 31, 2018 (Additional file 1). All the participants signed 
informed consents (Additional file 2) which complied with 
the Declaration of Helsinki before participating in the study. 
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This study followed the STrengthening the Reporting of OB-
servational studies in Epidemiology (STROBE) statement 
(Additional file 3).

MRI acquisition
Nicotine, alcohol, and caffeine were prohibited at least 12 
hours prior to MRI scanning. For EM patients, MRI exam-
inations were performed at least 3 days after the last mi-
graine attack. Headache status was recorded for CM patients 
at MRI examination. All the MRI examinations were carried 
out on a GE 3.0 Tesla MRI scanner (DISCOVERY MR750, 
GE Healthcare, Milwaukee, WI, USA) with a conventional 
8-channel quadrature head coil. High-resolution structural 
images were collected by a three-dimensional T1-weighted 
fast spoiled gradient recalled echo sequence with the param-
eters as follows: repetition time = 6.3 ms, echo time = 2.8 
ms, flip angle = 15 degrees, field of view (Bilgiç, Kocaman et 
al., 2016) = 25.6 × 25.6 cm2, matrix size = 256 × 256, number 
of acquisition = 1180 contiguous axial slices, slice thickness 
= 1 mm. Subjects with obvious structural abnormalities and 
lesions in the brain, as assessed by a radiologist and neurol-
ogist, unless they were a few white matter lesions which may 
be related to migraine, were excluded from the study.

Data processing
All the MRI structural images were processed using compu-
tational Anatomy plugins (CAT, http://www.neuro.uni-jena.
de/cat/) implemented within MATLAB 7.6 (The Mathworks, 
Natick, MA, USA) based on Statistical Parametric Mapping 
12 (SPM 12, http://www.fil.ion.ucl.ac.uk/spm/). The volumes 
of 142 brain regions were automatically extracted from gray 
matter, white matter and cerebrospinal fluid according to the 
software as in our previous methods (Chen et al., 2018) com-
posed of several procedures: spatial registration of individual 
brain images to an International Consortium for Brain Map-
ping (ICBM) space template (East Asian brains) (Mazziotta 
et al., 2001) to obtain normalized images, segmentation of 
normalized tissue into gray matter, white matter and cere-
brospinal fluid, and volume extraction of 142 brain regions 
according to the Neuromorphometrics template.

Statistical analysis
The sample size was calculated by PASS 11 power analysis 
software (NCSS, Kaysville, UT, USA) based on our prelim-
inary data with type 1 error rate of 0.5 and power of 90% in 
the one-way analysis of variance power analysis. Sample sizes 
of 14, 14, and 21 were obtained from the three groups whose 
means were to be compared. The total sample of 49 had 91% 
power to find means to be different among the groups using 
an F test with significance level of 0.05. The common stan-
dard deviation was assumed to be 0.21 in the means and 0.40 
within a group.

Statistical analysis was performed with IBM SPSS 22.0 
(IBM Corp., Armonk, NY, USA). The continuous data in 
demographics and clinical profiles were presented as the 
mean ± standard deviation. The differences in age, HAMA, 
HAMD, MoCA, sleep disturbance scale, total volume of gray 
matter, white matter, cerebrospinal fluid, and total intracra-
nial volume were compared among the three groups using 

a one-way analysis of variance test followed by pairwise 
comparison using the Bonferroni method. Sex ratios of CM 
and EM were compared with the chi-squared test. Headache 
duration, headache frequency, VAS, number of doses of each 
medication per month, and MIDAS were compared between 
the EM and CM groups with an independent samples t-test. 
The differences in brain-region volume among EM, CM and 
NCs were calculated with a general linear model using age, 
sex and total intracranial volume as covariates followed by 
pairwise comparison corrected by the Bonferroni method. 
Partial correlation analyses were performed between the 
volumes of altered brain regions and the clinical parameters 
in EM and CM patients compared with controls for age, sex, 
and total intracranial volume. A value of P < 0.05 was con-
sidered statistically significant. 

Results
Demographics and clinical data of EM, CM, and NCs
A total of 56 participants (16 EM patients, 16 CM patients and 
24 NCs) were enrolled in this study. Only two patients in the 
CM group were headache-free during MRI scanning. Table 
1 shows the demographics and clinical data. There were no 
statistical differences in age and sex among the three groups. 
Years with headache, headache intensity, and number of acute 
analgesics taken per month were not significantly different 
between EM and CM groups. Both EM and CM patients were 
significantly more anxious, depressed, and had worse sleep 
disturbance than NCs (P < 0.001). CM patients were more 
depressed and had more severe sleep disturbance than EM 
patients (P < 0.05). Cognitive function as measured by MoCA 
was much lower in CM patients than in EM patients and NCs 
(P = 0.001). CM patients endured a much higher burden of 
migraine disability than EM patients (P < 0.001). 

Volume differences in intracranial structures among EM 
patients, CM patients and NCs
The total intracranial volume and total volume of gray mat-
ter, white matter, and cerebrospinal fluid yielded no statisti-
cal differences among EM patients, CM patients, and NCs (P 
> 0.05; Table 2). The results did not change after adjusted by 
age and using the Bonferroni correction for multiple group 
comparison. 

Region-volume analyses with multiple comparisons found 
significantly larger volumes of several regions in the frontal 
lobe, occipital lobe, right putamen and lower volume of the 
4th ventricle of EM patients compared with NCs (P < 0.05; 
Table 3 and Figure 1). 

Compared with NCs, greater volume was detected in the 
left lingual gyrus, left fusiform gyrus, and right putamen, 
while the optic chiasm, the 4th ventricle, and basal forebrain 
in CM patients (Table 3 and Figure 2) were lower in volume 
compared with NCs.

Compared with EM patients, the frontal lobe volume was 
smaller and the left thalamus volume was larger in CM pa-
tients (Table 3 and Figure 3). 

Correlation  of clinical parameters and the volume of 
different brain regions
Headache frequency (headache days per month) was nega-
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tively correlated with the volume of the right frontal pole (r 
= –0.571, P = 0.001), right lateral orbital gyrus (r = –0.395, P 
= 0.034), and left and right medial frontal lobes (r = –0.501, 
P = 0.006; r = –0.493, P = 0.007, respectively). Headache fre-
quency was positively correlated with the volume of the left 
thalamus (r = 0.583, P = 0.001). The sleep disturbance scale 
was negatively correlated with the volume of the left basal 
forebrain (r = –0.410, P = 0.024; Figure 4). No significant 
correlation was found between other clinical parameters and 
the volume of brain regions.

Discussion
This structural MRI study analyzed volume alterations of 
regions in the gray matter, the white matter, and the ventri-
cles in migraine patients. In this study, the altered volume 
in several regions of prefrontal cortex, occipital lobe, right 
putamen, the 4th ventricle, the optic chiasm, and thalamus 
of migraine patients may indicate a central plasticity in mi-
graine pathogenesis and chronification.

The prefrontal cortex has a key role in cognitive processing 
and pain modulation by wide connections with other brain 
areas, including the parietal cortex, insula, hippocampus, 
amygdala, thalamus, basal nuclei and periaqueductal gray 
matter (Ong et al., 2019). Previous studies have reported 
impaired prefrontal cortical function in migraine patients as 
shown by neuropsychological testing (Lev et al., 2010, 2013). 
Voxel-based morphometry studies generally demonstrated 
volume or density reduction of the frontal cortex in mi-
graine patients (Kim et al., 2008; Schmitz et al., 2008; Valfrè 
et al., 2008; Jin et al., 2013; Coppola et al., 2017). Different 
from most voxel-based morphometry studies, EM patients 
in our study showed volume expansion of the frontal and 
occipital lobes. Those selected areas have been reported in 
previous studies to demonstrate volume alteration in mi-
graine patients (Kim et al., 2008; Schmitz et al., 2008; Valfrè 
et al., 2008; Jin et al., 2013; Bilgiç et al., 2016; Yu et al., 2016; 
Coppola et al., 2017; Palm-Meinders et al., 2017). Therefore, 
we speculated that those regions indeed had alteration in 
EM patients. 

Similar to our results, one study using whole-brain ver-
tex-by-vertex analysis also found thickened prefrontal cortex 
in migraine patients without aura (Kim et al., 2014). More 
surface-based morphometry studies reported increased 
thickness in the somatosensory cortex (DaSilva et al., 2007) 
and motion-processing visual areas (Granziera et al., 2006) 
in EM patients. However, other surface-based morphometry 
studies reported thinner cortex in the frontal lobe, occipital 
lobe (Yu et al., 2016) and basal ganglia (Yuan et al., 2013) in 
migraine patients. The results from structural MRI studies 
are influenced by several factors, such as the patients’ ethnic-
ity, migraine duration and/or frequency (Maleki et al., 2012), 
MRI parameters, morphometric methods, statistical effica-
cy, and ictal or interictal state (Coppola et al., 2015). In our 
study, those enlarged frontal areas in EM patients were no 
more larger in CM patients compared with NCs and the vol-
ume of some frontal regions was negatively correlated with 
headache frequency. The increased prefrontal cortex in EM 
patients may indicate adaptation of the central nervous sys-
tem, which would enhance descending pain modulation at 

the stage of migraine attack. The volume decrease in prefron-
tal cortex in patients with higher headache frequency may 
reflect maladaptive volume reduction (Liu et al., 2017) and 
dysfunction of pain inhibition, which would facilitate mi-
graine attacks and promote migraine chronification (Krum-
menacher et al., 2010; Bräscher et al., 2016). The mechanism 
of remodeling of migraine brain is unclear, but is considered 
to be related to the number and size of neuronal or glial cells 
and their synapses, and altered interstitial fluids or blood 
flow (May, 2011) probably resulting from neural excitability, 
neuroinflammation, vascular constriction or dilation, and 
neural degeneration. 

Interestingly, our study detected decreased basal forebrain 
size in CM patients compared with NCs, which was not 
reported in previous structural MRI studies. The basal fore-
brain contains at least three distinct populations of neurons 
(cholinergic, glutamatergic, and GABAergic), which have 
extensive projections to cortical and subcortical areas to reg-
ulate arousal, motivation, and other behaviors (Agostinelli et 
al., 2019). An animal study found increased pain sensitivity 
after destruction of basal forebrain cholinergic neurons in 
rats, revealing that cholinergic transmission of basal fore-
brain may be involved in pain processing (Vierck et al., 
2016). A quantitative electroencephalogram study found that 
migraine patients suffered from highly asymmetric values 
in anterior δ power and posterior α and θ waves, suggesting 
altered activity patterns in the cholinergic brainstem or basal 
forebrain nuclei and thalamocortical connections prior to 
migraine attack (Bjørk and Sand, 2008). Further, the basal 
forebrain is considered to play a role in regulating the sleep–
wake cycle in animals (Hermanstyne et al., 2013). In our 
study, the volume of basal forebrain was negatively correlat-
ed with the sleep disturbance scale, which further supported 
that altered basal forebrain may be associated with poorer 
sleep in migraine patients.

The visual processing pathway is strongly associated with 
migraine pathophysiology and clinical manifestations (Mar-
zoli and Criscuoli, 2017). Light stimulation is a possible trig-
ger of migraine attack. Visual aura is the most frequent form 
of migraine aura. Photophobia is a common accompanying 
symptom of migraine. Light hypersensitivity in migraine 
has been considered to be associated with light transmission 
from the retina to the trigeminovascular thalamocortical 
pathway (Noseda et al., 2010). Several studies reported a 
thinner retinal nerve fiber layer (Reggio et al., 2017; Tak et 
al., 2018) and/or retinal ganglion cell layer (Reggio et al., 
2017; Gunes et al., 2018) in migraine patients, and the thick-
ness may be negatively correlated with headache frequency 
(Reggio et al., 2017). Our study demonstrated volume re-
duction of the optic chiasm in CM patients, which further 
supports the structural alteration of the visual processing 
pathway. Similar to a previous surface-based morphometry 
study which reported thickened motion-processing visual 
regions (MTt and V3A) in migraine patients (Granziera et 
al., 2006), our study found thickened occipital regions in EM 
and CM patients, indicating the remodeling of central visual 
system in migraine patients. 

The deep gray matter basal ganglia are important in in-
tegrating sensory, motor, motivation, cognitive and pro-
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Figure 1 Brain regions positive for volume alteration in 
episodic migraine compared with normal controls (P < 
0.05, Bonferroni corrected). 
(A–G) Orange color represents larger brain regions in the 
right frontal pole (P = 0.015), bilateral inferior frontal angu-
lar gyrus (P = 0.008), right lateral orbital gyrus (P = 0.004), 
left medial frontal cerebrum (P = 0.005), left lingual gyrus 
(P = 0.039), left middle occipital gyrus (P = 0.01) and right 
putamen (P = 0.013). (H) Blue color represents smaller 
brain regions in the 4th ventricle (P = 0.005).

Figure 2 Brain regions with volume alteration in chronic migraine 
compared with normal controls (P < 0.05, Bonferroni corrected).
(A–C) Orange color represents larger brain regions in left lingual gyrus 
(P = 0.001), left occipital fusiform gyrus (P = 0.034) and right putamen 
(P = 0.004). (D–F) Blue color represents smaller brain regions in left 
basal forebrain (P = 0.002), optic chiasm (P = 0.007) and the 4th ventri-
cle (P = 0.002). 

A B C D
Figure 3 Brain regions positive 
for volume alteration in episodic 
migraine compared with chronic 
migraine (P < 0.05, Bonferroni 
corrected).
(A–C) Orange color represents 
larger regions in the right frontal 
pole (P = 0.021), right lateral orbital 
gyrus (P = 0.035), and bilateral me-
dial frontal cerebrum (P = 0.002). 
(D) Blue color represents smaller 
brain regions in the left thalamus (P 
= 0.009). 
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Figure 4 Correlation analysis of clinical profiles 
and the volume of positive brain regions. 
(A) Headache frequency was positively correlated 
with the volume of the left thalamus (r = 0.583, P 
= 0.001) and negatively correlated with the right 
frontal pole (r = –0.571, P = 0.001), right lateral 
orbital gyrus (r = –0.395, P = 0.034), left medial 
frontal lobe (r = –0.501, P = 0.006) and right me-
dial frontal lobe (r = –0.493, P = 0.007). (B) Sleep 
disturbance scale was negatively correlated with 
the volume of left basal forebrain (r = –0.410, P = 
0.024). L: Left; R: right.
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Table 1 Demographic and clinical information of EM patients, CM patients and NCs

Item EM patients (n=16) CM patients (n=16) NCs (n=24) P-value

Age (yr) 35.75±9.14 43.13±8.96 41.83±11.96 0.103
Sex (female/male, n) 3/13 3/13 5/19 0.981
Headache duration (yr) 13.38±8.09 11.25±9.30 0.496
Headache frequency (d/mon) 3.66±2.82 25.06±5.87# < 0.001
Headache side 0.083

Left 4 0
Right 1 2
Bilateral or middle 5 10
Left or right 6 4

VAS score 8.31±1.48 7.88±1.45 0.408
Number of medications per month 5.00±3.85 4.31±3.77 0.614
HAMA score 15.25±10.41* 21.63±10.98* 2.39±1.47 < 0.001
HAMD score 10.19±7.41* 16.31±10.52*# 1.13±1.06 < 0.001
GSDS score 1.31±1.14* 2.56±0.96*# 0.13±0.34 < 0.001
MoCA score 26.75±4.28 22.94±5.37*# 28.13±2.07 0.001
MIDAS score 16.88±18.73 101.81±53.96# < 0.001

Data are expressed as the mean ± SD, except sex and headache side. Sex and headache side were computed with the chi-square test. Headache 
frequency, VAS, the number of medications per month, and MIDAS were compared between EM and CM groups with independent samples t-test. 
The differences in age, HAMA, HAMD, GSDS, and MoCA among three groups were compared using one-way analysis of variance test followed 
by pairwise comparison using Bonferroni method. *P < 0.05, vs. NCs; #P < 0.05, vs. EM patients. CM: Chronic migraine; EM: episodic migraine; 
GSDS: General sleep disturbance scale; HAMA: Hamilton Anxiety Scale; HAMD: Hamilton Depression Scale; MIDAS: Migraine Disability 
Assessment questionnaire; MoCA: Montreal Cognitive Assessment; NCs: normal controls; VAS: Visual Analogue Scale.

Table 2 Total intracranial volume (mL) of intracranial structure in EM patients, CM patients and NCs

EM patients (n = 16) CM patients (n = 16) NCs (n = 24) P-value

Gray matter 681.67±48.85 657.89±65.18 660.53±56.46 0.064
White matter 493.25±41.38 480.18±46.69 493.74±39.59 0.346
Cerebrospinal fluid 287.97±32.45 276.92±38.75 282.04±31.71 0.666
Total intracranial volume 1462.89±113.84 1414.99±144.17 1436.71±122.73 0.233

Data are expressed as the mean ± SD (one-way analysis of variance). CM: Chronic migraine; EM: episodic migraine; NCs: normal controls.

Table 3 Regional volume differences of brain regions among EM patients, CM patients and NCs

Brain regions CM patients (n = 16) EM patients (n = 16) NCs (n = 24) P-value

R-putamen 3.249±0.445↑ 3.365±0.439↑ 2.947±0.393 0.001
R-frontal pole 2.396±0.239▼ 2.754±0.285↑ 2.444±0.318 0.009
R-lateral orbital gyrus 1.941±0.228▼ 2.263±0.287↑ 1.921±0.259 0.005
L-medial frontal cerebrum 1.552±0.135▼ 1.864±0.223↑ 1.613±0.229 0.001
R-medial frontal cerebrum 2.001±0.209▼ 2.354±0.309 2.143±0.262 0.012
L-inferior frontal angular gyrus 2.939±0.349 3.301±0.477↑ 2.855±0.437 0.05
R-inferior frontal angular gyrus 3.222±0.311 3.641±0.404↑ 3.202±0.375 0.012
L-lingual gyrus 6.902±0.553↑ 6.901±0.776↑ 6.342±0.567 0.001
L-middle occipital gyrus 5.424±0.570 6.059±0.499↑ 5.363±0.660 0.012
L-occipital fusiform gyrus 3.232±0.420↑ 3.209±0.240 3.017±0.338 0.03
L-thalamus 3.809±0.432▲ 3.463±0.348 3.582±0.463 0.011
L-4th ventricle 0.094±0.014↓ 0.100±0.022↓ 0.112±0.019 0.004
R-4th ventricle 0.060±0.014↓ 0.059±0.010↓ 0.069±0.012 0.008
Optic chiasm 0.003±0.001↓ 0.007±0.005 0.009±0.006 0.003
L-basal forebrain 0.633±0.059↓ 0.694±0.052 0.692±0.060 0.003

Data are expressed as the mean ± SD (general linear model using age, sex and total intracranial volume as covariates followed by pairwise 
comparison corrected by Bonferroni method). Positive brain regions were presented at a threshold of P < 0.05. ↑: Volume larger than NCs; ↓: 
volume smaller than NCs; ▲: volume larger than EM; ▼: volume smaller than EM. CM: Chronic migraine; EM: episodic migraine; L: left; NCs: 
normal controls; R: right.



1707

Chen XY, Chen ZY, Dong Z, Liu MQ, Yu SY (2020) Regional volume changes of the brain in migraine chronification. 
Neural Regen Res 15(9):1701-1708. doi:10.4103/1673-5374.276360

cedural learning functions (Kreitzer and Malenka, 2008). 
Previous studies have found volume alteration, functional 
connectivity changes, and iron deposits (Kruit et al., 2009; 
Yuan et al., 2013; Rocca et al., 2014) in the basal ganglia of 
migraine patients. Similar to previous studies (Rocca et al., 
2014; Neeb et al., 2017), our study demonstrated an enlarged 
right putamen in both EM and CM patients, supporting 
the role of the basal ganglia in migraine patients. Another 
essential deep gray matter structure in migraine is the thal-
amus, which is responsible for pain processing, sleep–wake 
cycle regulation, awareness, cognitive behaviors, and the 
modulation of visual information in migraine (Younis et al., 
2019). The volume reduction of thalamic nuclei (Magon et 
al., 2015) or thalamic microstructural alteration (Granziera 
et al., 2014) in migraine has reported in previous studies. 
Our previous study found that the thalamic volume was in-
creased in medication-overuse headache patients compared 
to NCs (Chen et al., 2017). In this study, neither EM nor CM 
patients showed volume difference from NCs in the thala-
mus, which was consistent with a previous study (Granziera 
et al., 2014). However, compared with EM patients, CM pa-
tients presented with thalamic enlargement on the left side 
(P = 0.004), and the volume was positively correlated with 
headache days per month, indicating the plasticity of the 
thalamus in migraine chronification. 

The decreased volume of the 4th ventricle in EM and CM 
patients may reflect enlargement of the brainstem or cer-
ebellum, although we did not find statistical differences 
in the size of those structures. The brainstem contains the 
ascending trigeminal pathway and descending pain modu-
latory system. The volume of brainstem conflicted with data 
from previous studies. Some studies showed that gray mat-
ter volume of the brainstem decreased in migraine patients 
(Marciszewski et al., 2018) and CM patients (Bilgiç et al., 
2016). Others demonstrated larger brainstem and subnuclei 
in migraine with aura (Petrusic et al., 2019) and in medica-
tion-overuse headache (Chen et al., 2018). The volume of the 
cerebellum in migraine patients was generally decreased in 
several studies (Bilgiç et al., 2016; Demir et al., 2016; Messi-
na et al., 2017). 

Our study has some limitations. First, because most of 
the CM patients had headache on MRI scanning, it is not 
possible to exclude that the non-edematous volumetric alter-
ations observed in CM patients might be influenced by the 
presence of headache (Coppola et al., 2015). Nevertheless, 
it is impossible to perform subgroup analysis according to 
patients with or without headache when taking MRI exam-
inations, because the sample was too small to allow this. The 
sample was small since CM without medication overuse was 
less prevalent. Second, we only recruited migraine patients 
without aura. Whether the volume alteration in migraine 
with aura occurs in the same or different brain regions is un-
known. Third, this was a cross-sectional study, and we could 
not prove that chronification caused volume alteration or 
that volume alteration caused chronification. 

In conclusion, this study revealed regional volume changes 
in the brains of CM and EM patients. The volume alterations 
were mainly located in the frontal lobe, visual processing 
system, basal ganglia, and thalami, which are involved in 

pain modulation, affective/cognitive processing, visual 
processing and pain processing. The volume of some brain 
regions may dynamically change with different migraine 
frequencies. However, the underlying mechanism of the vol-
ume alteration needs further investigation. 
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Corrigendum: Resveratrol inhibits matrix metalloproteinases to 
attenuate neuronal damage in cerebral ischemia: a molecular docking 
study exploring possible neuroprotection
doi:10.4103/1673-5374.278561
In the article titled “Resveratrol inhibits matrix metalloproteinases to 
attenuate neuronal damage in cerebral ischemia: a molecular docking study 
exploring possible neuroprotection”, published on pages 568–575, Issue 4, 
Volume 10 of Neural Regeneration Research (Pandey et al., 2015), Figure 
1B images were provided incorrectly. The correct images of Figure 1B are 
shown below:
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