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Monitoring the mutational patterns of solid tumors during cancer therapy

is a major challenge in oncology. Analysis of mutations in cell-free (cf)

DNA offers a noninvasive approach to detect mutations that may be prog-

nostic for disease survival or predictive for primary or secondary drug

resistance. A main challenge for the application of cfDNA as a diagnostic

tool is the diverse mutational landscape of cancer. Here, we developed a

flexible end-to-end experimental and bioinformatic workflow to analyze

mutations in cfDNA using custom amplicon sequencing. Our approach

relies on open-software tools to select primers suitable for multiplex PCR

using minimal cfDNA as input. In addition, we developed a robust linear

model to identify specific genetic alterations from sequencing data of

cfDNA. We used our workflow to design a custom amplicon panel suitable

for detection of hotspot mutations relevant for colorectal cancer and ana-

lyzed mutations in serial cfDNA samples from a pilot cohort of 34 patients

with advanced colorectal cancer. Using our method, we could detect recur-

rent and patient-specific mutational patterns in the majority of patients.

Furthermore, we show that dynamic changes of mutant allele frequencies

in cfDNA correlate well with disease progression. Finally, we demonstrate

that sequencing of cfDNA can reveal mechanisms of resistance to anti-Epi-

dermal Growth Factor Receptor(EGFR) antibody treatment. Thus, our

approach offers a simple and highly customizable method to explore

genetic alterations in cfDNA.
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1. Introduction

Although survival rates have been increasing over the

last decades, the prognosis of patients with advanced

stages of gastrointestinal cancer is persistently poor

(Jemal et al., 2011). Major challenges include tumor

heterogeneity and the clonal expansion of resistant

clones during the course of treatment, resulting in can-

cer progression or relapse (Alizadeh et al., 2015).

Monitoring the dynamics of cancer evolution during

the course of a treatment may help to early identify

the development of drug resistance. However, in

patients with advanced disease, obtaining serial tumor

biopsies to study tissue-based biomarkers is not feasi-

ble in the majority of cases. Most biopsy techniques

bear risks due to their invasiveness and are not suit-

able for morbid patients (Vanderlaan et al., 2014).

Besides, a tissue biopsy only represents a small section

of a heterogenous and disseminated disease, ignoring

cancer biology at other (metastatic) sites. Hence, it

may result in sampling errors due to branched evolu-

tion of metastatic sites and intratumoral heterogeneity

(Burrell et al., 2013; Gerlinger et al., 2012).

It is known for decades that solid tumors can release

single tumor cells (Alix-Panabi�eres and Pantel, 2013;

Maheswaran and Haber, 2010) or nucleic acids into the

bloodstream, including DNA, mRNA, and miRNA

(Schwarzenbach et al., 2011; Stroun et al., 2006).

Advances in DNA sequencing opened up opportunities

to analyze the genetic composition of this circulating

tumor DNA (ctDNA) (Wan et al., 2017). In fact, large-

scale sequencing projects of ctDNA showed that genetic

alterations present in primary tumors can also be found

in ctDNA (Strickler et al., 2018; Zill et al., 2018). Fur-

thermore, serial ctDNA analysis proves to be a powerful

method to longitudinally monitor therapy response and

the emergence of resistant clones (Bettegowda et al.,

2014; Siravegna et al., 2015; Thierry et al., 2017). Several

methods have been developed to detect mutations in

ctDNA, including BEAMing technologies (Diaz et al.,

2012; Haselmann et al., 2018; Janku et al., 2015), panel

sequencing of cancer-associated genes (Strickler et al.,

2018; Zill et al., 2018), or targeted amplicon sequencing

(Lebofsky et al., 2015; Tie et al., 2016). While every

method offers advantages, a major challenge to all tech-

nologies is the divergent mutational landscape of cancer.

While some mutations in key oncogenes occur at high

frequency across many tumors, most genetic alterations

are tissue-specific or even highly variable between can-

cers of the same tissue origin (Lanman et al., 2015). Cur-

rent FDA-approved diagnostic tests for cell-free DNA

(cfDNA) cover mutational hotspots of large predefined

panels of frequently altered genes in cancer (Lanman

et al., 2015). While this approach is suitable for applica-

tion in a broad spectrum of cancers, it is not designed to

detect potentially relevant mutations that occur only in

specific tumors, such as RNF43 in colorectal (CRC) and

pancreatic cancer (Steinhart et al., 2017). Thus, comple-

mentary tests are required that can be used to explore a

custom-defined set of genetic alterations in cfDNA that

are not covered by commercially available tests. These

tests are valuable to correlate the occurrence of rare

mutations with disease outcome or drug resistance.

Here, we present an end-to-end experimental and

bioinformatic workflow that can be used to analyze a

custom set of genetic alterations in cfDNA. We

designed an amplicon panel that is tailored to the

genetic landscape of CRC, covering mutations in

oncogenes and tumor suppressors as well as function-

ally relevant mutations in genes that are less frequently

altered. We performed amplicon sequencing with our

custom panel in serial cfDNA samples from a pilot

cohort of 34 patients with metastatic CRC. Using this

approach, we detected patient-specific mutational pat-

terns that reoccurred in serial samples. We also show

that the mutant allele frequencies of genetic alterations

in cfDNA increase with disease progression.

2. Materials and methods

2.1. Study design and clinical databank

Patients with gastrointestinal cancers across all tumor

stages were included in the study. Blood was collected

before start of anticancer treatment and every 3–
6 months during radiologic restaging or if patients were

hospitalized. Simultaneously, the following blood mark-

ers were determined: cell counts of erythrocytes, leuko-

cytes, and thrombocytes; AST; ALT; GGT; ALP;

bilirubin; albumin; creatinine; INR; LDH; CRP; and the

serum tumor markers CEA, CA19-9, and AFP. Clinical

characteristics were collected in a prospective database.

Written informed consent was obtained from all

patients, and the study was approved by the local

ethics board (Ethikkommission II, Medical Faculty

Mannheim, Heidelberg University, identifier 2013-

640N-MA). The study design is in accordance with the

standards proposed by the Declaration of Helsinki.

2.2. Sample collection and plasma DNA

extraction

Two 10-mL K3EDTA tubes were taken during reg-

ular blood sampling and before administration of
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chemotherapy. Blood samples were immediately stored

at 4 °C and processed within 16 h to minimize release

of genomic DNA from nontumorous sources (Norton

et al., 2013; Risberg et al., 2018; Wong et al., 2013).

For isolation of blood plasma, K3EDTA tubes were

centrifuged at 1900 g for 10 min at 4 °C. Afterwards,

supernatants were centrifuged at 16 000 g for 10 min

at 4 °C to remove remaining blood cells. Plasma was

harvested without mobilizing the cell pellet and stored

at �80 °C until needed. For cfDNA isolation, 1–4 mL

of frozen plasma was used. Extraction of DNA was

performed using the QIAamp DNA Blood Mini Kit

(Qiagen, Hilden, Germany). DNA was dissolved in

50–70 lL nuclease-free water and stored at �20 °C for

further use. The amount of DNA was quantified with

QUBIT 2.0 (Life Technologies, Carlsbad, CA, USA)

using the high-sensitivity assay according to the manu-

facturer’s protocol.

2.3. Design of amplicon primers and multiplex

reaction

Positions of frequently mutated hotspots in CRC-asso-

ciated genes were obtained from the COSMIC data-

base (Forbes et al., 2015). In addition, frequently

mutated loci in genes that regulate the metabolism of

5-fluorouracil (DPYD, TYMS, TYMP, UPP1) and

mismatch repair (MLH1, MLH3, MSH6, PMS2) were

selected. Nucleotide sequences surrounding the genetic

alteration of interest were obtained from the NCBI

database with the genome assembly GRCH38 as a ref-

erence. Specific primers for regions that cover the

selected mutations were designed with Primer3 (Unter-

gasser et al., 2012) with the following settings: primer

length of 19–27 bp, GC ratio of 30–63%, and melting

temperature of 55–61.5 °C. The universal adapter

sequence TCCCTACACGACGCTCTTCCGATCT

was added to the 50 end of each forward primer. To

each reverse primer, the sequence AGTTCA-

GACGTGTGCTCTTCCGATC was added to the 50

end. The amplicon length varied between 100 and

175 bp. Characteristics and sequences of all primers

can be found in Table S1. To develop a multiplex

PCR assay, we used the software tool MULTIPLX 2.1

(Kaplinski and Remm, 2015) to identify appropriate

primer combinations. To this end, we set the concen-

tration of monovalent salts to 50 mM and the concen-

tration of Mg2+ to 1.5 mM. All five possible primer

interaction scores that might affect primer compatibil-

ity were calculated. To group the 43 primer pairs for

multiplex PCR, we used the stringency value ‘normal’.

The best combination resulted in six different pools

with 5–9 primer pairs.

2.4. Nested PCR protocol and library preparation

We developed a custom, nested PCR protocol suited for

multiplex reactions. For the first PCR step, at least

500 pg of cfDNA was used per multiplexed reaction. In

all cases, we used Q5 Hot Start Polymerase (NEB, Ips-

wich, MA, USA) to minimize amplification errors. To

reduce the formation of primer-dimers, we selected a

concentration of 40 nM for each primer pair. The PCR

protocol was adapted from a previous study (St�ahlberg

et al., 2017). In brief, after an initial denaturation step

(3 min, 98 °C), 18 PCR cycles were run with the follow-

ing settings: 10 s of denaturation at 98 °C, 6 min of

annealing at 62 °C, and 30 s of elongation at 72 °C. In
the end, a 10-min elongation step at 72 °C was included.

The PCR products were semi-automatically purified with

a Biomek FXP (Beckman Coulter) using AMPure XP

beads (Beckman Coulter, Munich, Germany) with a

bead-to-sample ratio of 0.76 and eluted in 25 lL of

nuclease-free water. By this step, fragments larger than

120 bp were separated from primer-dimers. In the sec-

ond PCR step, the same settings were applied except for

the following modifications: First, we used 15 lL of

DNA products from the first PCR step as input. Second,

primers consisting of Illumina universal adapter

sequence and a unique combination of the TruSeq DNA

HT indexes (forward primer: AATGATACGGCGAC-

CACCGAGATCTACAC-(Index)-ACACTCTTTCCC-

TACACGACGCTCTTCCGATCT; reverse primer: CA

AGCAGAAGACGGCATACGAGAT-(Index)-GTGA

CTGGAGTTCAGACGTGTGCTCTTCCGATC) were

used at a concentration of 300 nM. Third, the annealing

temperature was increased to 72 °C and the annealing

time was reduced to 15 s. After the second PCR step, all

six multiplexed PCRs of each patient sample were pooled.

Ninety micro litre of the mixed PCR products was then

cleaned with AMPure XP beads using a bead-to-sample

ratio of 0.67 and eluted in 20 lL of nuclease-free water.

2.5. Amplicon sequencing

All patient samples were pooled to a single library with

a final concentration of 4 nM. The library was sequenced

on an Illumina MiSeq using the MiSeq Reagent Kit V2

(Illumina Inc., San Diego, CA, USA) (150 bp single-end

sequencing) with 5% PhiX as spike-in. Between 30 and

50 patient samples were sequenced in one MiSeq run.

2.6. Analysis of sequencing data and variant

calling

First, a quality report was generated for each

sequenced sample using ‘FASTQC’ (Andrew, 2010).
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Quality reports were examined manually to ensure

sufficient sample quality. Subsequently, the ‘TRIMMO-

MATIC’ software version 0.36 (Bolger et al., 2014) was

used to remove sequenced base pairs with a quality

score of < 15 (PHRED33) at both ends of the reads to

avoid false-positive mutations due to sequencing

errors. In addition, a sliding window trimming was

performed cutting the read once the average quality

within a window of size 4 bp was detected to be

< 15. Reads with a length of < 70 base pairs were

removed. Next, reads were mapped to the human

genome GRCh38 using the ‘bwa mem’ algorithm of

the ‘BWA’ alignment software version 0.7.15-r1140 (Li

and Durbin, 2010) with default parameters. ‘SAM-

TOOLS’ version 1.4 (Li et al., 2009) was used to

remove reads that could not be mapped to genome.

In addition, reads mapped with a quality of < 13

were excluded. To determine variants, the ‘mpileup’

algorithm implemented in the ‘SAMTOOLS’ software

was applied. The resulting variant calls were summa-

rized and quantified using ‘bam-readcount’ (https://

github.com/genome/bam-readcount), counting only

variants at positions with a sequencing quality of at

least 30.

2.7. Analysis of sequencing variants

The allele frequency was determined for each detected

variant by dividing the number of reads containing

the variant by the total number of reads mapping to

that position. Subsequently, variants were mapped to

the amplicon panel. To this end, the genomic coordi-

nates were determined for each amplicon using the

‘BLASTn’ algorithm as implemented in the ‘BLAST+’
software package (Altschul et al., 1990). Here, each

amplicon sequence was mapped to the human gen-

ome GRCh38 requiring 100% sequence identity.

Sequencing variants were then matched to the custom

amplicon panel by genomic coordinates. Correctness

of the variant mapping and matching was assessed by

taking advantage of prior knowledge about mutations

in the NRAS, KRAS, and BRAF oncogenes that had

previously been determined using Sanger sequencing.

In order to distinguish true mutations from false-pos-

itive mutations introduced by, for example, PCR or

sequencing errors, a model-based approach was

applied. Assuming that (a) the majority of variants

are caused by PCR or sequencing errors, that (b)

PCR errors do on average occur at the same fre-

quency at each position of an amplicon, and that (c)

sequencing errors at a specific genomic position are

equally likely in each sample. A robust linear model

of the form

log
a

1� a

� �
¼ b0 þ b1X1 þ b2X2 þ ε;

was fit for each amplicon, where a is the allele fre-

quency of a variant, X1 is the variant’s position on

the amplicon, and X2 represents the sequenced patient

sample. The resulting fit represents a noise model. A

variant was considered a true mutation if its model

residual exceeded the median of all residuals by at

least three standard deviations, indicating that its

presence cannot be explained by the estimated noise

present in the data. In addition, we required a mini-

mum allele frequency of at least 0.5% for a variant

to be considered a true clinically relevant mutation.

Next, the remaining mutations were annotated using

the COSMIC database of somatic mutations in can-

cer (Forbes et al., 2015). Mutations that were not

listed in COSMIC were excluded from further analy-

sis. In addition, COSMIC mutations marked as SNPs

were excluded.

2.8. Statistics

All P-values reported in this study were computed

using a two-sample Wilcoxon rank sum test as imple-

mented in the R statistical programming language (R

Core Team, 2016). As metrics for the relationships

between quantitative variables, both the parametric

Pearson correlation coefficient and the rank-based

Spearman correlation coefficient are reported in all

cases.

2.9. Data and software availability

Documented computer code to reproduce analyses pre-

sented in this study is available from GitHub at

https://github.com/boutroslab/Supplemental-Material/

tree/master/Herrmann%26Zhan%26Betge%26Rausche

r_2018.

3. Results

3.1. cfDNA levels correlate with clinical

parameters in CRC patients

To study the value of cfDNA as a biomarker in gas-

trointestinal cancers, we prospectively collected serial

blood samples from cancer patients at a tertiary uni-

versity hospital in Germany (Mannheim Liquid Biopsy

Unit—MALIBU, University Hospital Mannheim, Hei-

delberg University) (Fig. 1A). For patients undergoing

palliative chemotherapy, we obtained blood samples
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prior to start of treatment and in parallel to each radi-

ologic assessment of therapy response. In all cases,

blood sampling was performed before administration

of anticancer drugs. For patients undergoing surgical

removal of the cancer, we collected blood samples

prior and at multiple time points after resection. In

parallel, we documented relevant clinical parameters

and blood markers in a prospective database. Plasma

from each blood sample was isolated within 16 h after

sampling and stored at �80 °C until further use. Most

samples stored in the biobank were derived from

patients with CRC. In total, we collected blood sam-

ples from 104 CRC patients across all UICC stages,

but predominantly from patients with metastatic CRC

(Fig. 1B). To correlate levels of cfDNA with clinical

parameters, we measured cfDNA concentrations from

blood samples of all CRC patients. Comparison of

cfDNA levels demonstrated significantly elevated levels

in patients with metastatic compared to nonmetastatic

tumors (Fig. 1C). In contrast, no significant differ-

ence was found between cfDNA levels of patients

with UICC stage I to III cancers. Next, we analyzed
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Fig. 1. Standardized collection of blood plasma and clinical data from patients with colorectal cancer reveals stage-dependent levels of cell-

free DNA (cfDNA). (A) The Mannheim Liquid Biopsy Unit (MALIBU) prospectively collects blood and plasma, as well as clinical data from

patients with gastrointestinal tumors. Blood is collected at regular time intervals during the course of treatment and follow-up. The plasma

is used for isolation of cfDNA and subsequently for custom amplicon sequencing. (B) Clinical characteristics (location and UICC/AJCC stage)

of patients with colorectal cancer were included in the MALIBU biobank and database. (C) Patients with stage IV colorectal cancer have

significantly higher cfDNA levels than nonmetastasized patients. cfDNA was isolated from 1-4 mL plasma of each patient and quantified

with QUBIT. * p < 0.05, two-sided t-test. (D, E) Association of cfDNA levels with levels of tumor markers. cfDNA levels are significantly

associated with CEA levels (P = 0.005) (D), but not with LDH levels (E).
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the correlation of cfDNA levels with two biomarkers

commonly used in gastrointestinal oncology, carci-

noembryonic antigen (CEA), and lactate dehydroge-

nase (LDH) (Fig. 1D,E). We observed a weak, but

significant (P = 0.005; Pearson’s correlation test) corre-

lation of cfDNA concentration with CEA levels. In

contrast, no correlation was found with LDH levels.

This finding suggests that the cfDNA concentration

may be a biological marker that occurs independently

of tumor cell necrosis.

3.2. A pipeline for the design and analysis of

custom amplicon panels for cfDNA

To analyze mutational patterns in cfDNA, we devel-

oped a pipeline for the design of custom amplicon pan-

els. We selected primers that cover mutational hotspots

in oncogenes and tumor suppressors of CRC based on

the COSMIC database (Forbes et al., 2015). In addi-

tion, we included primers that amplify frequently

mutated loci in genes that affect metabolism of 5-fluo-

rouracil (Jennings et al., 2012; Ooyama et al., 2007;

Pullarkat et al., 2001) or DNA mismatch repair (Li,

2008). These mutations occur at a lower frequency and

are not commonly covered by commercial amplicon

panels. An overview of all genes can be found in

Fig. 2A. We then designed primer pairs that bind 50–
75 bp up- and downstream of the mutations of interest

and calculated optimal multiplexes (see Section 2 for

details). Our custom panel contained a total of 43 pri-

mer pairs, which were distributed to six multiplex reac-

tions containing 5–9 primer pairs each (see Table S1

for primer sequences and associated mutations). We

tested different amounts of cfDNA as input and found

that 500 pg per multiplex reaction was sufficient for

our nested PCR protocol (see overview in Fig. 2B and

Section 2). The purified and pooled amplicons were

sequenced on an Illumina MiSeq by 150 bp single-end

sequencing. In parallel, we developed a custom bioin-

formatic pipeline for the analysis of sequencing results

(Fig. 3A). This pipeline comprises four consecutive

steps. First, in the quality control step, reads with low

sequencing quality are discarded. In the second step, all

nucleotide variants across all reads of the same ampli-

con are detected and quantified. To discriminate PCR

or sequencing artifacts from true genetic variants, we

developed a robust linear regression model that we

applied to each individual amplicon. Alterations identi-

fied as true variants by the model were then matched

to the COSMIC database and discarded if not covered.
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Fig. 2. Detection of recurrent mutations in cfDNA with a custom amplicon sequencing workflow. (A) Overview of genes included in the

custom amplicon panel. A total number of 43 amplicons were designed to detect hotspot mutations in 18 genes frequently altered in

colorectal cancer, including genes related to DNA damage, cell cycle, RAS signaling, TGF beta signaling, Wnt signaling, PI3K/AKT signaling,

as well as four genes related to drug metabolism. (B) Experimental workflow of custom amplicon sequencing. Mutational hotspots of

interest were selected in COSMIC database and literature, amplicon primers were then designed with Primer3, and multiplexes were

determined with MULTIPLX 2.1. A two-step nested PCR workflow was established, including pre-amplification and addition of sequencing

adapters before PCR clean-up and subsequent sequencing on MiSeq (Illumina).
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Reads generated with Illumina MiSeq were mapped to the human reference genome, and low-quality reads were excluded before variant

identification by comparison of reads and reference. Allele frequency was calculated, and variants were filtered by signal-to-noise analysis.

Subsequently, variants were annotated with metadata from public databases. Importantly, variants not present in the COSMIC database

were filtered out. With this set of mutations, further analyses regarding mutational patterns or the development of mutations over time

were performed. (B) Distribution of reads on amplicons. The number of reads mapped to each amplicon region is shown for all 43

amplicons. Data from all cfDNA samples were used for this analysis. (C) Number of mutations per sample. Only mutations with positive

signal-to-noise ratio and present in COSMIC database were considered true somatic mutations. (D) Association between number of

mutations found per amplicon and sequencing depth. Raw mutations were used for this analysis without any filter steps. (E) Correlation of

replicates. Two independent replicates were analyzed, starting from cfDNA isolation from the plasma. Shown are the allele frequencies of

detected mutations in replicate 1 vs. replicates 2 of 19 analyzed patients.
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By this bioinformatic approach, we assured that only

highly confident alterations previously found in cancer

tissues are reported.

3.3. Functional validation of the amplicon

sequencing assay

We tested our amplicon panel in genomic DNA of can-

cer tissue and cell lines, as well as cfDNA of patients

with CRC. First, we evaluated the performance of indi-

vidual amplicons with our panel. Mapping of sequenc-

ing reads to the amplicons showed a continuous

distribution of sequencing depth between amplicons

(median 7576, minimum 503, maximum 20 809)

(Fig. 3B). We found that the number of mutations iden-

tified varied between the different samples (Fig. 3C).

Also, we noticed a correlation between number of

sequenced reads and number of mutations per amplicon

(Fig. 3D). Next, we tested the sensitivity of our method

to detect specific alterations. To this end, we mixed

sheared genomic DNA (fragment size 200–300 bp) from

two CRC cell lines (HT29, HCT116) in different ratios.

Both cell lines have distinct, monoallelic genetic alter-

ations that can be detected with our amplicon panel. As

shown in Fig. S1A, we could reliably identify mutant

alleles of HCT116 at a concentration of 1.25% in the

total genomic DNA mix, which corresponds to a

mutant allele frequency of approximately 0.6%.

We then used our amplicon panel on genomic DNA

from formalin-fixed paraffin-embedded primary CRC

tissues (Fig. S1B). We could detect all RAS mutations

previously found by Sanger sequencing, except for two

KRAS mutations in Exon 4, which were not covered by

the panel. Finally, we tested the reproducibility of our

experimental and analysis pipeline by performing ampli-

con sequencing on independent biological replicates of

19 cfDNA samples, starting from cfDNA isolation from

plasma. We show that mutations that occurred at an

allele frequency > 0.5% could be detected as indicated by

a strong correlation between mutant allele frequencies of

the same genetic alterations from independent replicates

(Fig. 3E). In summary, our quality control experiments

indicate that our custom amplicon sequencing method is

functional in both genomic and cfDNA. Furthermore,

we identified thresholds for mutant allele frequencies that

enable the detection of genetic alterations with high con-

fidence.

3.4. Mutational patterns in cfDNA are patient-

specific and highly recurrent

Next, we used our custom amplicon panel to analyze

mutational patterns in a cohort of 34 patients with

advanced CRC, for which serial plasma samples were

available. The patients received a chemotherapy back-

bone consisting of 5-fluorouracil with or without oxali-

platin or irinotecan. In addition, most patients also

received treatment with antibodies targeting Vascular

Endothelial Growth Factor (VEGF) or Epidermal

Growth Factor Receptor (EGFR). Detailed patient

characteristics can be found in Table 1. Within the

cohort, 14 patients had a radiologic stable disease or

partial remission while the others had disease progres-

sion between two consecutive blood sampling time

points. Amplicon sequencing of cfDNA demonstrated

Table 1. Patient, treatment, and tumor baseline characteristics.a. 5-

FU, 5-fluorouracil or capecitabine; FOLFOX, 5-FU + oxaliplatin;

CAPOX, capecitabine + oxaliplatin; FOLFIRI, 5-FU + irinotecan;

FOLFIRINOX, 5-FU + oxaliplatin + irinotecan

Parameter

All CRC,

n = 104

mCRC cohort,

n = 34

Gender

Male 74 (71%) 25 (74%)

Female 30 (29%) 9 (26%)

Age (years) 65 (34–88) 65 (36–88)

Stage

I 9 (9%)

II 10 (10%)

III 25 (24%) 3 (9%)b

IV 60 (58%) 31 (91%)

Tumor location

Colon cancer 45 (43%) 15 (44%)

Rectal cancer 58 (56%) 19 (56%)

Both entities 1 (1%)

Therapy setting

Surveillance 24 (23%)

Adjuvant/neoadjuvant 21 (20%)

Palliative 59 (57%) 34 (100%)

Metastases (only stage IV)

Hepatic 47 (78%) 24 (71%)

Pulmonary 28 (47%) 18 (53%)

Peritoneal carcinomatosis 14 (23%) 4 (12%)

Pleural carcinomatosis 5 (8%) 2 (6%)

Osseous 4 (7%) 1 (3%)

Other 5 (8%) 0 (0%)

Therapy regimen

5-FU 17 (16%) 6 (18%)

FOLFOX/CAPOX 18 (17%) 4 (12%)

FOLFIRI 37 (36%) 22 (65%)

FOLFOXIRI 3 (3%) 2 (6%)

Irinotecan 2 (2%) 0 (0%)

No chemotherapy 25 (24%) 0 (0%)

With anti-VEGF-antibody 25 (24%) 16 (47%)

With anti-EGFR-antibody 27 (26%) 13 (38%)

a n is shown for categorical variables with percentage in parenthe-

ses. For continuous variables, median is shown with range in

parentheses. b These three patients all had an inoperable relapse

of their primaries.
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that 2.41 alterations could be detected on average per

sample (Fig. 4A). These alterations were either recur-

rent (present in serial samples) or sporadic. Alterations

occurred at an allele frequency between 0.5% and

96.7% (median 2.25%). Most mutations were found in

amplicons of TP53. Overall, we observed a trend

toward a higher number of alterations in patients with

disease progression (Fig. 4B). Also, we found that

mutant allele frequencies were significantly higher

(P < 0.001) in patients with progressive disease

compared to those with stable disease or radiologic

therapy response (Fig. 4C), consistent with previous

findings (Forshew et al., 2012; Gray et al., 2015; New-

man et al., 2014). Using APC as an example case, we

observed that the distribution of mutations in cfDNA

is very similar to the mutational spectrum found in

primary CRC tissue (Fig. S2) (Forbes et al., 2017).

For a small group of patients, we were able to

obtain up to four consecutive blood samples during

the course of the therapy, corresponding to a
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Fig. 4. Mutational patterns in cfDNA are patient-specific and highly recurrent. (A) Heatmap of all mutations detected in cfDNA at two

subsequent time points during the course of treatment. Patients’ disease was categorized as regressing, stable, or progressive according to

radiologic imaging between the two time points assessed, several mutations were recurrent in both samples, while others were only noted

in either time point 1 or 2 (sporadic). (B) Mutation count under therapy. Tumor status was categorized as regressive, stable, or progressive

by radiologic imaging at the time the sample was taken. (C) Mutant allele frequency of detected alterations according to tumor status.

Tumor status was categorized as regressive, stable, or progressive by radiologic imaging at the time the cfDNA sample was taken. (D)

Development of mutational patterns during the course of treatment. Four cfDNA samples were taken from each patient at different time

points during the course of treatment, and mutations were analyzed. Several mutations were reoccurring between different time points,

while others appeared only at one time point (sporadic). (E) Comparison of mutant allele frequencies of recurrent and sporadic mutations.
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treatment period of approximately 1 year. For all

patients in this cohort, we detected both recurrent and

sporadic mutations (Fig. 4D). Recurrent mutations

were more frequent than sporadic mutations and

showed a higher mutant allele frequency (Fig. 4E).

Furthermore, we found the pattern of recurrent muta-

tions to be distinct for each patient and conserved

throughout multiple blood samples.

3.5. Liquid biopsy allows monitoring the clinical

course of CRC patients and reveals resistance

mechanisms

Next, we aimed to analyze how the spectrum of muta-

tions found in serial cfDNA samples corresponds to

the course of treatment in CRC patients. To this end,

we correlated the clinical course with the mutant allele

frequency of specific alterations in cfDNA (Fig. 5). All

four presented cases were initially treated with 5-fluo-

rouracil, folinic acid, irinotecan (FOLFIRI), and

cetuximab and were in stable disease or had tumor

remissions by the time of the first liquid biopsy.

Patient 119 had achieved tumor remission and there-

fore received maintenance treatment with 5-FU and

cetuximab. Two novel mutations occurred in the

cfDNA upon radiologic disease progression. The allele

frequencies of those mutations closely matched the

radiologic extent of disease during the following course

of treatment, as did the CEA levels (Fig. 5A). Accord-

ingly, in patients 324 (Fig. 5B), 24 (Fig. 5C), and 553

(Fig. 5D), allele frequencies increased upon tumor pro-

gression, while regression or stable disease was associ-

ated with stable or decreasing allele frequencies.

Interestingly, liquid biopsies revealed an NRAS muta-

tion (patient 324) and a BRAF mutation (patient 553)

not identified by Sanger sequencing in the patients’

primary tumors. CEA levels were not congruent with

radiologic disease progression and allele frequencies of

mutations in cfDNA in patient 553. Hence, in all pre-

sented cases, we observed that an increase in allele fre-

quency is closely associated with radiologic

progression of the disease. Furthermore, and in con-

trast to the traditional tumor marker CEA, our ampli-

con sequencing assay for cfDNA analysis could also

reveal biological insights into the mechanisms of ther-

apy resistance to targeted therapies.

4. Discussion

In the present study, we describe a flexible experimen-

tal and bioinformatic method to analyze custom-de-

fined gene loci in cfDNA by multiplexed amplicon

sequencing. We applied our method on serial cfDNA

samples from a pilot cohort of 34 CRC patients to

detect recurrent and patient-specific mutational pat-

terns in key cancer genes.

Over the past decade, significant progress has been

made in the analysis of cfDNA from cancer patients.

Two recent studies have comprehensively dissected the

mutational landscape of cfDNA in large cohorts of

patients with CRC (Strickler et al., 2018) and other

advanced tumors (Zill et al., 2018). Both studies

demonstrate that the composition of mutations is

highly similar between cfDNA and the corresponding

primary tumors. Therefore, detection and analysis of

cfDNA have been proposed as a biomarker to monitor

tumor progression, treatment response, and disease

recurrence (Bettegowda et al., 2014; Newman et al.,

2014; Tie et al., 2016). Until now, many different

approaches have been developed to characterize

cfDNA, including the detection of specific mutations

(Haselmann et al., 2018) or the sequencing of a broad

panel of genes (Goodall et al., 2017; Quigley et al.,

2017). Technologies based on both approaches have

been approved by the FDA, that is Guardant360 or

cobas EGFR Mutation Test V2. A major limitation to

their broad clinical application is the diversity of the

genetic landscape of cancers from different tissues.

Particularly, mutations that occur only in selected can-

cer types and at medium frequencies can represent

potentially druggable conditions, but are not covered

by commercial gene panels. Examples include muta-

tions in RNF43 (Steinhart et al., 2017) or PMS2

(Khagi et al., 2017), which could mark clonal subtypes

that may make the tumor responsive to specific agents,

such as checkpoint inhibitors. Hence, a main challenge

is to customize the analysis of cfDNA to specific

tumor types or defined sets of mutations for explora-

tory analysis. In this regard, our study provides a

methodological framework that enables the design and

bioinformatic analysis of custom amplicon panels

using open-source software tools. We used our method

to design a gene panel tailored for colorectal cancer,

including amplicons that cover hotspot mutation sites

in oncogenes and tumor suppressor genes, as well as

rare mutations in genes relevant for drug metabolism.

We used our custom amplicon panel to analyze

sequential cfDNA samples of a pilot cohort of patients

with advanced CRC. In accordance with previous

studies, we found that most genetic alterations could

be found in genes that are known to be highly

mutated, such as APC or TP53. Furthermore, we

demonstrate that alterations in specific genes, such as

BRAF or KRAS (Diaz et al., 2012), occur de novo in

cfDNA during treatment failure, thereby revealing

genetic alterations that can potentially mediate drug
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resistance. In addition, our data show that the mutant

allele frequency correlates with disease progression.

Interestingly, we observed that the occurrence of indi-

vidual mutations remained stable across the course of

the therapy. These distinct mutations could be part of

a stem mutational signature which is conserved across

cfDNA, primary tumors, and metastasis and has been

described for a case of breast cancer (Murtaza et al.,

2015). Our results indicate that such a signature can

be found in many patients with CRC. This application

might be of particular interest for patients who do not

have elevated tumor markers in spite of a high disease
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Fig. 5. Amplicon sequencing of cfDNA allows monitoring the clinical course of colorectal cancer patients. (A) Patient 119 had received

FOLFIRI and cetuximab for metastasized rectal cancer. The patient was in a stable situation and underwent maintenance treatment with 5-

FU and cetuximab by the time of the first liquid biopsy. When the patient experienced radiologic disease progression, treatment was re-

escalated to FOLFIRI and cetuximab, which led to stable disease in the next restaging and progressive disease another 3 months later.

Accordingly, novel mutations were discovered by the time of first progression that decreased in allele frequency during stable disease and

increased upon radiologic disease progression. (B) Patient 324 had a local recurrence of rectal cancer and hepatic metastases. Under

palliative combination treatment with FOLFIRI and cetuximab, the patient had a stable disease by the time of liquid biopsy 1. When he

experienced disease progression, liquid biopsy 2 showed increased allele frequencies of several mutations, including an NRAS mutation that

had not been detected by Sanger sequencing of the primary tumor. The treatment was switched to FOLFOX + bevacizumab, leading to a

decrease in allele frequency, before another radiologic disease progression and, accordingly, rising allele frequencies were observed. CEA

levels were not available for this patient. (C) Patient 24 had both a colon cancer with hepatic metastases and a synchronous non-small-cell

lung cancer. Each tumor manifestation was histologically proven. The colorectal cancer was RAS wild-type according to Sanger sequencing,

and the lung cancer was RAS-mutated. Nevertheless, the patient received FOLFIRI and cetuximab. During the course of treatment, a

PIK3CA mutation that was also identified by amplicon sequencing in material from the colon cancer sank in allele frequency before

radiologic imaging proved regression of the colorectal cancer (and progression of the lung cancer). Upon progress of the colon cancer, the

mutant allele frequency increased accordingly. (D) Patient 553 was treated for metachronous liver metastases of RAS/RAF wild-type rectal

cancer with FOLFIRI and cetuximab. After initial tumor regression, allele frequency of BRAF V600E and APC R564* mutations rose

significantly after radiologic tumor progression, while other mutations, likely from a different tumor subclone, remained on low levels.
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burden, which in case of CRC accounts for 30% of

patients (Liu et al., 2014). However, we are aware that

our amplicon sequencing-based method works best in

gastrointestinal cancers that have a limited set of fre-

quently mutated genetic loci, as it is the case for CRC

or pancreatic adenocarcinoma. For these cancer types,

compact amplicon panels can be designed that cover

most hotspot positions. For other cancers, such as gas-

tric or hepatocellular cancer, the mutational load is

more equally distributed to many loci, which requires

the design of larger amplicon panels for sufficient cov-

erage. This will, however, lead to an increase in cost

and technical complexity. An additional goal of our

custom amplicon panel was the detection of genetic

alterations in genes that are not commonly covered by

commercial panels. These include genes involved in 5-

fluorouracil metabolism or regulators of DNA repair.

Analysis of cfDNA in our cohort shows that muta-

tions in these genes are rarely found in cfDNA. How-

ever, we could detect the de novo occurrence of a

mutation leading to a premature stop codon in PMS2

and novel mutations in TYMP and DYPD. The func-

tional relevance of these mutations is currently

unknown. Therefore, a major challenge for the future

is the functional annotation of these rare mutations, in

order to understand their impact on tumor biology

and drug resistance. These insights will enable the pro-

found interpretation of sequencing results from

cfDNA in cancer patients.

Although our method enables the flexible design of

custom amplicon panels, it still has several limitations.

First, calculation of mutant allele frequencies is biased

by the presence of genomic DNA from nontumorous

cells, which can be increased by unwanted cell lysis.

To minimize the extent of contamination by genomic

DNA, we selected storage and sample processing con-

ditions that prevent cell lysis, based on findings from

other studies (Norton et al., 2013; Risberg et al., 2018;

Wong et al., 2013). However, since the time to sample

processing varied between 1 and 16 h in our cohort,

we are unable to exclude that the measured cfDNA

concentrations might be slightly biased by the different

storage times. Furthermore, since amplicon sequencing

is based on pre-amplification by PCR, results can be

influenced by PCR artifacts and sequencing errors. An

effective method to reduce these technical errors is the

use of unique molecular identifiers (UMI). For the

analysis of cfDNA, methods have been developed to

introduce UMI during first PCR amplification cycles

by using barcoded primers. These approaches, for

instance Safe-SeqS (Kinde et al., 2011) or SiMSen-Seq

(St�ahlberg et al., 2017), have been shown to suppress

PCR errors and enable more precise counting of

mutant allele copies. A drawback of using UMIs is

that a vastly higher sequencing depth is required to

discriminate between different UMI families, which

will increase the costs of the method. However, as

sequencing costs will further decrease in the near

future, the integration of UMIs in our approach will

be feasible. Another limitation of our methods is that

it is currently unable to detect copy number alterations

or gene fusions, which can be analyzed by other meth-

ods (Strickler et al., 2018; Zill et al., 2018) and provide

valuable insights into tumor biology (Stover et al.,

2018; Weiss et al., 2017). Lastly, the prediction of pri-

mer pairs that will function in multiplex assays is lim-

ited with the currently available bioinformatic tools

and we had to discard several primer pairs because

they did not yield a functional amplicon. In another

case, we were unable to differentiate between muta-

tions and PCR errors due to a poly C region within

the MSH6 amplicon region. Therefore, in-depth testing

and experimental validation of primer pairs will be

necessary when establishing novel custom amplicon

panels. In spite of these limitations, we could show by

multiple quality control experiments that our method

can reliably detect cancer mutations in cfDNA.

5. Conclusions

In summary, we describe a flexible method to analyze

mutations in cfDNA by custom amplicon panels. We

show that this method can be used to detect recurrent

mutational patterns as well as de novo mutations in

cfDNA in a pilot cohort of patients with metastatic

CRC, which enables the monitoring of therapy

response and development of drug resistance. Finally,

we show that our method can be applied to explore

novel mutations at genetic loci that are not covered by

commercial amplicon panels. The integration of UMI

for error suppression and the validation of the method

in a larger, clinically defined cohort of cancer patients

will be necessary to further improve our workflow.
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