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Abstract: Hydro(solvo)thermal reactions of Cd(NO3)2, N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-
naphthalimide (NI-mbpy-34), and 5-bromobenzene-1,3-dicarboxylic acid (Br-1,3-H2bdc) afforded a
luminescent coordination polymer, {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]·2H2O}n (1). Single-crystal
X-ray diffraction analysis showed that 1 features a two-dimensional (2-D) gridlike sql layer with the
point symbol of (44·62), where the Cd(II) center adopts a {CdO5N2} pentagonal bipyramidal geometry.
Thermogravimetric (TG) analysis confirmed the thermal stability of 1 up to about 340 ◦C, whereas
XRPD patterns proved the maintenance of crystallinity and framework integrity of 1 in CH2Cl2,
H2O, CH3OH, and toluene. Photoluminescence studies indicated that 1 displayed intense blue
fluorescence emissions in both solid-state and H2O suspension-phase. Owing to the good fluorescent
properties, 1 could serve as an excellent turn-off fluorescence sensor for selective and sensitive Cr(VI)
detection in water, with LOD = 15.15 µM for CrO4

2− and 14.91 µM for Cr2O7
2−, through energy

competition absorption mechanism. In addition, 1 could also sensitively detect Cr3+, Fe3+, and
Al3+ ions in aqueous medium via fluorescence-enhancement responses, with LOD = 2.81 µM for
Cr3+, 3.82 µM for Fe3+, and 3.37 µM for Al3+, mainly through an absorbance-caused enhancement
(ACE) mechanism.

Keywords: coordination polymer; Cr(VI) oxyanion; luminescence sensor; trivalent metal ion

1. Introduction

With the advanced development of modern society, rapid industrial and agricultural
productions and rich human activities have increasingly brought about severe chemical
pollution. Among various chemical pollutants, heavy metal ion based inorganic contami-
nates are of higher concern compared with other contaminants such as organic pollutants
due to their nondegradability and bioaccumulation [1]. Moreover, heavy metal ions are
well-known poisonous contaminants in water due to their high toxicity, which could
cause serious environmental and ecological harm and cause a detrimental effect on human
health [2]. For example, chromium exists in aquatic environments usually in the forms
of Cr(VI) oxyanions, i.e., dichromate (Cr2O7

2−) and chromate (CrO4
2−) ions, and/or free

cation, i.e., trivalent Cr(III) ion. The Cr(VI) oxyanions are highly carcinogenic and muta-
genic, causing hereditary genetic defects and various types of cancers [3–5]. While the
Cr(III) ion is essentially harmless due to its low toxicity, it may, however, cause mutations
and malignant cells when excessive accumulation occurs [5–7]. The permissible limit for
Cr(VI) in drinking water is set as 50 µg/L by the World Health Organization (WHO) [8].
Iron and aluminum are two ubiquitous metals widely used in daily applications around
human living environments [9]. Trivalent Fe(III) and Al(III) cations are the forms of iron
and aluminum that can enter human body. As one of the most important elements for living
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organisms, Fe(III) ion influences a variety of vital bioprocesses such as electron transfer,
oxygen storage, oxygen metabolism, among others [10–12]. The deficiency or excess of
Fe(III) ion is harmful to human health, resulting in some diseases [13–15]. Additionally,
Al(III) ion in body fluids is toxic to humans and will induce harmful effects that cause
diseases such as Alzheimer’s disease and Parkinson’s disease when its content in the body
is over an acceptable standard [9,12,16]. The tolerable daily ingestion of Al3+ for the human
body is about 3–10 mg/day [7] and the permissible level in drinking water is set as 7.41 µM
by the WHO [17].

In recent years, the sensing and detection of chemical pollutants has attracted tremen-
dous interest from many researchers. Benefitting from their unique merits, low-cost,
easy manipulation, instant, visual identification, excellent sensitivity, and high selectiv-
ity [7,12], fluorescence based detection has gained considerable attention among various
conventional instrumental techniques. Nowadays, various advanced fluorescence sensory
materials have emerged, such as organic dyes [18], quantum dots (QDs) [19,20], and carbon
dots (CDs) [21,22], among others. Of particular note is one kind of organic–inorganic
hybrid material called coordination polymers (CPs), fabricated by metal ions or clusters
as nodes and bridging organic ligands as linkers through the connection of coordination
bonds. As a matter of fact, luminescent CP-based chemo/biosensors have been actively
used to detect small molecules, explosives, ions, gas, and pH, among others, and several
reviews have been devoted to the sensory properties [23–29]. Recently, we have made
advances in fluorescence detection of hazardous chemical contaminants by using lumines-
cent organic–inorganic hybrid materials as sensory platforms [30–39]. Herein, we report a
new Cd(II) based luminescent CP, {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]·2H2O}n (1), where
NI-mbpy-34 = N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide, Br-1,3-H2bdc
= 5-bromobenzene-1,3-dicarboxylic acid. The solid-state structure of 1 has a simple two-
dimensional (2-D) layer structure adopting a gridlike net with the point symbol of (44·62),
which is highly stable in water. The remarkable emission properties make 1 a functional
multiresponsive fluorescence sensor for Cr(VI) oxyanions detection via a quenching effect,
and Cr(III), Fe(III), and Al(III) sensing via an enhancement response in aqueous medium,
with high sensitivity and remarkable selectivity.

2. Experimental Section
2.1. Materials and Characterization

All of the chemicals and solvents were acquired from market sources (MATRIX, UL-
TRA, ACROS, PanReac Applichem, SHOWA, Fluka, VETEC, ALFA, MACRON, J.T. Baker,
SIGMA ALDRICH), and used without further processing. Ligand NI-mbpy-34 was synthe-
sized according to the previously reported literature [40]. Thermogravimetric (TG) analyses
were performed using a Thermo Cahn VersaTherm HS TG analyzer (Thermo, Newington,
NH, USA) under flow nitrogen with a heating rate of 5 ◦C/min. X-ray powder diffraction
(XRPD) patterns were measured using a Shimadzu XRD-7000 diffractometer (Shimadzu,
Kyoto, Japan) with a graphite monochromatized Cu Kα radiation (λ = 1.5406 Å) at 30 kV
and 30 mA. Infrared (IR) spectroscopic measurements were performed on a Perkin-Elmer
Frontier Fourier transform infrared spectrometer (Perkin-Elmer, Taipei, Taiwan) using at-
tenuated total reflection (ATR) technique. Fluorescence spectroscopic measurements were
performed at room temperature using a Hitachi F7000 fluorescence spectrophotometer
(Hitachi, Tokyo, Japan) equipped with a 150 W xenon lamp as an excitation source. UV-Vis
absorption spectra were recorded at room temperature using a JASCO V-750 UV/VIS spec-
trophotometer (JASCO, Tokyo, Japan). Elemental microanalyses (C, H, N) were performed
on an Elementar Vario EL III analytical instrument (Elementar, Langenselbold, Germany).
Ultrasonic agitation of suspensions was conducted using a Qsonica Q125 instrument. X-ray
photoelectron spectroscopy (XPS) analyses were performed on an ULVAC-PHI PHI 5000
VersaProbe/Scanning ESCA Microprobe instrument (ULVACPHI Inc., Kanagawa, Japan).
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2.2. Synthesis of {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]·2H2O}n (1)

A DMF solution (2 mL) of NI-mbpy-34 (9.1 mg, 0.025 mmol), an aqueous solution
(2 mL) of Cd(NO3)2·4H2O (15.4 mg, 0.050 mmol), and a DMF solution of Br-1,3-H2bdc
(12.3 mg, 0.050 mmol) were sequentially added into an acid digestion bomb placed in
a Teflon-lined stainless steel autoclave. The mixture was kept inside a furnace at 80 ◦C
for 48 h and then cooled to ambient temperature. Yellowish crystals suitable for X-ray
diffraction were collected after washing with distilled water and ethanol, and dried at
room temperature. Yield: 60% based on NI-mbpy-34 (12.1 mg, 0.015 mmol). IR (ATR,
cm−1): 3072, 1590, 1460, 1333, 992, 889, 723. Anal. Calcd. for C31H24BrCdN3O9: C, 48.01;
H, 3.09; N, 5.42%. Found: C, 48.24; H, 2.94; N, 5.41%. The phase purity of the bulky
sample was confirmed by the closely matched XRPD patterns between the simulated
pattern, calculated from single-crystal diffraction data and the experimental pattern of
as-synthesized 1 without grinding (Figure S1). Of particular note, the XRPD patterns of the
same microcrystalline sample after grinding showed alternations in intensity, and in some
peak positions, compared to the simulated XRPD patterns. This is tentatively attributed to
the influences of either the variation in preferred orientation of the powdered sample [30]
or the partial crystal structure distortion caused by grinding [41] or both.

2.3. Single-Crystal X-ray Structure Determinations

The diffraction data were collected using a Bruker D8 Venture diffractometer config-
ured with a PHOTO100 CMOS detector at 150(2) K, equipped with a graphite monochro-
mated Mo Kα radiation (λ = 0.71073 Å). The structures were solved by direct methods with
the SHELXTL program [42] and refined by full-matrix least-squares methods on F2 using
the SHELXL-2014/7 [43], incorporated in WINGX [44] crystallographic collective package.
Non-hydrogen atoms were refined with anisotropic displacement parameters, except where
noted. Carbon-bound hydrogen atoms were calculated in ideal positions and refined as
riding mode. Oxygen-bound hydrogen atoms were structurally evident in the difference
Fourier map. All of the hydrogen atoms were refined with isotropic displacement parame-
ters, Uiso, constrained to be 1.2 or 1.5 times Ueq of the carrier atom. Experimental details for
X-ray data collection and the refinements are summarized in Table 1. Hydrogen-bonding
parameters are shown in Table S1. CCDC 1991627 (1) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on 19
March 2020).

Table 1. X-ray data collection and structure refinement for 1.

Empirical Formula C31H24BrCdN3O9

Mw 774.84
Crystal system Triclinic

Space group P1
a, Å 10.169(3)
b, Å 11.285(4)
c, Å 14.502(4)
α, ◦ 97.526(10)
β, ◦ 107.465(10)
γ, ◦ 108.503(10)

V, Å3 1457.8(8)
Z 2

T, K 150(2)
λ, Å 0.71073

Dcalc, g cm−3 1.765
F000 772

µ, mm−1 2.182
Reflns collected 44,573

Unique reflns (Rint) 5934(0.0424)

www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Cont.

Empirical Formula C31H24BrCdN3O9

Obsd reflns (I > 2σ (I)) 5201
Params 406

R1
a (I > 2σ (I)) 0.0289

wR2
b (I > 2σ (I)) 0.0601

R1
a (all data) 0.0368

wR2
b (all data) 0.0646

GOF on F2 1.152
∆ρmax, ∆ρmin, e Å−3 1.015, −0.561

a R1 = ∑ ||Fo | − |Fc||/∑|Fo |; b wR2 = {∑ [w(Fo
2 − Fc

2)
2
]/∑ [w(Fo

2)
2
]}1/2.

3. Results and Discussion
3.1. Synthsis and Crystal Structure of {[Cd(Br-1,3-bdc)(NI-mbpy-34)(H2O)]·2H2O}n (1)

Hydro(solvo) thermal reactions of Cd(NO3)2·4H2O, Br-1,3-H2bdc, and NI-mbpy-34
in DMF/H2O media afforded 1 as yellowish crystals (Scheme 1). Single-crystal X-ray
structure analysis reveals that the crystal structure of 1 belongs to the triclinic space group
P1. The asymmetric unit contains one Cd(II) center, one Br-1,3-bdc2− dianion, one NI-
mbpy-34 ligand, and one coordination and two lattice water molecules (Figure 1a). The
Cd(II) center adopts a {CdO5N2} pentagonal bipyramidal geometry, where the equatorial
plane is made up of two carboxylate groups of two distinct Br-1,3-bdc2− dianions in one
asymmetric (Cd1–O3 = 2.254(2) Å, Cd1–O4 = 2.753 Å) and one symmetric (Cd1–O5#2 =
2.393(2) Å, Cd1–O6#2 = 2.389(2) Å, #2, x − 1, y, z) chelating modes and one 4-pyridyl
nitrogen atom (naphthalene end) from one NI-mbpy-34 ligand (Cd1–N3 = 2.301(2) Å),
while the two apical positions are located by one coordination water molecule (Cd1–O7
= 2.348(2) Å) and one 3-pyridyl nitrogen atom (imide end) from the other NI-mbpy-
34 ligand (Cd1–N2#1 = 2.354(3) Å, #1, x + 1, y + 1, z + 1). Each Br-1,3-bdc2− dianion
adopts a µ2-Br-1,3-bdc-κO,O′:κO,O′ mode to bridge two Cd(II) centers, where the two
carboxylate groups suit an asymmetric and a symmetric chelating coordination mode
(Figure 1a). Connection of Cd(II) centers by Br-1,3-bdc2− dianions and NI-mbpy-34 ligands
simultaneously forms a two-dimensional (2-D) gridlike layer (Figure 1b), which can be
simplified as a 4-connected sql net with the point symbol of (44·62) (Figure 1c). Two such
gridlike layers with the coordination water molecules oriented face-to-face are linked
together in pair through O–H···O hydrogen bonding interactions (O···O, 2.723(3) and
2.932(3) Å, Table S1) formed between the coordinated water molecules and the carboxylate
oxygen atoms of the Br-1,3-bdc2− ligands (Figure 1d), generating a 2-D hydrogen-bonded
bilayer (Figure 1e). When viewed down the crystallographic [100] direction, there are
small pores with potential sufficient solvent accessible voids of only about 9.8% of the
unit cell volume [45], accompanied by lattice water molecules (Figure 1e). These lattice
water molecules form hydrogen-bonding interactions with each other (O···O, 3.035(5) Å)
and, importantly, with the framework (O···O, 2.839(5) and 2.855(4) Å) to expand the 2-D
hydrogen-bonded bilayers to be the three-dimensional (3-D) hydrogen-bonded network
(Figure 1e,f).

3.2. Chemical Stability and Thermal Properties

The chemical stability of 1 in different solvents including dichloromethane (CH2Cl2),
N,N′-dimethylacetamide (DMAc), N,N′-dimethylformamide (DMF), H2O, methanol
(CH3OH), and toluene was checked. After separately immersing 1 in CH2Cl2, H2O,
CH3OH, and toluene for 24 h, the checked XRPD patterns of so-obtained powdered
samples were very similar to the patterns of as-synthesized 1 after grinding, with slight
differences in peak intensity (Figure 2). This might suggest the preferred orientation effect
or the minor extent of partial distortion of the long range order in 1. However, the checked
XRPD patterns still imply the maintenance of framework integrity and crystallinity, con-
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firming the high stability of 1. In contrast, 1 displayed low stability after immersing in
DMAc and DMF due to the poorly matched XRPD profiles.
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Thermogravimetric (TG) analysis was performed under a nitrogen atmosphere to
examine the thermal stability of 1 (Figure S2). The TG trace of 1 exhibited a weight loss
of 5.4% from room temperature to 69 ◦C, corresponding to the escape of lattice water
molecules (calcd. 4.6%). A gradual weight loss of 1.6% corresponding to the removal of
coordinated water molecules (calcd. 2.3%) followed when the temperature was raised to
approaching 186 ◦C. Then, the TG trace showed the existence of a stable plateau before
the framework began to process a two-step collapse from ca. 340 ◦C to ca. 633 ◦C. Dur-
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ing the decomposition, bromide might react with divalent cadmium to generate CdBr2
(b.p. = 844 ◦C), which would escape at higher temperature. The final residue of 8.4% was
reasonably assigned to the CdO component (calcd. 8.3%).
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3.3. Gas Adsorption Properties of Activated 1

In the crystal structure of 1, there are free void spaces of about 9.8% of the unit cell
volume, hence, the porous properties of activated 1 were investigated by gas adsorption
studies. Prior to gas adsorption experiments, as-synthesized 1 (about 100 mg) was thermally
treated at 100 ◦C under a reduced pressure for 24 h to remove solvent molecules and thus
to give activated 1. For activated 1, N2 adsorption isotherms exhibited no appreciable
uptakes of 5.92 cm3 g−1 STP at P/P0 = 1 and 77 K, whereas CO2 adsorption isotherms
showed negligible uptakes of 11.19 cm3 g−1 STP at P/P0 = 1 and 195 K (Figure S3). The
low N2 and CO2 uptakes of thermally activated 1 might be attributed to the small sufficient
solvent-accessible voids and framework distortion induced pore-reduction, which resulted
in surface adsorption. The latter assumption was supported by the checked XRPD patterns,
which showed obvious differences with the experimental profiles of as-synthesized sample
of 1 (Figure S4).

3.4. Photoluminescence Properties

When excited at λex = 370 nm, the solid-state emission spectrum of NI-mbpy-34
showed an intense emission band centered at 462 nm, which was overlapped with two
further bands as shoulders at around 433 and 480 nm (Figure S5). After irradiation at
λex = 360 nm, Br-1,3-H2bdc emitted an extremely weak solid-state emission centered at
around 468 nm. Comparably, 1 emitted intense blue fluorescence with an emission band
centered at 436 nm in solid-state and 422 nm in H2O suspension-phase upon excitation at
λex = 365 nm. From the band position and shape, the emissions were tentatively assigned to
the intraligand charge transfer of the NI-mbpy-34 ligand perturbed by metal coordination;
this is further supported by the high resemblance in excitation spectra between NI-mbpy-34
and 1.

3.5. Detection of Anions

In view of the high water stability and excellent fluorescence properties of 1 in H2O
suspension-phase, its potential ability to detect anions was explored in water. Anion
detection studies were carried out by separately adding aqueous solutions of NaF and
KmX (Xm− = Cl−, Br−, I−, ClO4

−, CO3
2−, Cr2O7

2−, CrO4
2−, NO3

−, and PO4
3−, m = 1,

2, 3) into the well-prepared H2O suspensions of 1, with a concentration of 1 mM. Upon
excitation at λex = 365 nm, the fluorescence detection results showed that most anions had
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an inconspicuous fluorescence intensity change effect (<10% change) on 1, except for the
CO3

2−, Cr2O7
2−, CrO4

2−, and PO4
3− ions (Figure 3). It is noted that CO3

2− and PO4
3−

caused significant fluorescence enhancement by 63% and 44%, respectively. However, the
two Cr(VI) oxyanions, Cr2O7

2− and CrO4
2−, showed obviously high quenching effects

with an efficiency up to 97% and 99%, respectively, (quenching efficiency (%) = (I0 − I)/I0
× 100%, where I0 and I are the maximum fluorescence intensities of 1 before and after
addition of a quencher). Therefore, it is suggested to use the fluorescence quenching of 1 to
detect trace amounts of Cr2O7

2− and CrO4
2− ions in water media. The anti-interference

ability of 1 toward Cr2O7
2− and CrO4

2− was examined with the existence of different
competitive anions in equal concentration. The competition experiments clearly indicated
that Cr2O7

2− and CrO4
2− both retained high quenching ability to almost completely

turn off the fluorescence of 1 when the other interference anions are present (Figure 4),
implying high selectivity of 1 toward Cr2O7

2− and CrO4
2− over others perturbed anions

in water media.
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The sensitivity of Cr(VI) oxyanions detection in water media can be evaluated by
quantitative analysis and limit of detection (LOD) values. The concentration-dependent
fluorescence intensity of 1 was determined by gradually adding different concentrations
of Cr(VI) oxyanion into well-dispersed H2O suspensions of 1. As observations, the flu-
orescence intensity of 1 gradually decreased with increasing concentration of Cr2O7

2−

and CrO4
2− (Figure 5a,b), indicating that the fluorescence quenching of 1 caused by the
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introduction of Cr2O7
2− and CrO4

2− ions can be quantified. It is also noted that the fluo-
rescence intensity (λem = 414 nm) versus the concentration of Cr2O7

2− and CrO4
2− can be

well fitted to the first-order exponential decay (Figure S6), suggesting a diffusion-controlled
fluorescence quenching. The fluorescence quenching efficiencies were further analyzed by
a Stern−Volmer analysis based on the equation: I0/I = 1 + KSV[Q], where I0 and I are the flu-
orescence intensities before and after the addition of analytes, respectively, [Q] is the molar
concentration of the analyte (mM), and KSV is the Stern−Volmer quenching constant (M−1).
The Stern–Volmer plots exhibited good linear correlations at low concentrations (inset in
Figure 5c,d), which gave the KSV values of 5.56× 103 M−1 for Cr2O7

2− and 1.32 × 104 M−1

for CrO4
2−. Furthermore, the Stern–Volmer plots displayed upward deviation from linear-

ity at high concentrations (Figure 5c,d), as a result of the combination of a dynamic energy
transfer mechanism and a static self-absorption mechanism [46,47]. The LOD values for
Cr2O7

2− and CrO4
2− were determined using the equation: LOD = 3σ/k, where σ is the

standard deviation of five blank measurements of fluorescence for the H2O suspensions
of 1 and k is the absolute value of the slope of the calibration curve at low concentrations.
The LOD values for Cr2O7

2− and CrO4
2− were determined to be 14.91 (3.22) and 15.15

(1.76) µM (ppm), respectively, (Figure S7). Owing to the excellent anti-interference ability
and high KSV and lower LOD values, 1 can be an effective fluorescence sensor displaying
high detection selectivity and sensitivity toward Cr2O7

2− and CrO4
2− in water media.
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3.6. Detection of Metal Ions

The influence of different metal ions on the fluorescent properties of 1 in H2O
suspension-phase was also investigated through similar procedures by adding well-
prepared aqueous solutions of metal ions, including M(NO3)n (Mn+ = Ag+, Al3+, Mg2+,
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Ca2+, Co2+, Cr3+, Cu2+, Fe3+, Na+, K+, Mn2+, Ni2+, and Pb2+, n = 1, 2, 3), into the H2O sus-
pension of 1, with a concentration of 1 mM. Upon excitation at λex = 365 nm, interestingly,
trivalent metal ions of Cr3+, Fe3+, and Al3+ have striking enhancement responses of 10.9,
5.4, and 5.4 times on the fluorescence intensity of 1 in H2O suspension-phase, while other
mono- and divalent metal ions have no or only minor effects (intensity change ≤ 10%) on
the fluorescence intensity (Figure 6). It is also noteworthy that the addition of metal ions
did not cause significant wavelength shift. To examine the selectivity of 1 toward Cr3+,
Fe3+, and Al3+, the interference experiments were carried out. After adding Cr3+, Fe3+,
and Al3+ ions into the H2O suspension of 1 containing other competitive metal ions in
equal concentration, the fluorescence intensity of 1 in H2O suspension-phase increased
immediately but showed a certain degree of reduction in some cases, with a maximum
of about 43% reduction compared to that without the co-existence of competitive metal
ions (Figure 7). The observations indicated that changes in intensity for sensing Cr3+, Fe3+,
and Al3+ were somewhat negatively affected, but still within acceptable limits, by the
competitive metal ions. As a result, 1 displayed accessible anti-interference ability and
detection selectivity for recognizing Cr3+, Fe3+, and Al3+ over other competitive metal ions.
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To further quantitatively evaluate the fluorescence response of 1 in H2O suspension-
phase toward Cr3+, Fe3+, and Al3+, fluorescence titration for the above three metal ions was
also investigated. It was observed that the fluorescence intensity of 1 in H2O suspension-
phase increased gradually upon incremental addition of the aqueous solutions of Cr3+,
Fe3+, and Al3+ ions (Figure 8a–c). The fluorescence intensity (λem = 414 nm) obeyed
the first-order exponential decay relationship with the concentration of Cr3+, Fe3+, and
Al3+ (Figure 8d–f), suggesting diffusion-controlled fluorescence enhancement. The curvi-
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linear dependence between I and concentration of metal ion conforms to the equation
I = −2611.22 × exp(−[Cr3+]/0.31) + 2845.97 (R2 = 0.9956) for Cr3+ detection, I = −2671.16
× exp(−[Fe3+]/0.90) + 2895.00 (R2 = 0.9909) for Fe3+ detection, and I = −2414.09 ×
exp(−[Al3+]/0.85) + 2590.77 (R2 = 0.9972) for Al3+ detection. Moreover, there is a lin-
ear relationship between the fluorescence intensity of 1 in H2O suspension-phase and
the Cr3+ concentration in the range of 0−0.4 mM, the Fe3+ concentration in the range of
0−0.6 mM, and the Al3+ concentration in the range of 0−0.7 mM (Figure S8), suggesting
that 1 could potentially quantitatively determine Cr3+, Fe3+, and Al3+ ions. Accordingly, the
LOD is calculated to be 2.81 (146.2) µM (ppb) for Cr3+ detection, 3.82 (198.7) µM (ppb) for
Fe3+ detection, and 3.37 (90.9) µM (ppb) for Al3+ detection, through the equation of 3σ/k.
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3.7. Fluorescence-Responsive Sensing Mechanisms

Herein, the possible fluorescence-responsive sensing mechanisms are elucidated. For
Cr(VI) oxyanions detection, the XRPD patterns of 1 treated with Cr2O7

2− and CrO4
2−

in water were closely matched to that of as-synthesized 1 (Figure S9), implying that the
framework integrity of 1 was retained. Thus, the turn-off sensing mechanism could not be
due to the collapse of the framework. Ultimately, the mechanism of the quenching effect
could be interpreted by UV−vis absorption spectroscopy. The UV−vis absorption band of
Cr(VI) oxyanions and the fluorescence emission band of 1 show a small degree of overlap,
suggesting that fluorescence quenching was not caused by energy transfer mechanism
(Figure S10). However, the large extent of overlap between the UV−vis absorption spectra
of Cr2O7

2−/CrO4
2− and the fluorescence excitation spectrum of 1 demonstrates that the

competition of absorption of irradiated light source energy between the Cr2O7
2− and

CrO4
2− ions and 1 leads to the high fluorescence quenching efficiencies.
The XRPD patterns of 1 after being treated with Cr3+, Fe3+, and Al3+ in water were

very similar to that of as-synthesized 1 (Figure S11), suggesting that 1 kept the framework
integrity and crystallinity. This excluded the possibility of framework collapse caused
fluorescence enhancement. Literature has shown that framework–analyte interactions
usually demonstrated one of the most possible mechanisms for fluorescence turn-on
detection toward metal ions [12,13,31,40,48,49]. To verify this assumption, IR and X-ray
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photoelectron spectroscopy (XPS) spectra were measured. Unfortunately, the IR spectra
of 1 did not show significant changes after immersion (Figure S12). Meanwhile, the O 1s
and N 1s peaks in the XPS spectra were almost unchanged (Figure S13). These findings
indicate that there might be no framework–analyte interactions or that such interactions
are too weak to cause spectra change. Thus, the turn-on detection mechanism is not due
to the framework–analyte interactions. Interestingly, the UV–vis absorption spectra of
1 after addition of Cr3+, Fe3+, and Al3+ exhibited significant increase in the absorbance
within the sphere of 300–400 nm (Figure S14), corresponding to the excitation energy used.
The results illustrated that the turn-on detection of 1 toward Cr3+, Fe3+, and Al3+ can be
explained by the absorbance caused enhancement (ACE) mechanism [12,50], meaning that
the M3+-treated 1 would release more energy than pristine 1 to demonstrate turn-on effect
in the emission process.

4. Conclusions

In summary, a luminescent Cd(II) coordination polymer 1 adopting a 2-D gridlike sql
layer has been successfully synthesized. Coordination polymer 1 shows strong fluorescence
emissions in solvent suspension-phase, making them potential candidates to be employed
in sensing Cr2O7

2− and CrO4
2− ions via fluorescence quenching effect and in detecting

Cr3+, Fe3+, and Al3+ ions via fluorescence enhancement response, with high sensitivity
and selectivity. From the fluorescence-sensing mechanism studies, absorption energy
competition and absorbance caused enhancement can, respectively, interpret the quenching
effect toward Cr(VI) oxyanions and the enhancement effect toward Cr3+, Fe3+, and Al3+

metal ions.

Supplementary Materials: The following are available online, Figure S1. Experimental and simu-
lated XRPD patterns for as-synthesized 1. Table S1. Hydrogen-bonding parameters in 1. Figure S2.
TG curve of 1. Figure S3. Gas adsorption isotherms for thermally activated 1 conducted at 77 K
for N2 and 195 K for CO2. Figure S4. XRPD patterns of 1: simulated, as-synthesized, and after
N2 and CO2 adsorption. Figure S5. Fluorescence excitation and emission spectra of NI-mbpy-34,
Br-1,3-H2bdc, and 1 in solid-state, as well as 1 in H2O suspension-phase at room temperature. Fig-
ure S6. Fluorescence intensity traces for the H2O suspensions of 1 upon incremental addition of
Cr2O7

2− and CrO4
2− ions, following the first-order exponential decay. Conditions: λem = 414 nm

(λex = 365 nm). Figure S7. Linear region of fluorescence intensity for the H2O suspensions of 1 upon
incremental addition of Cr2O7

2− and CrO4
2− ions. The following table lists the relevant parameters

of LOD for the H2O suspensions of 1 toward Cr2O7
2− and CrO4

2− ions. Conditions: λem = 420 nm
(λex = 365 nm). Figure S8. Linear region of fluorescence intensity for the H2O suspensions of 1 upon
incremental addition of Cr3+, Fe3+, and Al3+ ions. The following table lists the relevant parameters
of LOD for the H2O suspensions of 1 toward Cr3+, Fe3+, and Al3+ ions. Conditions: λem = 414 nm
(λex = 365 nm). Figure S9. XRPD patterns of 1 before and after immersing in Cr2O7

2− and CrO4
2−

aqueous solutions for 24 h. Figure S10. Spectral overlap between the normalized absorption spectra
of Cr2O7

2− and CrO4
2− in aqueous solutions and the normalized excitation and emission spectra of

1 in H2O suspensions. Figure S11. XRPD patterns of 1 before and after immersing in Cr3+, Fe3+, and
Al3+ aqueous solutions for 24 h. Figure S12. IR spectra of 1 before and after immersing in Cr3+, Fe3+,
and Al3+ aqueous solutions for 24 h. Figure S13. XPS high resolution spectra of O 1s and N 1s of 1
before and after immersing in Cr3+, Fe3+, and Al3+ aqueous solutions for 24 h. Figure S14. UV-vis
spectra of 1 before and after addition of Cr3+, Fe3+, and Al3+.
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