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ABSTRACT Bioactive forms of oral b-lactams were screened in vitro against Mycobacterium
abscessus with and without the bioactive form of the oral b-lactamase inhibitor avibactam
ARX1796. Sulopenem was equally active without avibactam, while tebipenem, cefuroxime,
and amoxicillin required avibactam for optimal activity. Systematic pairwise combination
of the four b-lactams revealed strong bactericidal synergy for each of sulopenem, tebipenem,
and cefuroxime combined with amoxicillin in the presence of avibactam. These all-oral
b-lactam combinations warrant clinical evaluation.
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M ycobacterium abscessus lung disease is treated with an oral macrolide (clarithro-
mycin [CLR] or azithromycin) in combination with several largely underperforming

antibiotics, including parenteral amikacin; one of the two parenteral b-lactams, imipenem
(IPM) or cefoxitin (FOX); and tigecycline (1). Patients are often treated for years until sputum
cultures remain negative for 12 months if culture conversion is achieved. Chemotherapies,
complicated by the need to use injectable drugs, are not only long but often toxic (1, 2).
Treatment is further tangled by widespread inducible resistance to the oral macrolide compo-
nent due to the presence of the ribosome methylase gene erm41, particularly inM. abscessus
subsp. abscessus (3–6). In short, there is no reliable cure for M. abscessus lung disease. Novel,
well-tolerated, bactericidal, and, importantly, oral treatment options are sorely needed (7, 8).

b-Lactams are bactericidal and display overall excellent tolerability profiles (9). However,
IPM and FOX, the standard-of-care carbapenem and cephalosporin, respectively, are adminis-
tered intravenously, limiting their clinical utility given the very long treatment duration required
to control or cure M. abscessus lung disease. They also show modest in vitro activity (10, 11),
leading to poor pharmacokinetic-pharmacodynamic target attainment compared to those
achieved against other bacterial infections.

Different classes of b-lactams, and different members within a class, differentially inhibit
the numerous M. abscessus transpeptidases and other enzymes involved in peptidoglycan
synthesis (12–17). Thus, multiple recent reports have demonstrated the potential of combining
two b-lactams to achieve additive and synergistic effects in vitro (18–22) as well as in vivo (23).

A number of oral b-lactams are in clinical development or in clinical use for other bacterial
infections (24, 25). Furthermore, an oral form (ARX1796) of the b-lactamase inhibitor avi-
bactam (AVI), inhibiting the major b-lactamase MAB_2875 ofM. abscessus (10, 26), recently
entered clinical development (27) (ClinicalTrials.gov identifier NCT03931876).

Here, our goal was to identify oral b-lactam pairs that exert synergistic bactericidal
activity (with or without oral AVI) and can be repurposed to treat M. abscessus lung disease.
First, a collection of the bioactive forms of 22 oral b-lactams, including penems, carbapenems,
cephalosporins, and penicillins, was screened at a single concentration of 12.5mMwith and
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without the bioactive form of AVI at a fixed concentration of 4 mg/mL (14 mM) to identify
antibiotics with attractive anti-M. abscessus growth inhibitory activity (28). Growth inhibition
against the type strain M. abscessus subsp. abscessus ATCC 19977 was measured in 7H9
broth using optical density at 600 nm (OD600) as readout (29). Applying.80% growth inhi-
bition as cutoff, we identified one penem (sulopenem [SUP]), one carbapenem (tebipenem
[TBP]), one cephalosporin (cefuroxime [CXM]), and two penicillins (ampicillin [AMP] and
amoxicillin [AMX]) as active agents. At 12.5 mM, SUP and CXM were equally active with
and without AVI. TBP, AMP, and AMX required AVI for activity (Fig. 1; see Fig. S1 in the supple-
mental material).

To confirm the results from the single-point screen, we determined the MICs of SUP,
TBP, CXM, and AMX (the early-generation penicillin, AMP, was not followed up) with or without
AVI (4 mg/mL). MIC was defined as 90% growth inhibition and derived from dose-response
curves (29) (Table 1; Fig. S2). The MIC of SUP was 2.5 mM and AVI independent. TBP had an
MIC of 4 mM in the presence of AVI. CXM showed a weak AVI dependency, with MICs of
5mM and 10mMwith and without AVI, respectively. AMX exhibited a unique activity profile
with a modest MIC of 25mM in the presence of AVI but a substantially lower MIC50 of 3mM,
similar to the MIC50s of SUP, TBP, and CXM (Fig. S2). AVI alone had no growth-inhibitory activity
(MIC. 100mM). The two injectable comparators, IPM and FOX (which are both AVI independ-
ent [10]), showed MICs of 20 and 30mM as reported (10). (Table 1; Fig. S2).

To confirm the growth inhibitory activity of SUP, TBP1AVI, CXM1AVI, and AMX1AVI in
an orthogonal assay, we determined their MICs against M. abscessus ATCC 19977 by using
the agar dilution method (30) and found agar MICs in the range of broth MICs (Fig. S3), with

FIG 1 Single-point growth inhibition screen of b-lactams with and without 4 mg/mL AVI against M. abscessus
ATCC 19977. A collection of the bioactive forms of 22 oral b-lactams was screened at 12.5 mM. Percent
growth inhibition is shown. Dashed line, 80% growth inhibition. CLR was included as positive control IPM
and FOX as clinically used parenteral comparators. The experiment was carried out twice, yielding similar
results. Compound sources, oral prodrug forms (if applicable), and clinical status are described in Table S1
in the supplemental material.
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the exception of AMX, which, interestingly, had a lower agar than liquid MIC (6 mM versus
25mM).

To determine whether the attractive activity of SUP, TBP1AVI, CXM1AVI, and AMX1AVI
against the type strain M. abscessus subsp. abscessus ATCC 19977 was retained against the
broader M. abscessus complex (31), broth MICs were measured against the reference strains
of the two other subspecies, M. abscessus subsp. bolletii CCUG50184T and M. abscessus
subsp. massiliense CCUG48898T, as well as a panel of clinical isolates, including erm41
macrolide-resistant strains (Table 1; Fig. S2). Potency of the active b-lactams was largely
comparable across the three subspecies of the M. abscessus complex. Again, CXM activity
was 2- to 3-fold enhanced in the presence of AVI, and AMX1AVI displayed a modest MIC90

(Table 1) but substantially lower (3 to 4mM) MIC50 (Fig. S2).
Next, we measured the bactericidal activity in dose-response time-kill experiments (29).

M. abscessus ATCC 19977 cultures were grown in 7H9 and treated with MIC multiples of the
b-lactams for 5 days (in the presence of 4mg/mL AVI when required), and CFU were meas-
ured by plating samples on 7H10 agar. All four b-lactams achieved pronounced reductions
in viable counts, up to 4-log CFU reduction after 3 days of incubation with 8-fold MIC (Fig. 2A).
Interestingly, regrowth was observed in most cultures between days 3 and 5 for the oral
b-lactams and even earlier for the injectables, which we hypothesized was associated with
the limited aqueous stability of b-lactams (32, 33). To test the potential decay hypothesis,
drug concentrations were followed in 7H9 medium over 5 days using high-pressure liquid
chromatography coupled with tandem mass spectrometry (LC-MS/MS) (34). The lactam ring-
containing drugs (i.e., all study drugs but not AVI) were unstable to various extents, mostly in
line with the extent and timing of regrowth of the cultures (Fig. 2B). Half-lives (t1/2) of the
b-lactams in 7H9 ranged from ;0.5 days for the markedly unstable IPM used as comparator
(33) to ;5 days for the most stable SUP (Fig. 2B). Since b-lactams also undergo spontaneous
and enzymatic hydrolysis in plasma (35), we measured stability of the four oral b-lactams and
AVI in mouse plasma to determine which pair would be most suitable for in vivo efficacy in
murine models of M. abscessus infection. We found that TBP, AMX, and AVI have a plasma t1/2
of$24 h (Fig. 2C), indicating that the TBP1AVI and AMX1AVI combinations could be priori-
tized as a case study to determine how these in vitro bactericidal synergies translate in vivo.

TABLE 1 Activity of SUP, TBP, CXM, and AMX without and with 4mg/mL AVI againstM. abscessus complex strainsa

M. abscessus strain
erm41e

sequevar
CLR
susceptibility

SUP TBP CXM AMX
AVIb IPMc FOXc CLRd

MIC MIC+ MIC MIC+ MIC MIC+ MIC MIC+ MIC MIC MIC MIC
Reference strains
Subsp. abscessus ATCC 19977 T28 Resistant 2.5 2.0 25.0 4.0 10.0 5.0 .100 25.0a .100 20.0 30.0 1.6
Subsp. bolletii CCUG50184T T28 Resistant 3.5 2.0 30.0 5.0 20.0 10.0 .100 40.0 .100 30.0 30.0 5.0
Subsp.massiliense CCUG48898T Deletion Sensitive 7.0 5.0 40.0 7.0 30.0 10.0 .100 100.0 .100 40.0 45.0 0.4

Clinical isolatesf

Subsp. abscessus Bamboo C28 Sensitive 3.0 2.5 25.0 4.0 10.0 8.0 .100 40.0 .100 20.0 35.0 0.4
Subsp. abscessus K21 C28 Sensitive 6.3 5.0 40.0 4.0 30.0 20.0 .100 100.0 .100 25.0 40.0 0.5
Subsp. abscessusM9 T28 Resistant 3.0 2.5 35.0 3.5 10.0 5.0 .100 40.0 .100 15.0 35.0 2.5
Subsp. abscessusM199 T28 Resistant 3.0 2.5 25.0 3.0 12.5 8.0 .100 75.0 .100 20.0 35.0 6.0
Subsp. abscessusM337 T28 Resistant 2.0 2.2 30.0 3.0 10.0 8.0 .100 60.0 .100 15.0 30.0 3.0
Subsp. abscessusM404 C28 Sensitive 3.5 2.5 30.0 3.5 20.0 7.0 .100 40.0 .100 20.0 35.0 0.4
Subsp. abscessusM422 T28 Resistant 2.5 2.0 25.0 3.0 10.0 5.0 .100 40.0 .100 12.5 35.0 1.5
Subsp. bolletiiM232 T28 Resistant 2.5 2.0 40.0 3.5 15.0 8.0 .100 50.0 .100 15.0 40.0 2.0
Subsp. bolletiiM506 C28 Sensitive 2.5 2.0 30.0 3.5 15.0 8.0 .100 70.0 .100 18.0 35.0 0.4
Subsp.massilienseM111 Deletion Sensitive 4.0 3.5 35.0 4.0 15.0 10.0 .100 100.0 .100 30.0 35.0 0.4

aCultures were treated with increasing concentrations of b-lactams without (MIC) or with 4mg/mL AVI (MIC1) (28). Values present the concentrations (in micromolar) that
achieved 90% inhibition of growth and are the means of three independent experiments. Note that AMX1AVI achieved 80% inhibition of growth at;10mM (see Fig. S2 in
the supplemental material).

bAVI alone was included showing that the b-lactamase inhibitor did not achieve MIC up to 100mM tested.
cThe clinically used parenteral comparators IPM and FOX were only tested alone, as AVI does not affect activity of these b-lactams (Fig. 1) (10).
dCLR, assay control. Note increased MIC values for CLR-resistant strains.
eerm41, ribosome methylase gene conferring inducible CLR resistance. “C28” and “deletion” sequevars are inactive erm41 alleles and susceptible to CLR. The “T28” sequevar
is functional and confers inducible resistance to CLR (3).
fM. abscessus Bamboo (39), K21 (40), and M strains (41) were reported previously.
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Taken together, these results confirm and extend prior studies showing attractive growth
inhibitory and bactericidal anti-M. abscessus activity of SUP (36), TBP1AVI (28), CXM1AVI
(10), and AMX1AVI (10), suggesting them as repurposing candidates.

To determine potential growth inhibition synergies of the four b-lactams, systematic
pairwise checkerboard analyses were carried out with M. abscessus ATCC 19977 (37). AVI
was included at 4mg/mL in all assays, as at least one partner of each dual combination requires
the b-lactamase inhibitor (Table 2). Interestingly, the three AMX-containing pairs were synergis-
tic, while the other three were additive (Table 2). Synergistic activity of the AMX-containing pairs
was confirmed in checkerboard assays against the broader M. abscessus complex and the clini-
cal isolate collection. TBP and CXM, combined with AMX, retained strong synergistic activity
against all tested strains and isolates, while SUP1AMX was additive against some of the iso-
lates (Table 3).

To determine whether the three synergistic b-lactam pairs also exerted potentiation of
bactericidal activity, time-kill experiments were carried out with M. abscessus ATCC 19977
in 7H9, and the effect of treatment on viability was measured by plating on 7H10 agar
(29). To uncover potential bactericidal synergy, we combined SUP, TBP, or CXM at their
MICs, concentrations that achieve little bactericidal effect (Fig. 2A), with AMX at 10 mM (at
which the drug inhibits 80% growth [Fig. S2]) and 4 mg/mL AVI. Impressively, each of the
three combinations achieved more than 4-log reduction in viable counts after 3 days of
treatment (Fig. 3). In comparison, 8� MIC of each individual b-lactam was required to
achieve a similar degree of killing (Fig. 2). Further reducing AMX concentration to 5 or

FIG 2 Dose-response time-kill curves of SUP, TBP1AVI, CXM1AVI, and AMX-AVI against M. abscessus ATCC 19977 and drug stability in culture medium and
mouse plasma. (A) Time-concentration kill curves. Cultures of M. abscessus ATCC 19977 were treated with MIC (Table 1) and multiples of MICs of SUP (alone), TBP,
CXM, and AMX (in combination with 4 mg/mL AVI) for 5 days, and viability of the cultures was monitored by CFU determination. CLR was included as assay control.
IPM and FOX were included as clinically used parenteral comparators. (B) Stability of the b-lactams tested in panel A and AVI in 7H9 broth over a 5-day incubation
period at 37°C. Percent remaining was calculated relative to time zero concentration (10 mM). Half-life was estimated from the decay curves. (C) Mouse plasma
stability of the four oral b-lactams and AVI over a 1-day incubation period. Experiments in panel A were performed twice independently, generating similar data,
and one representative set is shown. Experiments in panels B and C were carried out twice independently, and means and standard deviations are shown.
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2.5mM still achieved a 4-log reduction after 5 days of treatment, reinforcing the notion that
AMX strongly potentiates the bactericidal activity of SUP, TBP, and CXM. In addition, the
combinations not only killed effectively at lower concentrations than individual b lactams;
they also prevented the regrowth observed in cultures treated with single drugs (Fig. 2A).

In conclusion, four oral b-lactams, SUP, TBP, CXM, and AMX, were identified as bactericidal
against M. abscessus at clinically achievable concentrations. TBP, CXM, and AMX required the

TABLE 2 Checkerboard growth inhibition analysis of pairwise combinations of SUP, TBP,
CXM, and AMX in the presence of 4mg/mL AVI againstM. abscessus ATCC 19977a

b-Lactam

MIC (mM)

FICIc InterpretationdAlonee Combb

SUP 4.0 0.5
0.61 AdditiveTBP 2.5 1.2

SUP 4.0 0.8
0.60 AdditiveCXM 5.0 2.0

SUP 4.0 0.5
0.37 SynergyAMX 25.0 6.0

TBP 2.5 1.5
0.80 AdditiveCXM 5.0 1.0

TBP 2.5 0.5
0.44 SynergyAMX 25.0 6.0

CXM 5.0 0.8
0.28 SynergyAMX 25.0 3.0

aThe experiment was repeated once, yielding similar results.
bMIC of the combination (all in the presence of 4mg/mL AVI, as at least one partner drug requires AVI for activity).
cFractional inhibitory concentration index, calculated using the concentration at which at least 90% growth
inhibition of the cultures was observed. FICI = (concentration of drug A in combination/concentration of drug A
alone)1 (concentration of drug B in combination/concentration of drug B alone).
dFICI,#0.5, synergistic; 0.5 to 1.0, additive;.1.0 to,2, indifferent;$2.0, antagonistic (42).
eMIC of single drugs, with 4mg/mL AVI in the case of TBP, CXM, and AMX.

TABLE 3 Checkerboard growth inhibition analysis of SUP1AMX, TBP1AMX, and CXM1AMX in the presence of 4mg/mL AVI againstM.
abscessus complex strains

M. abscessus strain

SUP+AMX TBP+AMX CXM+AMX

MIC (mM)a of:

FICIb

MIC (mM)a of:

FICIb

MIC (mM)a of:

FICIb
SUP
alone

AMX
alone

SUP
comb

AMX
comb

TBP
alone

AMX
alone

TBP
comb

AMX
comb

CXM
alone

AMX
alone

CXM
comb

AMX
comb

Reference strains
Subsp. abscessus ATCC 19977 2.5 25.0 0.5 7.0 0.48 4.0 25.0 0.4 7.0 0.38 6.3 25 0.5 4.0 0.24
Subsp. bolletii CCUG50184T 2.5 50 0.7 10.0 0.48 4.0 50.0 1.0 4.0 0.33 8.0 50.0 1.5 6.3 0.31
Subsp.massiliense CCUG48898T 4.0 100 1.0 25.0 0.50 8.0 100.0 1.0 10.0 0.22 12.5 100.0 1.5 25 0.37

Clinical isolates
Subsp. abscessus Bamboo 2.5 50.0 0.5 10.0 0.40 4.5 40.0 0.5 5.0 0.24 8.0 50.0 1.5 5.0 0.29
Subsp. abscessus K21 5.0 100.0 1.0 25.0 0.45 5.0 100.0 1.5 12.5 0.43 12.5 100.0 1.5 6.3 0.18
Subsp. abscessusM9 2.5 50.0 0.5 10.0 0.40 4.0 50.0 0.8 6.3 0.33 6.3 50.0 0.8 12.5 0.38
Subsp. abscessusM199 2.5 100.0 0.5 25.0 0.45 4.5 80.0 0.5 10.0 0.24 8.0 100.0 1.5 10.0 0.29
Subsp. abscessusM337 2.0 75.0 0.4 25.0 0.53 4.5 75.0 0.8 12.5 0.34 8.0 75.0 1.5 10.0 0.32
Subsp. abscessusM404 2.0 50.0 0.4 12.5 0.45 4.5 50.0 0.8 6.3 0.30 8.0 50.0 1.0 5.0 0.23
Subsp. abscessusM422 2.5 50.0 0.5 10.0 0.40 4.5 50.0 0.5 6.0 0.23 8.0 50.0 1.5 5.0 0.29
Subsp. bolletiiM232 2.5 50.0 0.8 12.5 0.57 4.5 50.0 1.0 6.3 0.35 8.0 50.0 2.0 6.3 0.38
Subsp. bolletiiM506 2.5 75.0 0.5 15.0 0.40 4.5 75.0 0.5 10.0 0.24 8.0 80.0 1.5 10.0 0.31
Subsp.massilienseM111 2.5 100.0 0.8 25.0 0.57 4.5 75.0 0.8 12.5 0.34 8.0 100.0 1.5 8.0 0.27

aAlone and in combination as described in Table 2.
bFICI,#0.5, synergistic; 0.5 to 1.0, additive (42).
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b-lactamase inhibitor AVI for optimal activity, whereas SUP’s activity was AVI independent.
Pairwise combinations revealed three novel triple combinations (SUP or TBP or CXM with
AMX plus AVI) showing both bacteriostatic and bactericidal synergy. Interestingly, all three
b-lactam pairs contained AMX, which preferentially targets M. abscessus D,D-carboxypepti-
dase (15), whereas the carbapenem TBP was shown to inhibit L,D-transpeptidases LdtMab1

and LdtMab2 (14) and D,D-transpeptidases PonA1, PonA2, and PbpA (12). The specific targets
of SUP and CXM have not been identified. However, similar to TBP, other penems and ceph-
alosporins were also shown to preferentially target L,D- and D,D-transpeptidases (12–14). The
differential inhibition of D,D-carboxypeptidase by AMX and of L,D- and D,D-transpeptidases by
TBP, and possibly SUP and CXM, may provide the mechanistic basis for the observed syner-
gistic effects of the AMX-containing b-lactam couples (38) since they would inhibit different
enzymes of the same cellular process, i.e., peptidoglycan synthesis. In this context, it is inter-
esting to note that AVI was shown to not only interact with the main M. abscessus b-lacta-
mase but also with several L,D-transpeptidases as well as with D,D-carboxypeptidase (13). Oral
forms of SUP and TBP, as well as AVI, are currently in clinical development for other diseases,
and oral CXM and AMX are approved drugs (Table S1). Thus, the compounds and combina-
tions identified in this study present drug candidates that can enter clinical development for
M. abscessus lung disease. It is to note that the number of M. abscessus strains profiled in
this study is relatively small. Follow-up studies with larger strain collections are required to
confirm the results.
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