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Sulfur is an essential element for a variety of cellular constituents in all living organisms.
In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives
of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine
(ms2A). Earlier studies established the functions of these modifications for accurate and
efficient translation, including proper recognition of the codons in mRNA or stabilization
of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts
with cysteine desulfurases, which catalyze the generation of persulfide (an activated form
of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this
activated sulfur to each biosynthesis pathway. Finally, specific “modification enzymes”
activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of
2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-
like post-translational modification system of cellular proteins in eukaryotes. This review
summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA
and the novel roles of this modification in cellular functions in various model organisms,
with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-
containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and
codon usage bias have been proposed to control the translation of specific genes.
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INTRODUCTION
A characteristic structural and functional feature of RNA is
post-transcriptional modification. More than 100 forms of nat-
urally occurring chemical modification have been reported to
date1,2 (Cantara et al., 2011; Machnicka et al., 2013). The roles of
modified nucleosides in tRNA are important and wide-ranging,
and include critical roles in biogenesis, structural stability, codon
recognition, maintenance of reading frame, and identification
elements for the translation machinery (Björk, 1995; Curran,
1998).

The biosynthesis and functions of thionucleosides have
been elucidated mainly by using Escherichia coli, Salmonella
enterica serovar Typhimurium, and Saccharomyces cerevisiae
as model organisms. E. coli tRNAs contain five thionucleo-
sides, 4-thiouridine (s4U) at position 8, 2-thiocytidine (s2C)
at position 32, 5-methylaminomethyl-2-thiouridine (mnm5s2U)
or 5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U) at
position 34, and 2-methylthio-N6-isopentenyladenosine (ms2i6A)
at position 37 (Figure 1). The biosynthesis of these thionu-
cleosides can be divided into two major groups depending on
the involvement of iron–sulfur (Fe–S) cluster biosynthesis. The
thiouridines s4U8 and (c)mnm5s2U34 are synthesized indepen-
dently of Fe–S cluster formation, while s2C32 and ms2i6A37
synthesis is dependent upon Fe–S cluster formation, which suggest
that Fe–S-containing proteins are present in the latter biosyn-
thesis pathways (Figure 2; Lauhon et al., 2004; Leipuviene et al.,
2004).

1http://mods.rna.albany.edu/
2http://modomics.genesilico.pl/

The first step of mobilization of sulfur in both pathways starts
with the activation of the sulfur atom of cysteine by an enzyme,
cysteine desulfurase, IscS (Figure 2). IscS forms an enzyme-bound
persulfide (IscS–SSH) using pyridoxal-5’-phospate (PLP) as a
cofactor and this activated sulfur is transferred to the next accep-
tor protein in each pathway. For the biosynthesis of s4U8 and
(c)mnm5s2U34, the sulfur atom is transferred to specific sulfur-
carrier proteins or a“modification enzyme”(Palenchar et al., 2000;
Ikeuchi et al., 2006). The modification enzymes bind and acti-
vate target tRNA and catalyze the final step of sulfur transfer
to tRNA. For the biosynthesis of s2C32 and ms2i6A37 (Fe–S
cluster dependent pathway), the persulfide generated by IscS is
transferred to the “scaffold” protein IscU, on which the Fe–S
cluster is synthesized, and the Fe–S cluster is then incorporated
into the modification enzymes for ms2i6A37 (and maybe also
for s2C32; Pierrel et al., 2002, 2003, 2004; Jäger et al., 2004).
In ms2i6A synthesis, it was reported that the sulfur atom in
the Fe–S cluster is not the sulfur donor (Forouhar et al., 2013);
therefore, the ultimate sulfur donor in vivo remains to be
determined.

The sulfur atom activated by IscS is also used in molybde-
num cofactor (Moco) and thiamin biosynthesis (Figure 2). These
are sulfur-containing cofactors whose biosynthesis also includes
unique sulfur-carrier proteins. Moco is incorporated into the
active sites of many molybdoenzymes, including nitrate reduc-
tase, sulfite oxidase, and xanthine dehydrogenase (Schindelin et al.,
2001). Moco contains a molybdenum atom and a pterin named
molybdpterin (MPT). In MPT biosynthesis, two sulfur atoms are
incorporated into precursor Z using a protein-thiocarboxylate as a
sulfur donor. Thiamin is an essential cofactor for enzymes involved
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FIGURE 1 | Sulfur-containing tRNA modifications. (A) Secondary
structure of tRNA and positions of thiolated nucleosides in tRNA. (B)

Chemical structure of thiolated nucleosides in E. coli : s4U, 4-thiouridine;
s2C, 2-thiocytidine; xm5s2U, 5-methyl-2-thiouridine derivatives; ms2i6A,
2-methylthio-N6-isopentenyladenosine. (C) Conformation of the xm5s2U:
C3’ -endo form is preferred because of the steric hindrance of the 2-thio
and 2’ -OH groups.

FIGURE 2 | Sulfur flow in the biosynthesis of various sulfur-containing

molecules in E. coli. The sulfur atom in cysteine is first activated by IscS as
a persulfide. The persulfide sulfur on IscS is delivered to acceptor proteins
in each pathway. -SSH: persulfide, -COSH: thiocarboxylate, Fe–S:
iron–sulfur cluster, Moco: molybdenum cofactor.

in carbohydrate and branched-chain amino acid metabolism and
is synthesized from thiazole and pyrimidine moieties (Settembre
et al., 2003). The sulfur atom of the thiazole ring is added in most
bacteria by a system similar to the Moco biosynthetic machinery.

In S. cerevisiae, there are two thiouridines in tRNA, 5-
methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) in cytosolic
tRNAs and 5-carboxymethylaminomethyl-2-thiouridine (cmnm5

s2U34) in mitochondrial tRNAs. The biosynthesis pathway of
2-thiouridine in cytosolic tRNA is Fe–S cluster dependent, while
the mitochondrial pathway is independent of Fe–S cluster for-
mation (Umeda et al., 2005; Nakai et al., 2007). The biosynthesis
of s2U in cytosolic tRNA in the eukaryote utilizes a protein-
thiocarboxylate as intermediate sulfur donor. This pathway is
functionally and evolutionarily related to the ubiquitin-like post-
translational modification system of cellular proteins in eukaryotes
and a similar biosynthesis pathway in archaea was reported
(Humbard et al., 2010; Miranda et al., 2011).

In some thermophiles, 5-methyl-2-thiouridine (m5s2U) [also
called 2-thioribothymidine (s2T)] occurs at position 54 in the
T-loop (Figure 1). Intriguingly, the biosynthesis pathway (Shigi
et al., 2008) is similar to that of cytosolic s2U34 in eukaryotes, and
ubiquitin-like post-translational modification of cellular proteins
has recently been discovered also in the bacteria domain (Shigi,
2012).

In this review, I summarize recent advances with respect to
the characterization of the biosynthesis mechanisms of sulfur
modifications in tRNA, with special reference to 2-thiouridine
derivatives. Up to the time of writing, two major pathways for
the biosynthesis of 2-thiouridine have been reported. These path-
ways differ in terms of the types of modification enzyme and the
ultimate sulfur donor (Table 1). The novel roles of 2-thiouridine
in cellular functions have been revealed by new techniques includ-
ing genome-wide analyses in some model organisms. Interestingly,
each biosynthesis pathway to sulfur-containing molecules has been
suggested to be mutually modulated via sulfur trafficking and
translational control of specific genes by 2-thiouridine derivatives
in tRNAs.

FUNCTIONAL PROPERTIES OF 2-THIOURIDINE BASED ON ITS
STRUCTURE
The 2-thiouridine modification at position 34 and 54 plays
critical roles in protein synthesis. Position 34 (the wob-
ble base) of tRNAs for Glu, Gln, and Lys are univer-
sally modified to 5-methyl-2-thiouridine derivatives (xm5s2U;
Figure 1): 5-methylaminomethyl-2-thiouridine (mnm5s2U)
and 5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U)
in bacterial tRNAs, 5-methoxycarbonylmethyl-2-thiouridine
(mcm5s2U) in eukaryotic cytosolic tRNAs, cmnm5s2U in
yeast mitochondrial tRNA, and 5-taurinomethyl-2-thiouridine
(τm5s2U) in mammalian mitochondrial tRNAs (Suzuki, 2005).

The conformation of xm5s2U preferentially takes the C3’-endo
form of ribose puckering, because of the steric effect of the bulky
2-thiocarbonyl group toward the 2’-hydroxyl group (Figure 1C;
Yokoyama et al., 1985; Agris et al., 1992). The xm5s2U34 base pairs
preferentially with purines and prevents misreading of near cog-
nate codons ending in pyrimidines (Agris et al., 1973; Yokoyama
et al., 1985; Murphy et al., 2004; Durant et al., 2005; Johansson
et al., 2008) and frame shifting (Urbonavicius et al., 2001; Atkins
and Björk, 2009; Isak and Ryden-Aulin, 2009; Jäger et al., 2013).
The 2-thio group of xm5s2U34 is required for efficient codon
recognition on the ribosome (Ashraf et al., 1999; Vendeix et al.,
2012; Rodriguez-Hernandez et al., 2013). In addition, the 2-thio
group of cmnm5s2U34 in tRNAGluacts as the identity element
for specific recognition by glutaminyl-tRNA synthetase (Sylvers
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Table 1 |Two pathways of 2-thiouridine biosynthesis.

Strain Modified base Position Function Modification enzyme Activated sulfur species

Bacteria xm5s2U 34 Decoding MnmA type Protein-persulfide

Eukaryote (mitochondria) xm5s2U 34 Decoding MnmA type Protein-persulfide

Eukaryote (cytosol) xm5s2U 34 Decoding Ncs6/TtuA type Protein-thiocarboxylate, Protein-persulfide

Bacteria (thermophile) m5s2U (s2T) 54 Thermal stabilization Ncs6/TtuA type Protein-thiocarboxylate, Protein-persulfide

et al., 1993; Rodriguez-Hernandez et al., 2013). In human, a defect
in mitochondrial translation is induced by the lack of xm5s2U34
modification in mutant mitochondrial tRNALys from patients with
myoclonus epilepsy with ragged-red fibers (MERRF; Yasukawa
et al., 2000, 2001).

The 2-thio modification of m5s2U (s2T) at position 54 in the
T-loop also plays an important role in protein synthesis in high
temperature environments. In thermophilic organisms such as
Thermus thermophilus and Pyrococcus furiosus, almost all tRNA
species are modified to m5U54 and m5s2U54 (Watanabe et al.,
1974; Kowalak et al., 1994). The m5s2U54 is also found in the
hyperthermophilic bacterium Aquifex aeolicus (Awai et al., 2009).
The 2-thiolation content of m5U54 increases with cultivation
temperature (Watanabe et al., 1976; Kowalak et al., 1994). As dele-
tion strains of T. thermophilus lacking the 2-thio group of the
m5s2U54 modification show a temperature sensitive phenotype,
this modification is suggested to be required for survival of the
thermophile at high temperature (Shigi et al., 2006a). In the L-
shaped tRNA structure, m5s2U54 is buried inside the tertiary core
and forms a reverse Hoogsteen base pair with m1A58 and also
stacking with G53 and ψ55. In addition, ψ55 and C56 form ter-
tiary base pairs with G18 and G19 in the D-loop, respectively. The
rigid conformation of m5s2U54 stabilizes the A-form helix of the
D-loop–T-loop interaction, contributing to the thermostability
of tRNAs in the thermophile (Watanabe et al., 1974; Horie et al.,
1985).

MnmA PATHWAY FOR 2-THIOURIDINE SYNTHESIS IN
BACTERIA AND EUKARYOTE ORGANELLES
In E. coli, seven proteins are responsible for 2-thiolation
of 5-methylaminomethyl-2-thiouridine (mnm5s2U) or 5-
carboxymethylaminomethyl-2-thiouridine (cmnm5s2U) in the
wobble base of tRNAGlu

UUC, tRNAGln
UUG, and tRNALys

UUU:
a cysteine desulfurase (IscS), a modification enzyme (MnmA),
and three persulfide carriers (TusA, TusBCD complex, and TusE;
Figure 3A; Kambampati and Lauhon, 2003; Ikeuchi et al., 2006;
Numata et al., 2006a). The sulfur atom of L-cysteine is first acti-
vated by IscS cysteine desulfurase to form an enzyme-bound
persulfide. The small sulfur-carrier proteins TusA, TusBCD, and
TusE relay this sulfur atom via their active site cysteine residues
to MnmA. Tus proteins stimulate sulfur transfer from IscS to
the catalytic cysteine of MnmA (Cys199). MnmA is an N-type
ATP-pyrophosphatase that possesses the characteristic PP-motif
(Bork and Koonin, 1994) and two conserved cysteine residues
(Cys102 and Cys199). The reaction mechanism was well doc-
umented in a biochemical study based on the crystal structure

of the MnmA-tRNA complex (Numata et al., 2006b). MnmA
binds the anticodon arm and D-stem regions of tRNA and
activates the C2-position of the uracil ring at position 34 as
an acyl-adenylated intermediate (tRNA-OAMP). This is then
followed by nucleophilic attack by the persulfide sulfur of MnmA-
Cys199-SSH, which results in the completion of 2-thiouridine
formation.

Genomic analysis of bacteria revealed that IscS, TusA, and
MnmA are mostly conserved, whereas TusBCD and TusE are not
found in many organisms (Kotera et al., 2010). This implies that a
variation in the sulfur-transfer pathways from IscS to MnmA may
exist. In eukaryotic mitochondria, NifS and Mtu1 (homologs of
IscS and MnmA, respectively) are responsible for 2-thiolation of
cmnm5s2U in yeast and 5-taurinomethyl-2-thiouridine (τm5s2U)
in mammals (Umeda et al., 2005). In eukaryotic mitochondria, the
intermediate sulfur carriers remained to be identified.

Ncs6/Urm1 PATHWAY FOR 2-THIOURIDINE SYNTHESIS IN
THE CYTOSOL OF EUKARYOTES
The Ncs6/Urm1 pathway is responsible for the 2-thiolation of
5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) in the wob-
ble base of tRNAGlu

UUC, tRNAGln
UUG, and tRNALys

UUU in the
cytosol of eukaryotes (S. cerevisiae, Schizosaccharomyces pombe,
Caenorhabditis elegans, Homo sapiens; Esberg et al., 2006; Björk
et al., 2007; Dewez et al., 2008; Huang et al., 2008; Nakai et al.,
2008; Schlieker et al., 2008; Schmitz et al., 2008; Leidel et al., 2009;
Noma et al., 2009). A similar pathway was reported subsequently
in plants (Leiber et al., 2010; Nakai et al., 2012). With the exception
of the first step catalyzed by cysteine desulfurase Nfs1, the eukary-
otic pathway is quite different from the MnmA pathway in bacteria
described above. The function of Nfs1 is to donate the sulfur to
the Fe–S cluster and 2-thiouridine. Formation of 2-thiouridine is
dependent on Fe–S cluster biosynthesis (ISC) and cytosolic Fe–S
cluster assembly (CIA) machineries in yeast (Nakai et al., 2007).
This suggests that the Ncs6/Urm1 pathway depends on Fe–S pro-
tein(s), although at the time of writing it remains to be determined
which protein(s) possess Fe–S cluster(s).

The Ncs6/Urm1 pathway is composed of at least six proteins
including a cysteine desulfurase (Nfs1), a modification enzyme
complex (Ncs6/Ncs2), two sulfur carriers (Urm1 and Tum1), and
an activation enzyme for Urm1 (Uba4; Figure 3B). The gene
names here are those of S. cerevisiae, and homologs of Ncs6/Ncs2
and Uba4 in humans are designated ATPBD3/CTU2 and MOCS3
(molybdenum cofactor synthesis 3), respectively. Tum1 and Uba4
contain rhodanese-like domains (RLDs) bearing conserved cys-
teine residues. Rhodanese is a widespread sulfur-carrier enzyme
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FIGURE 3 | Biosynthesis pathway of 2-thiouridine derivatives. (A) In
E. coli, Tus proteins relay the persulfide sulfur of IscS to a modification
enzyme, MnmA. (B) In S. cerevisiae, Urm1 acts both as sulfur carrier and
protein modifier. A thioester conjugate or an acyldisulfide conjugate (not

shown) of Urm1 and Uba4 were proposed in urmylation pathway. RLD:
rhodanese-like domain. (C) In T. thermophilus, TtuB also acts both as
sulfur carrier and protein modifier. An unidentified RLD protein might be
involved in sulfur transfer.

that catalyzes sulfur-transfer reactions in various metabolic path-
ways (Bordo and Bork, 2002). The conserved cysteine residues of
RLDs in Tum1 and Uba4 are critical for 2-thiouridine formation
in vivo. Tum1 probably directs sulfur flow to 2-thiouridine forma-
tion (Noma et al., 2009). The persulfide of Nfs1 is transferred to
the RLD of Uba4 mainly via the RLD of Tum1.

Urm1 is a ubiquitin-related modifier and Uba4 is an E1-
like Urm1-activating enzyme involved in protein urmylation (see

the following; Furukawa et al., 2000). The carboxy-terminus of
Urm1 is first activated as an acyl-adenylate intermediate (Urm1-
COAMP) and then thiocarboxylated (Urm1-COSH) by a persul-
fide from the RLD of Uba4 (Figure 3B; Schlieker et al., 2008;
Schmitz et al., 2008; Leidel et al., 2009; Noma et al., 2009). The
activated thiocarboxylate may be utilized in subsequent reactions
for 2-thiouridine formation, which is mediated by a heterodimer
complex, Ncs6/Ncs2 (Dewez et al., 2008; Noma et al., 2009).
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Ncs6 has the PP-motif and many CXXC motifs (Figure 4A;
see TtuA/TtuB Pathway for 2-Thiouridine Synthesis in Ther-
mophile tRNAs). Thus, 2-thiolation of mcm5s2U shares a pathway
and chemical reactions with protein urmylation. Intriguingly,
eukaryotic 2-thiouridine formation employs a thiocarboxylated
intermediate as the active form of the sulfur atom, which is a
mechanism distinct from bacterial sulfur-relay based on persulfide
chemistry.

POST-TRANSLATIONAL MODIFICATION OF CELLULAR
PROTEINS BY Urm1 IN EUKARYOTES
Ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are post-
translational protein modifiers with important roles in pro-
teolysis and the regulation of diverse processes in eukaryotes
(Hochstrasser, 2009). The breakdown of the Ub/Ubl system is
often associated with the development of various diseases. In
the first step of conjugation to target proteins, the conserved
C-terminal glycine of Ub/Ubl is acyl-adenylated by an activating
enzyme (E1) and covalently linked to a cysteine residue of E1 to
form an Ub/Ubl-E1 thioester intermediate. The activated Ub/Ubl
is next transferred to a conjugating enzyme (E2). Finally, Ub/Ubl
is attached to a lysine residue in the target protein by a ligase (E3;
Hochstrasser, 2009).

Proteins homologous to eukaryotic Ub/Ubl and E1s exist in
almost all members of bacteria and archaea (Iyer et al., 2006;

FIGURE 4 |TtuA and Ncs6 proteins in 2-thiouridine biosynthesis.

(A) Schematic representation of TtcA family proteins. TtuA and Ncs6 belong
to group II of the TtcA family. TtuA is composed of two Zn finger domains
and a catalytic domain. TtcA is responsible for the formation of
2-thiocytidine34. (B) Structure of P. horikoshii TtuA. The three domains are
colored the same as in (A). The PP-motif is shown in red. Three Cys
residues that is important for enzyme activity is shown with a stick
representation. The target K135 for TtuB conjugation (K137 in
T. thermophilus) is shown in a blue stick model.

Burroughs et al., 2009, 2012). Earlier works established that these
bacterial proteins function in the biosynthesis of sulfur com-
pounds such as molybdenum cofactor and thiamin (Kessler, 2006).
Bacterial Ubls (MoaD and ThiS) are adenylated by cognate E1
homologs (MoeB and ThiF), subsequently bind activated sulfur
via their C-termini to form thiocarboxylates, and finally act as sul-
fur donors (Figure 2; Pitterle and Rajagopalan, 1993; Taylor et al.,
1998; Lauhon and Kambampati, 2000; Leimkühler et al., 2001;
Zhang et al., 2010). These findings imply an evolutionary link
between the eukaryotic Ub/Ubl system and the bacterial sulfur-
transfer reaction (Iyer et al., 2006; Hochstrasser, 2009). Urm1
is an ubiquitin-related modifier and Uba4 is an E1-like enzyme
involved in protein urmylation in eukaryotes (Furukawa et al.,
2000; Figure 3B). A thioester conjugate (Furukawa et al., 2000)
or an acyldisulfide conjugate (Van der Veen et al., 2011) of Urm1
and Uba4 were proposed in this process. As Urm1 also functions
as a sulfur donor for 2-thiouridine synthesis (see the preceding)
and has close sequence and structural homology with bacterial
Ubls (Xu et al., 2006), Urm1 is thought to be the most ancient Ubl
possessing dual functions of protein modifier and sulfur carrier.
The E2 and E3 enzymes for urmylation have not been identified
at the time of writing.

Several targets of urmylation have been identified upon cell
exposure to an oxidant (Van der Veen et al., 2011), although
earlier reports only identified a peroxiredoxin Ahp1 (Goehring
et al., 2003a,b). Among them, a modification enzyme complex
ATPBD3/CTU2 and an E1-like MOCS3, both of which are
required for 2-thiouridine biosynthesis, have been identified. The
target residues in these proteins have not been identified and the
roles of urmylation of these proteins are unknown at the time
of writing; however, regulation of the activities of these enzymes
would be possible.

TtuA/TtuB PATHWAY FOR 2-THIOURIDINE SYNTHESIS IN
THERMOPHILE tRNAs
Prior work from our group identified the TtuA/TtuB pathway for
the biosynthesis of thiouridine (m5s2U) at position 54 in tRNAs
from a thermophilic bacterium T. thermophilus. The TtuA/TtuB
pathway includes cysteine desulfurases (IscS or SufS), a modifica-
tion enzyme (TtuA), a small ubiquitin-like sulfur carrier (TtuB),
and an activation enzyme for TtuB (TtuC; Figure 3C; Shigi et al.,
2006a,b, 2008). Similar to the eukaryotic Ncs6/Urm1 pathway
described above, the C-terminal Gly of TtuB is acyl-adenylated
(TtuB-COAMP) by TtuC and is then thiocarboxylated (TtuB-
COSH) by cysteine desulfurases (IscS or SufS). The sulfur atom of
the thiocarboxylated TtuB is transferred to tRNA by TtuA. This
step also requires ATP as a cofactor and TtuA possesses the PP-
motif, suggesting that TtuA may activate the target uridine as an
acyl-adenylate. The sulfur-transfer activity in the in vitro system
requires the addition of cell-free extract and the activity was low,
suggesting that there may still be additional factors required for
TtuA-mediated sulfur transfer to tRNA.

TtuA and eukaryotic Ncs6 are homologous to each other, and
belong to group II of the TtcA family, whose members are char-
acterized by five conserved CXXC(H) motifs and the PP-motif
(Figure 4A; Bork and Koonin, 1994; Jäger et al., 2004; Björk et al.,
2007). TtcA, which catalyzes 2-thiocytidine (s2C) synthesis (Jäger
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et al., 2004), has only two CXXC motifs and the PP-motif, and
therefore belongs to group I of the TtcA family. The PP-motif
is used for ATP binding to adenylate the target nucleotide, and
is widely distributed among ATP pyrophosphatases, including
modification enzymes MnmA (see the preceding; Numata et al.,
2006b), ThiI for 4-thiouridine (s4U) synthesis (Mueller and Palen-
char, 1999; Palenchar et al., 2000), and TilS for tRNAIle2 lysidine
synthesis (Ikeuchi et al., 2005).

We determined the crystal structure of the TtuA homolog
(PH0300) of the archeaon P. horikoshii (Nakagawa et al., 2013).
The P. horikoshii genome has two TtuA/Ncs6-like ORFs: one
(PH0300) seems to be an ortholog of T. thermophilus TtuA;
and the other (PH1680) seems to be an ortholog of eukaryotic
Ncs6, based on their sequence homology to TtuA and Ncs6.
The P. horikoshii TtuA forms a homodimer, and each sub-
unit contains a catalytic domain and unique N- and C-terminal
zinc fingers (Figure 4B). The N-terminal zinc finger is made
up of the first and second CXXC/H motifs, where the zinc
atom is coordinated by three Cys residues and one His residue.
The C-terminal zinc finger is made up of the fourth and fifth
CXXC motifs, where the zinc atom is coordinated by four Cys
residues.

Interestingly, the catalytic domain of TtuA has much higher
structural similarity to that of another tRNA modification enzyme,
TilS (tRNAIle2 lysidine synthetase), than to the other type of
tRNA 2-thiolation enzyme, MnmA (Figure 4). However, three
Cys residues (128, 131, 220 in PhTtuA) are clustered in the puta-
tive catalytic site, which are absent in TilS. Cys128 and Cys131
are in the third CXXC motif and Cys220 is also conserved. By in
vivo mutational analysis of TtuA in T. thermophilus (Nakagawa
et al., 2013), it became apparent that the three conserved cysteine
residues and the putative ATP-binding residues are important for
TtuA activity, implying a key role for these Cys residues in sulfur
transfer from TtuB-COSH to tRNA. A positively charged surface
that includes the catalytic site and the two zinc fingers is likely to
provide the tRNA binding site. TtuA recognizes the T-loop (Shigi
et al., 2002) and Ncs6/Ncs2 is predicted to recognize the anticodon
arm. The recognition mechanisms of the different target sites on
tRNA require clarification.

POST-TRANSLATIONAL MODIFICATION OF CELLULAR
PROTEINS BY TtuB IN A BACTERIUM T. thermophilus
Homology modeling suggests that TtuB possesses a Ub/β-grasp
fold and TtuC has significant sequence homology with the adeny-
lation domain of eukaryotic E1s (Shigi et al., 2008). These findings
suggest that Ub/Ubl homologous conjugation systems also exist
in bacteria. A series of in vivo analyses in T. thermophilus revealed
that TtuB is covalently attached to target proteins most likely via
its C-terminal glycine (Shigi, 2012). TtuC is required for conjugate
formation, and TtuC and TtuA are targets for TtuB conjugation.
Mass spectrometric analysis combined with in vivo mutational
analysis revealed that lysine residues (K137/K226/K229) in TtuA
are covalently modified by the C-terminal carboxylate of TtuB.
K137 in T. thermophilus TtuA is situated just after the third
CXXC motif. In the crystal structure of P. horikoshii TtuA, K137
(K135 in PhTtuA) is situated close to the catalytic center of this
enzyme family (Figure 4B; Nakagawa et al., 2013). K137 in TtuA

is conserved in related bacteria and archaea, such as Aquifex,
Pyrococcus, Thermococcus, and Metanocaldococcus. On the other
hand, this position is occupied by a conserved arginine in eukary-
otic Ncs6. K226 and K229 in T. thermophilus TtuA are situated
just after Cys222 (Cys220 in PhTtuA), although the regions near
the two lysine residues were disordered in the PhTtuA structure.
However, K226 and K229 are only conserved in T. thermophilus
and a few other species, possibly implying species-specific func-
tions of the conjugation. Intriguingly, a deletion mutant of
a JAMM [JAB1/MPN/Mov34 metalloenzyme (Ambroggio et al.,
2004)] ubiquitin isopeptidase homolog in T. thermophilus showed
aberrant TtuB-conjugates of TtuC and TtuA, and a ∼50% decrease
in the amount of thiouridine in tRNA (Shigi, 2012). These results
support the hypothesis that thiouridine synthesis is regulated by
TtuB conjugation.

THE CASE IN ARCHAEA
Although the precise chemical structure of the archaeal coun-
terpart remains unknown at the time of writing, the existence
of modified uridines at the wobble position in tRNALys and
tRNAGlufrom Haloferax volcanii has been reported (Gupta, 1984).
The existence of 2-thiouridine in tRNALys from H. valcanii
was suggested by APM-electrophoresis (Miranda et al., 2011), a
method that can detect sulfur modifications in RNAs (Igloi, 1988).
Because the homologs of eukaryotic Ncs6 are widely distributed
in archaeal genomes, these proteins may be involved in this
modification (Kotera et al., 2010). Genetic analysis in H. valcanii
shows that SAMP2 (small archaeal modifier protein 2) and E1-like
protein UbaA are required for thiouridine formation in this organ-
ism (Miranda et al., 2011). These results indirectly suggest that
SAMP2-COSH is formed and used as a sulfur donor for thiouri-
dine formation in archaea, as observed previously in eukaryotes
and bacteria. SAMPs are the first example of a ubiquitin-like pro-
tein modifier identified other than from a eukaryote (Humbard
et al., 2010) and extensive studies show that the archaeal pro-
tein modification system resembles that of eukaryotes in many
aspects (Van der Veen et al., 2011; Hepowit et al., 2012; Miranda
et al., 2014). SAMP2 covalently conjugates too many target pro-
teins including UbaA (a Uba4 homolog), HVO_0580 (a Ncs6
homolog), and HVO_0025 (a Tum1 homolog) (Humbard et al.,
2010), implying that the SAMP2 modification also regulates the
thiolation machinery.

4-Thiouridine (s4U), is a modified nucleotide of tRNA that is
conserved from bacteria to archaea, where it functions as a sensor
for near-UV irradiation (Favre et al., 1969; Carre et al., 1974; Ryals
et al., 1982). Sulfur transfer in the biosynthesis of s4U has been
extensively studied in bacteria (Kambampati and Lauhon, 2000;
Mueller et al., 2001; Leipuviene et al., 2004). The persulfide of IscS
is transferred to the RLD of ThiI, a PP-motif-containing modifi-
cation enzyme. Recently, ThiI lacking an RLD domain has been
characterized in methanogenic archaea (Liu et al., 2012). It has
three cysteine residues (two of which come from a CXXC motif)
in the putative catalytic site, and they are all required for persul-
fide intermediate formation. This may provide a hint about the
catalytic mechanism of TtuA/Ncs6, because of the sequence and
structural similarities between TtuA and ThiI (Waterman et al.,
2006; Nakagawa et al., 2013).
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BIOSYNTHESIS NETWORK OF SULFUR-CONTAINING
MOLECULES
The mobilization of sulfur in biosynthesis pathways of
sulfur-containing compounds starts with the activation of the sul-
fur atom of cysteine by the cysteine desulfurase IscS. IscS forms
an enzyme-bound persulfide and this activated sulfur is trans-
ferred to the next acceptor protein in each pathway, such as TusA
(2-thiouridine in tRNA), ThiI (4-thiouridine in tRNA), IscU (Fe–
S cluster), ThiS (thiamin), and MoaD (molybdenum cofactor;
Figure 2). It is conceivable that each biosynthesis pathway of
sulfur-containing molecules is mutually modulated via compe-
tition of sulfur trafficking. An interesting observation with respect
this was made during a study of lambda phage infection in E.
coli (Maynard et al., 2010, 2012). During viral infection, the nor-
mal amount of modified uridine in tRNALys

UUU grarantees a
normal translation and frameshifting rate for production of the
proper ratio of viral gpG and gpGT proteins (gpGT production
needs programmed ribosomal frameshifting). Hypomodification
of tRNALys

UUU caused by deletion of Tus genes in the host cell leads
to increased frameshifting in the translation of viral mRNA of G
and T genes, which affects the ratio of viral gpG to gpGT. A lower
gpG:gpGT ratio leads to decreased virion production. Another
factor lowering infection is overexpression of IscU in the host cell.
In this situation, higher sulfur flow from IscS to IscU conversely
lowers the sulfur flow to Tus proteins, which leads to hypomodifi-
cation of tRNALys

UUU and abnormal frameshifting, which finally
affects the viral infection rate. The competitive binding of TusA
and IscU to IscS has been analyzed in detail, based on the struc-
tures of the complexes IscS/TusA and IscS/IscU (Shi et al., 2010;
Marinoni et al., 2012).

The sharing of a factor downstream of cysteine desulfurase also
occurs in this sulfur-transfer network. TusA was originally iden-
tified as a sulfur carrier for 2-thiouridine synthesis (Ikeuchi et al.,
2006); however, it was later reported to be involved in Moco syn-
thesis in E. coli (Dahl et al., 2013; Kozmin et al., 2013). It has been
proposed that the deletion of TusA leads to the overproduction of
Fe–S clusters, which finally affects the expression of several genes
(Dahl et al., 2013). A study of the link between the MnmA pathway
and cellular redox state has recently been reported (Nakayashiki
et al., 2013). By screening for mutants sensitive to hydroxyurea
(HU) in E. coli, the authors identified mutations in all genes in
the MnmA pathway (iscS, mnmA, and tusA-E in 2-thiouridine
synthesis at the wobble position). These mutations resulted in a
more reduced state, which may have led to a change in the activ-
ity of ribonucleotide reductase, an enzyme inhibited by HU. It is
possible that a change in sulfur flow to each pathway in mutants
of the MnmA pathway led to the reduced cellular state, although
the precise mechanism underlying this phenomenon still remains
unknown.

There is another interesting case. In E. coli, bacterial Ubls
(MoaD and ThiS) are adenylated by cognate E1 homologs (MoeB
and ThiF), subsequently bind activated sulfur at their C-termini
to form thiocarboxylate, and work as sulfur donors for Moco
and thiamin biosynthesis, respectively (Figure 2; Kessler, 2006).
In the T. thermophilus genome, there is only one E1 homolog,
TtuC. The ttuC mutant cannot synthesize 2-thio modification
of m5s2U54; moreover, Moco and thiamin biosynthesis are also

defective. TtuC and cysteine desulfurase can activate and thiocar-
boxylate TtuB, MoaD, and ThiS in vitro. Thus, TtuC is a common
E1-like enzyme shared by the biosynthesis pathways of these three
sulfur-containing compounds (Shigi et al., 2008). Similarly, in
human, MOCS2A (a MoaD homolog) and URM1 are adeny-
lated by an E1-like MOCS3 (Uba4 homolog; Chowdhury et al.,
2012). In archaea, E1-like UbaA is involved in the biosynthesis of
Moco and thiouridine (Miranda et al., 2011). Interestingly, these
E1 homologs are also involved in the post-translational modifi-
cation of cellular proteins in all domains of life (Furukawa et al.,
2000; Miranda et al., 2011; Shigi, 2012).

FUNCTION VIA TRANSLATIONAL CONTROL OF A SPECIFIC
GROUP OF GENES IN EUKARYOTES
The inactivation of the genes in the Ncs6/Urm1 pathway results
in a pleotropic phenotype that includes increased sensitivity to
high temperature, oxidative stress, and rapamycin, a Tor-signaling
inhibitor (Furukawa et al., 2000; Goehring et al., 2003a,b; Dewez
et al., 2008). These phenotypes can be suppressed by overexpres-
sion of tRNALys, tRNAGlu, and tRNAGln, which normally possess
mcm5s2U34 (Leidel et al., 2009). The phenotypes are similar to
those of mutants of the elongator complex (Esberg et al., 2006),
which is essential for modification of the C5 position of U34.
These observations provide evidence that the mcm5s2U modifica-
tion in tRNAs affects global translation, resulting in a pleotropic
phenotype.

In S. cerevisiae, pioneering work has addressed the function of
tRNA modifications on gene expression. The mcm5 modification
of the wobble base of specific tRNAs modulates the expression of a
DNA damage response mRNA, whose cognate codons are unusu-
ally overrepresented (Begley et al., 2007). A similar observation
has been made concerning telomeric gene silencing (Chen et al.,
2011). Proteome analysis in S. pombe showed that the amount of a
specific group of proteins, including those involved in cell division,
was decreased in mutants defective in the mcm5s2U modification
(Bauer and Hermand, 2012; Bauer et al., 2012). The genes coding
for these proteins have skewed lysine codon usage, such that the
AAA codon was overrepresented compared to the AAG codon. The
mcm5s2U modification in tRNALys

UUU is necessary especially for
the efficient translation of mRNAs enriched in the AAA codon.
Among the genes affected by the mcm5s2U modification, a cen-
tral regulator of mitosis and cytokinesis, Cdr2, was identified. The
amount of Cdr2, a protein kinase, was recovered by overexpression
of tRNALys

UUU in the mutant defective in mcm5s2U biosynthesis.
In addition, after substituting AAG codons for all AAA codons
in cdr2 mRNA, the Cdr2 protein amount was no longer affected
by the mcm5s2U modification. This study provides an interest-
ing example of how translational control of a specific group of
mRNAs can be affected by tRNA modifications and codon usage.
The translation of specific genes in S. pombe and S. cerevisiae has
also been reported by two other groups to be controlled by the s2U
modification and codon usage (Fernandez-Vazquez et al., 2013;
Rezgui et al., 2013).

In S. cerevisiae, 2-thiouridine formation in tRNA-Lys, -Glu,
and -Gln is actively downregulated when methionine and cysteine
are limiting, which leads to an overall reduction in translational
capacity and reduced growth, because Glu, Gln, and especially Lys
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codons are overrepresented in the genes essential for translation
and growth (Laxman et al., 2013). In this case, tRNA thiolation
works as a key effector to maintain amino acid homeostasis.

CONCLUSION AND FUTURE PERSPECTIVES
In the course of the characterization of biosynthesis pathways of
sulfur-containing modifications, a number of sulfur-carrier pro-
teins have been identified. The sulfur-carrier proteins may have
evolved to deliver reactive sulfur atoms to specific targets and
avoid non-specific transfer of activated sulfur atoms, which could
inactivate other biomolecules. At the time of writing, it is still
unclear whether or not the differences in the chemical proper-
ties of persulfide and thiocarboxylate result in different biological
outcomes.

Each biosynthesis pathway of sulfur-containing molecules is
mutually modulated by sulfur trafficking, and translational con-
trol of specific genes by 2-thiouridine and codon usage bias is now
proposed in some model organisms. It would be interesting to
determine whether similar mechanisms exist in higher eukaryotes.

Unexpectedly, the characterization of the biosynthesis of
2-thiouridine has revealed molecular fossils, namely, ancient
ubiquitin-like molecules, including Urm1 in eukaryotes, TtuB in
bacteria, and SAMP2 in archaea. These proteins have two func-
tions; they function as sulfur carriers for 2-thiouridine synthesis
and as protein modifiers. Therefore, these proteins may be evo-
lutionarily intermediates between ancient sulfur-carrier proteins
and protein modifiers. It is possible that an adenylated or thio-
carboxylated intermediate, formed in the course of 2-thiouridine
biosynthesis, was incidentally attached to adjacent proteins at
some time in the past. By this post-translational modification, the
activities of the attached proteins have probably changed. This was
certainly the origin of the post-translational modification of pro-
teins by these Ubls. The primitive function of these conjugates was
probably self-regulation. Conjugates of Ubls and the modification
enzymes Ncs6/Ncs2 and TtuA have already been detected, but the
function of these post-translational modifications remains to be
clarified. The resultant conjugates have become to be used as tags
for the recognition and regulation of other proteins. By acquiring
E2 and E3 enzymes, which can recognize target proteins precisely,
the Ub system evolved considerably to become the sophisticated
system it is today in eukaryotes.
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