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Abstract: Ferroptosis is a novel regulated cell death characterized by metabolic disorders and iron-dependent oxidative destruction of
the lipid bilayer. It is primarily caused by the imbalance of oxidation and anti-oxidation in the body and is precisely regulated by
numerous factors and pathways inside and outside the cell. Recent studies have indicated that ferroptosis plays a vital role in the
pathophysiological process of multiple systems of the body including the nervous system. Ferroptosis may be closely linked to the
occurrence and development of neurodegenerative diseases, strokes, and brain tumors. It may also be involved in the development,
maturation, and aging of the nervous system. Therefore, this study aims to investigate ferroptosis’s occurrence and regulatory
mechanism and summarize its research progress in the pathogenesis and treatment of neurological diseases. This would allow for
novel ideas for basic and clinical research of neurological diseases.
Keywords: ferroptosis, iron, lipid peroxidation, molecular mechanism, neurodevelopment, neurological diseases

Introduction
Cell death is an irreversible cessation of life phenomena and a basic biological phenomenon necessary to maintain the
typical morphology and functionality of tissues. Based on the difference in morphology and function, the nomenclature
committee on cell death (NCCD) divides cell death into accidental cell death (ACD) and regulated cell death (RCD).1

Unlike ACD, RCD primarily relies on specific molecular mechanisms and signaling pathways that can mediate the
involvement of various effector molecules in related pathophysiological processes.2,3 Without intervention by an
adventitious agent, RCD can act as a physiological effector and promote the development and metabolism in the
body.4 In addition, RCD can be induced, and pathological damage occurs when the intracellular and extracellular
microenvironment changes drastically and lasts for a lengthy duration, resulting in the inability of the body to adapt.5

Ferroptosis is a novel iron-dependent RCD discovered in recent years. Unlike the previously discovered RCD, it has
certain morphology, biochemistry, and genetics characteristics. Morphologically, it did not exhibit chromatin condensa-
tion and marginalization typical of apoptosis, cytoplasmic, organelle swelling and plasma membrane rupture typical of
necrosis, and double-membrane-enclosed vesicle formation typical of autophagy.6 At the ultrastructural level, ferroptotic
cells are typically realized as mitochondrial abnormalities, including mitochondrial shrinkage, increased bilayer mem-
brane density, reduced or even removed mitochondrial cristae, membrane potential changes, and mitochondrial outer
membrane rupture.7 As an oxidative cell death, ferroptosis has two biochemical characteristics: iron accumulation and
lipid peroxidation. Excess intracellular iron can directly produce large amounts of reactive oxygen species (ROS) through
the Fenton reaction, increasing oxidative damage. It can also disrupt oxygen homeostasis by increasing the activity of
oxidases such as lipoxygenases (LOXs).6,8 Ferroptosis-induced lipid peroxidation mainly affects polyunsaturated fatty
acid (PUFA) on the cell membrane and produces lipid hydroperoxides (LOOHs). The functional defects in the LOOHs
scavenging system allow these LOOHs to accumulate continuously and reach lethal levels, where cellular ferroptosis
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occurs.9 Overexpression of oxidative/antioxidant genes such as cytochrome c oxidase subunit 2 (COX2), acyl-CoA
synthetase long-chain family member 4 (ACSL4), and nuclear factor E2 related factor 2 (NFE2L2, also known as Nrf2),
may be a genetic feature and biomarker of ferroptosis.10–12

Abnormal regulation of ferroptosis may be closely linked to the pathogenesis of various neurological diseases such as
neurodegenerative diseases, strokes, and glioma.13–15 In recent studies, iron toxicity phenomena (such as iron overload)
have been observed in neurological diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), epilepsy, and stroke and traumatic brain injury (TBI).16–21 In this study, the primary mechanism of
ferroptosis and its research progress in the development and metabolism of the nervous system and neurological diseases
are summarized to provide a novel perspective for the functional evaluation of the nervous system and the pathogenesis
research and clinical treatment of neurological diseases.

Major Induced Mechanisms of Ferroptosis
Ferroptosis is an RCD triggered by oxidative stress in the intracellular microenvironment, which typically involves iron
metabolism and lipid metabolism, ultimately causing iron-dependent peroxidation and oxidative cell death. Most
classical ferroptosis inducers such as Erastin and RSL3 are also inhibitors of the cellular antioxidant system,22 suggesting
that the antioxidant network is extensively involved in the cellular ferroptosis process. Three main ferroptotic protection
systems have recently been found in the body to combat lipid peroxidation. The first is the widespread intracellular
glutathione peroxidase 4 (GPX4) system, which catalyzes the reduction of lipid peroxides (LPO) in a glutathione (GSH)-
dependent manner.6 The second is the ferroptosis suppressor protein 1 (FSP1) system present on the plasma membrane,
which catalyzes the regeneration of reduced coenzyme Q10 (CoQ10), which captures LPO.23,24 The third is the DHODH
system in mitochondria, which promotes CoQ reduction to CoQH2, thereby removing LPO and inhibiting ferroptosis.25

We summarize the major induced mechanisms of ferroptosis hereafter (Figure 1).

Iron Homeostasis Imbalance
Iron is a metal element crucial for numerous biological processes in mammals, but excess free iron readily accepts or provides
electrons to participate in redox reactions, resulting in cytotoxicity.26 Therefore, a precise regulatory network is required to
regulate a range of iron metabolic processes, including absorption, utilization, storage, and recycling, thereby maintaining iron
homeostasis.27 The process is primarily regulated by hepatogenic hepcidin and a series of iron regulatory proteins (IRP).28

Dietary iron taken up by enterocytes and circulating iron phagocytosed by macrophages are released into the blood by
ferroportin (FPN) on the cell membrane surface.28 FPN is an important intracellular iron efflux protein and is negatively
regulated by hepcidin.29,30 Transferrin (TF) binds Fe3+ (Fe2+ is mostly oxidized to Fe3+ by ceruloplasmin or hephaestin) in
blood with high affinity, preserving it in a redox-inert state. TF-Fe3+ complexes bind to transferrin receptor 1 (TFR1) on the
cell membrane surface and can be endocytosed to form endosomes. Fe3+ in endosomes is reduced to Fe2+ by the ferric
reductase STEAP331 and then transported by DMT1 into the labile iron pool (LIP)32 for body metabolism. Similarly,
lactotransferrin can mediate the process of iron transfer into cells.33 Excess intracellular iron can be stored in ferritin or
transported out of the cell by the hepcidin-FPN axis. Lysosomes can recycle iron from mitochondrial and cytosolic ferritin by
selective autophagy.34 Additionally, lipocalin-2 (LCN2) was found to be involved in the regulation of intracellular iron
homeostasis. After binding to the LCN2 receptor expressed on the cell surface, iron-loaded LCN2 can be internalized into cells
to release iron, thereby increasing intracellular iron content.35 This non-Tf-bound iron (NTBI) uptake may be more significant
in the brain (where interstitial NTBI content is higher than Tf-bound iron) and in response to inflammatory stimuli.36 On the
other hand, iron-lacking LCN2, which internalizes into cells, can chelate intracellular iron and may transfer it to the
extracellular environment, thereby reducing intracellular free iron content.35

The abnormal regulation of iron metabolism leads to imbalance of intracellular iron homeostasis and accumulation of redox-
active iron, thereby inducing ferroptosis. Pseudolaric acid B (PAB) can induce the expression of transferrin receptors (TFRC) on
glioma cell membranes and enhance the intake of iron, which in turn triggers ferroptosis.37 Nuclear receptor coactivator 4
(NCOA4)-mediated ferritin selective autophagy can increase the free iron content and promote ferroptosis.38 Mitochondrial
ferritin (FTMT) overexpression inhibits Erastin-induced ferroptosis in neuroblastoma cells by taking up accumulated labile iron.39

Enhancing FPN expression reduces intracellular iron accumulation and attenuates neuronal ferroptotic damage.40 On the one
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hand, excessive intracellular accumulation of reactive iron can producemanyhydroxyl radicals (HO•, an importantROSacting on
lipid peroxidation) through the redox cycle of Fenton and Haber-Weiss reactions, thus causing oxidative damage.41 On the other
hand, it can increase the activity of peroxidases such as LOXs and prolyl hydroxylase domain (PHD), thereby improving the
sensitivity of cells to ferroptosis.8 The increase of intracellular-free iron caused by iron metabolism disorder is among the
characteristics of ferroptosis, but it is unclear whether other metals such as Cu, Ni, and Co, which can produce ROS through
Fenton reaction,41 can also induce ferroptosis. If not, this warrants further investigation into whether iron accumulation activates
specific downstream effectors necessary to promote ferroptosis after ROS production.

Lipid Peroxidation
Lipid peroxidation is a prominent manifestation of ferroptotic damage that mainly involves PUFAs on the cell membrane.
Having an intact diallyl structure is a vital prerequisite for PUFA peroxidation. The C-H bond at the diallyl group is less
stable, making PUFAs on the membrane easily oxidized and thus becoming a major target for intracellular ROS attack.42

Figure 1 The major induced pathways of ferroptosis. The induced pathways of ferroptosis, including iron metabolism disorder, lipid peroxidation, and failure of antioxidant
systems, are summarized. Iron metabolism and lipid metabolism disorders lead to LPO accumulation, the failure of antioxidant systems leads to LPO not being removed in
time, and the above process ultimately induces ferroptosis.
Abbreviations: Tf, transferrin; TfR1, transferrin receptor 1; Fe2+, ferrous iron; Fe3+, ferric iron; LIP, labile iron pool; FPN, ferroportin; FT, ferritin; NCOA4, nuclear
receptor coactivator 4; HO•, hydroxyl radicals; ROS, reactive oxygen species; LOXs, lipoxygenases; PL, phospholipid; PL•, phospholipid radical; PLOO•, phospholipid peroxyl
radical; PLOOH, phospholipid hydroperoxide; PUFA, polyunsaturated fatty acid; GPX4, glutathione peroxidase 4; GSH, glutathione; GS-SG, oxidized glutathione; GCL,
glutamate-cysteine ligase; Glu, glutamic acid; CMA, chaperone-mediated autophagy; FSP1, ferroptosis suppressor protein 1; CoQ10, coenzyme Q10; DHODH, dihydroor-
otate dehydrogenase; DHO, dihydroorotate; OA, orotate; iFSP1, inhibitor of ferroptosis suppressor protein 1.
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MUFAs are less susceptible to peroxidation since they do not possess diallyl groups;43 deuterated PUFAs reduce
oxidative stress and attenuate Erastin- or RSL3-induced ferroptotic damage.44 Lipid peroxidation eventually produces
LOOHs and consequent reactive aldehydes such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE).41

Among them, MDA is the most mutagenic product in lipid peroxidation, while 4-HNE is the most toxic product.41,45

The above LPO causes oxidative damage to the lipid bilayer and may eventually causes cellular ferroptosis.
Arachidonic acid (AA) and adrenic acid (AdA) are the primary substrates for the peroxidation reaction.10 Cells with

up-regulated expression of these PUFAs are more sensitive to ferroptosis.44 Free PUFAs are sequentially synthesized into
lipids and bound to membrane phospholipids (PL) to generate PUFA-PL complexes under the action of two enzymes,
namely, ACSL4 and LPCAT3. PUFA-PL complex can further generate PUFA-PLOOHs catalyzed by peroxidase
LOXs.10,11 Although various cell membrane lipids can be oxidized, the peroxidation of PUFAs in phospholipids by
LOXs tends to be particularly important for ferroptosis.46 At the molecular level, HO• accumulated in cells can abstract
an allylic hydrogen atom from lipid molecules, form the carbon-centered phospholipid radicals (PL•), and rapidly react
with oxygen to form phospholipid peroxyl radicals (PLOO•). PLOO• can extract hydrogen from neighboring lipids
molecules, thus generating phospholipid hydroperoxides (PLOOH) and triggering ferroptosis. Simultaneously, this
process generates new PL•, forming a free radical chain reaction that drives ferroptosis to continue to progress.42 The
body’s antioxidant systems inhibit ferroptosis by providing electrons that reduce PLOOH to PLOH.

Failure of GPX4 Antioxidant System
GPX4 is a selenocysteine-containing and glutathione-dependent enzyme that can convert lipid hydroperoxides to lipid
alcohols10,47 and is a key inhibitory protein for the body’s resistance to ferroptosis. The loss of activity or inhibition of
expression of GPX4 leads to the accumulation of fatal lipid peroxides, followed by cellular ferroptosis.48 Differing from
other members of the glutathione peroxidase family, GPX4 is mostly in monomeric form and can reduce both free
present LPO and membrane-bound or protein-bound LPO.49 The enzymatic reaction catalyzed by GPX4 is a recyclable
antioxidant pathway, and its enzymatic active site switches between the oxidized and reduced states to continuously
reduce LPO. First, selenol (-SeH) in the active site of GPX4 is oxidized to selenic acid (-SeOH) by LPO. Then, -SeOH is
reduced by the first GSH to intermediate selenide (-Se-SG) and is further reduced by the second GSH to generate -SeH,
completing a full cycle.50 Simultaneously, two GSH molecules produce one molecule of glutathione disulfide (GS-SG)
during this process. Therefore, the antioxidant protective effect of GPX4 against ferroptosis depends on the activity of
selenium at the catalytic site and a certain amount of GSH substrate. As among the important triggering mechanisms of
ferroptosis, failure of GPX4 antioxidant system can be accomplished by directly inhibiting GPX4 through some small
molecules (eg, RSL3, FIN56, and FINO2)48,51,52 and indirectly inhibiting GPX4 by inhibiting GSH production, depleting
GSH and inhibiting selenium metabolism.

The synthesis of GSH is limited by the content of cysteine (mainly produced by cystine) and the glutamate-cysteine
ligase (GCL) activity. Cystine/glutamate antiporter (system Xc-/xCT) on the cell membrane surface, composed of the
light chain subunit SLC7A11 and the heavy chain subunit SLC3A2,53 can transfer extracellular cystine into the cell while
also transferring the same amount of intracellular glutamate out of the cell. Cystine transferred intracellularly can be
reduced to cysteine by GSH or thioredoxin reductase 1 (TXNRD1).54 Cysteine, glutamate, and glycine ultimately
generate GSH through a series of enzymatic reactions, of which GCL is the rate-limiting enzyme.55 Erastin, sorafenib,
sulfasalazine, etc., can act as SLC7A11 inhibitors that reduce cysteine transfer, thereby inhibiting the production of GSH
and triggering ferroptosis.6,53 Interestingly, cysteine can also be produced from methionine via the transsulfuration
pathway, thus avoiding the necessity of cystine uptake via system Xc-.56 Therefore, some cells are insensitive to system
Xc- inhibitors. In addition, buthionine sulfoximine (BSO), an inhibitor of GCL, can limit GSH production, directly
trigger cellular ferroptosis, or enhance cellular sensitivity to ferroptosis.57 The biosynthesis of selenoproteins is mainly
regulated by the mevalonate pathway. GPX4 contains a selenocysteine (Sec) at its active site. The genetic code for Sec is
UGA, but UGA typically acts as a stop signal in mRNA translation, resulting in selenoproteins from being
mistranslated.58 The body requires specific selenocysteine-tRNA (Sec-tRNA) to incorporate Sec into the UGA codon
of GPX4. In contrast, prenylation modification of specific adenine sites (using the product of mevalonate pathway as
a donor) is a guarantee of efficient binding of Sec-tRNA to Sec.58 Inhibitors of the mevalonate pathway such as statins
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have been demonstrated to interfere with Sec-tRNA maturation, inhibiting GPX4 biosynthesis.59 This warrants further
investigation on ferroptosis regulation by the mevalonate pathway.

Failure of FSP1 Antioxidant System
FSP1, as the first GPX4 replenishing enzyme, is important for ferroptosis development when GPX4 is inhibited. FSP1
was originally discovered as a pro-apoptotic gene mediated by p5360 and had a protective effect against ferroptosis
caused by GPX4 loss. Due to its similarity to the amino acid sequence of apoptosis-inducing factor (AIF), it is called
mitochondria-associated apoptosis-inducing factor 2 (AIFM2).61 Subsequently, it was found that N-terminus of FSP1
lacks a mitochondrial targeting sequence and does not locate in mitochondria. Ferroptosis inhibition is primarily
mediated by ubiquinone (ie, coenzyme Q10, CoQ10).24 FSP1 can catalyze CoQ10 regeneration through NAD (P) H,
while reduced CoQ10 inhibits the proliferation of lipid peroxidation and ferroptosis by capturing LPO. In GPX4-
knockdown cells, FSP1 effectively inhibits ferroptosis, while iFSP1 (inhibitor of ferroptosis suppressor protein 1), an
effective inhibitor of FSP1, selectively induces ferroptosis in GPX4 knockdown cells overexpressing FSP1.23 Therefore,
FSP1-NAD (P) H-CoQ10 axis protects against cellular ferroptosis in a GPX4- and ACSL4-independent manner, and
myristoylation modification of the amino terminus of FSP1 is essential for its anti-ferroptosis activity.24 This suggests
that failure of FSP1 system would greatly increase the sensitivity of cells to ferroptosis, and regulating the activity of
FSP1 may have a potential neuroprotective effect in patients with neurological diseases such as PD by inhibiting
ferroptosis.62

Failure of DHODH Antioxidant System
Mitochondria is the primary site of aerobic respiration and energy generation in cells and an important source of intracellular
ROS.63 The electron transport chain at the inner mitochondrial membrane also generates a large volume of superoxide anion
(O2•-) during ATP production. On the one hand, O2•- in mitochondria increases ROS content; on the other hand, it can also be
converted into H2O2 under superoxide dismutase (SOD) and diffuse from mitochondria to the cytosol. Consequently, the
increased H2O2 in the cytosol can produce highly reactive HO• and other ROS through the Fenton reaction in the high iron
environment of the cytosol. Mitochondrial ROS are significant for inducing lipid peroxidation and cellular ferroptosis within
mitochondria and cell membranes.

DHODH is an enzyme located on the outer surface of the inner mitochondrial membrane64 and can catalyze the
oxidation of dihydroorotate (DHO) to orotate (OA) and the reduction of CoQ to CoQH2. It plays an important role in the
development of ferroptosis when the GPX4 system is inhibited. Mao et al25 found that inhibiting DHODH induced
ferroptosis in low-expressing GPX4 cells and increased the sensitivity of high-expressing GPX4 cells to ferroptosis, and
that treatment with ferroptosis inhibitor liproxstatin-1 largely rescued this cellular ferroptosis exacerbated by DHODH
knockdown. This highly suggests that DHODH is involved in the ferroptotic defense mechanism of mitochondria.
Further studies have revealed that inhibiting DHODH increased mitochondria’s CoQ/CoQH2 ratio. Overexpression of
ciona intestinalis AOX (CiAOX) oxidized CoQH2 to CoQ in mitochondria65 and enhanced RSL3-induced mitochondrial
peroxidation and ferroptosis in HT-1080 cells, but DHODH inhibition on this basis did not have an additional
ferroptosis-sensitizing effect. In addition, the down-regulation of DHODH did not affect the expression levels of
GSH, GPX4, SLC7A11, or ACSL4, among others. Therefore, DHODH-CoQ pathway is critical as an independent
defense mechanism in mitochondrial ferroptotic defense, and the inhibition of this pathway will increase the sensitivity
of ferroptosis.

Potential Regulatory Mechanisms of Ferroptosis
Ferroptosis is primarily characterized by iron-dependent oxidative and antioxidant imbalances. Numerous factors in the
oxidative/antioxidant network of the body may be involved in ferroptosis regulation, producing or scavenging accumu-
lated ROS and LPO. The occurrence of ferroptosis may be regulated by miRNAs, histones, and numerous signaling
pathway networks (Table 1).
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MicroRNAs
MicroRNAs (miRNAs) are small non-coding RNAs that bind to the 3' untranslated region of mRNAs and induce rapid
degradation of mRNAs, thereby achieving gene transcription regulation. MiRNAs inhibit or induce ferroptosis by
negatively regulating the expression of ferroptosis-related genes. MiR-214 can reduce TFR1 expression levels and
elevate SLC7A11 levels by decreasing p53 levels, thereby reducing lipid peroxidation and iron deposition in vitro and
in vivo and significantly inhibiting ferroptosis.66 Bao et al40 found that miR-124 levels in the perihematomal tissue of
ICH model mice were lower than those of sham mice, and inhibition of miR-124 could up-regulate the expression of
FPN and reduce iron accumulation and ferroptosis in neurons, thereby alleviating ICH symptoms. In addition, miR-212-
5p may play an ferroptosis protective role by down-regulating prostaglandin-endoperoxide synthase-2 (Ptgs2) levels.67 In
summary, perfecting the miRNA regulatory network associated with the ferroptosis pathway may be significant for the
mechanistic study and targeted therapy of ferroptosis.

Histone Modification
Histone modification can affect the affinity of histones to DNA duplexes, thereby changing the loose and condensed state
of chromatin. This, in turn, affects the binding of regulatory proteins such as transcription factors to chromatin and gene
expression. The interaction between BRCA1-associated protein 1 (BAP1) and ASXL1 produces a deubiquitinase that
removes monoubiquitin from histone 2A ubiquitination (H2Aub)68 and plays a vital role in the epigenetic regulation of
gene transcription. Zhang et al69 found that BAP1 inhibited SLC7A11 expression at a certain degree through H2Aub
deubiquitination, thereby inhibiting cystine uptake and upregulating cells’ sensitivity ferroptosis. Additionally, the
transcription factors hepatocyte nuclear factor 4 alpha (HNF4A) and hypermethylated in cancer 1 (HIC1) can competi-
tively bind the histone acetyltransferase KAT2B to affect GSH production and resist and promote ferroptosis in HCC
cells, respectively.70

Table 1 Potential Regulatory Pathways of Ferroptosis

Regulatory Pathways Key Mechanisms Effect on
Ferroptosis

References

microRNA miR-124 Down-regulate the expression of FPN1 Induce [40]
miR-214 Down-regulate the expression of TFR1

Inhibit p53 expression and thus upregulate SLC7A11
Inhibit [66]

miR-212-5p Down-regulate the expression of PTGS2 Inhibit [67]

Histone Modification BAP1 inhibits SLC7A11 expression via H2Aub deacetylation, which in turn

inhibits GSH production

Induce [69,70]

Nrf2 Promote SLC7A11 expression and increase GSH production

Upregulate MRP1 thereby preventing GSH export
Upregulate FTH1 expression

Inhibit [78,79,81]

P53 Inhibit SLC7A11 expression
Upregulate SAT1, which in turn increase ALOX15 expression

Induce [84,85]

Inhibit DPP4

Upregulate p21 expression to slow GSH depletion

Inhibit [57,86]

AMPK Phosphorylate and destroy ACC thereby inhibiting fat synthesis Inhibit [90]
Phosphorylate and activate BECN1 to inhibit the activity of system Xc- Induce [92]

Autophagy NCOA4-mediated ferritinophagy promotes iron accumulation in ferroptosis
HSP90-mediated CMA decreases GPX4 content

Induce [34,96]

Abbreviations: FPN 1, ferroportin 1; TFR1, transferrin receptor 1; PTGS2, prostaglandin-endoperoxide synthase 2; BAP1, BRCA1-associated protein 1; H2Aub, histone
2A ubiquitination; GSH, glutathione; Nrf2, nuclear factor E2-related factor 2; MRP1, multidrug resistance protein 1; FTH1, ferritin heavy chain 1; ALOX15, arachidonate 15-
lipoxygenase; DPP4, dipeptidyl-peptidase-4; AMPK, AMP-activated protein kinase; ACC, Acetyl-CoA carboxylase; BECN1, beclin 1; NCOA4, nuclear receptor coactivator 4;
HSP90, heat shock protein 90; CMA, chaperone-mediated autophagy; GPX4, glutathione peroxidase 4.
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Nrf2
The transcription factor Nrf2 protects cells from oxidative stress by regulating various endogenous antioxidant responses.
Downstream targets of Nrf2 include various ferroptosis-related genes such as HO-1, TFRC, FPN1, SLC7A11, glu-
tathione synthetase (GSS), and GPX4.71–75 Nrf2 is an essential transcriptional regulator of ferroptosis, and its activity is
tightly regulated by Kelch-like ECH-associated protein 1 (Keap1). Under normoxic conditions, Nrf2 binds to Keap1 and
is inactivated by ubiquitination and proteasomal degradation, so it is expressed at low levels.76 Upon oxidative stress,
Nrf2 is released from the Keap1 binding site and rapidly translocates into the nucleus, followed by binding to antioxidant
response element (ARE) in the promoter region. The activation of transcription of downstream antioxidant gene to
maintain cellular redox homeostasis.77 Nrf2 can directly bind to the ARE sequence in the promoter region of SLC7A11,
promoting SLC7A11 expression78 and increasing GSH production. In addition, Keap1 inhibition to increase the activity
of Nrf2 leads to up-regulation of multidrug resistance protein 1 (MRP1), thereby preventing GSH efflux and inhibiting
cellular ferroptosis.79 Therefore, we speculate that Nrf2 can regulate ferroptosis by targeting GPX4 antioxidant system.
Moreover, GMF gene knockdown using CRISPR/Cas9 method activates Nrf2-HO-1 pathway in BV2 microglia, thereby
upregulating ferritin and reducing intracellular free iron to improve microglia hyperplasia.80 In addition, Nrf2 activation
can increase ferritin heavy chain 1 (FTH1) expression in PC12 cells to enhance iron storage capacity and thus play an
ferroptosis regulatory role.81 These suggest that Nrf2 may also be involved in ferroptosis regulation by regulating
intracellular iron metabolism.

p53
The tumor suppressor protein p53 plays a core role in various cellular stress events, including DNA damage, hypoxia,
nutrient starvation, and oncogene activation.82 The outcome of p53 activation depends on the level of stress events, and
low levels of stress or damage-triggered p53 activation can induce cell cycle arrest, DNA repair, and survival, which can
protect against oxidative stress damage by down-regulating ROS production in cells. In contrast, high-stress levels or
damage-induced p53 activation can induce apoptosis.83 Similarly, p53 plays a dual role in regulating cellular ferroptosis.
On the one hand, p53 can enhance ferroptosis by inhibiting SLC7A11 expression or promoting SAT1 expression.
Inhibition of p53 can increase SLC7A11 expression at the transcriptional level, thereby exerting an anti-ferroptosis
effect and ameliorating nerve injury after intracerebral hemorrhage.84 SAT1, upregulated by p53, induces cellular
ferroptosis by increasing ALOX15 expression, a lipoxygenase that catalyzes AA peroxidation.85 On the other hand,
p53 can inhibit ferroptosis by inhibiting dipeptidyl-peptidase-4 (DPP4) activity or p21 expression. P53 can block DPP4
activity to weaken plasma membrane-associated DPP4-dependent peroxidation, thereby inhibiting Erastin-induced
ferroptosis.57 In addition, p53-mediated p21 expression slows down intracellular GSH depletion and ROS accumulation,
thereby delaying ferroptosis induced by system Xc- inhibition or direct cystine deprivation in many cancer cells.86

Although the bidirectional regulatory role of p53 on ferroptosis is widely recognized, it remains unknown whether there
exists a factor or mechanism that controls the differential response of p53 to ferroptosis.

AMPK
The consumption of nutrients and energy causes energy stress and leads to cell death,87 as evidenced by intracellular ATP
depletion and a corresponding increase in AMP levels. AMP-activated protein kinase (AMPK), as a key sensor of
intracellular energy status, can be activated by increased AMP and the phosphorylation of upstream kinases. This
promotes body catabolism and inhibits anabolism to increase ATP levels, restoring energy balance and maintaining
overall cell survival.88,89 Prior studies have demonstrated that AMPK regulates ferroptosis to maintain cell survival to
a certain degree through phosphorylation and inactivation of acetyl-CoA carboxylase (ACC).90 ACC1 and ACC2 are two
related enzymes that catalyze the synthesis of malonyl-CoA from acetyl-CoA, promote fatty acid synthesis, and inhibit
fatty acid oxidation. AMPK phosphorylates and kills ACC, resulting in the inhibition of biosynthesis of PUFAs and other
fatty acids, thereby inhibiting ferroptosis. LKB1 was found to be one of the major upstream kinases that activate AMPK
after energy stress.91 Additionally, AMPK directly activated by Erastin can phosphorylate and activate downstream
beclin1 (BECN1, an autophagy key protein), which selectively binds SLC7A11 to inhibit the activity of system Xc- in
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a transcription-independent form, thereby depleting GSH and inducing ferroptosis.92 However, this ferroptosis-inducing
effect of AMPK, which was only found when ferroptosis was induced by erastin, needs to be further confirmed.
Collectively, AMPK plays an important role in the regulation of ferroptosis, especially in the context of energy stress,
and the upstream and downstream factors of AMPK regulating ferroptosis deserve more in-depth study.

Autophagy
Recent studies have proven that autophagy is closely linked to ferroptosis. Oxidative stress and ROS can induce
autophagy, and autophagy-related signaling pathways regulate ferroptosis and jointly affect cell death.38,93 Selective
autophagy is significant in ferroptosis regulation. Ferritinophagy is a process that selectively degrades ferritin through
autophagy, thereby increasing intracellular iron levels and inducing ferroptosis. NCOA4 is a selective transport receptor
that selectively degrades ferritin through lysosomes.94 Knockdown of coatomer protein complex subunit zeta 1 (COPZ1)
can induce ferroptosis in glioblastoma cells by upregulating NCOA4 and promoting ferritinophagy.34 Ferritinophagy to
promote cellular ferroptosis has also been found to be involved in subarachnoid hemorrhage (SAH) in rats95. Chaperone-
mediated autophagy (CMA) is an autophagic process in which substrate proteins in the cytosol are selectively bound by
molecular chaperones and transported into lysosomes for digestion and degradation by lysosomal enzymes. Lamp-2a acts
as a receptor to transport the CMA substrate GPX4 to the lysosomal matrix for degradation, thereby reducing cellular
antioxidant capacity and promoting ferroptosis in mouse neural cell line 661W cells.96 In summary, autophagy plays
a crucial role in ferroptosis development, and regulating ferroptosis by adjusting autophagic activity provides a novel
perspective for treating diseases such as tumors.

Effects of Ferroptosis on the Development, Functional Maintenance, and
Aging of the Nervous System
The nervous system is the most important system in the human body and plays a dominant role in regulating
physiological functional activities. Therefore, it is vital to ensure the normal development and maturation, functional
maintenance, and normal aging of the nervous system. High-throughput sequencing technologies enable deep gene
expression profiling on a genome-wide scale and have been used for gene transcriptome data analysis in the human
brain.97,98 The data demonstrate that the expression of ferroptosis-related genes such as GPX4, Nrf2, SLC7A11, TFRC,
TF, and YAP have different characteristics during various developmental stages and in different brain regions.99 This
suggests that ferroptosis and its related genes may be involved in a series of processes such as development, functional
maintenance, and aging of the nervous system. Therefore, exploring the role of ferroptosis-related genes in the nervous
system and investigating the association between the nervous system and ferroptosis are necessary for assessing nervous
system functionality.

Ferroptosis-related genes are highly expressed in the embryonic and postnatal human brain and may be related to
brain development. At 37 weeks post-conception, genes such as YAP1, HMOX1, and SLC7A11 were observed to be up-
regulated, promote neuronal and non-neuronal cell proliferation, and are critical in cognitive development.100 As an
essential nutrient for neurodevelopment, adequate iron is essential for infant growth and development, but excessive iron
accumulation can negatively affect brain development.101 Thus, the precise regulation of iron homeostasis is required
during brain development. Postnatally, TF and TFRC are highly expressed in the brain100 and are critical in delivering
iron. Iron is transported by the blood after binding to TF and crosses the blood-brain barrier by binding to TFRC on the
surface of microvascular endothelial cells.102 In addition, YAP expression is increased after birth, especially in non-
neuronal cells. YAP is an effector of the Hippo pathway that integrates chemical and mechanical signals within the cell.
Highly expressed YAP is activated in Schwann cells and regulates Schwann cells proliferation and the transcription of
basal layer receptor genes through Hippo pathway, thus promoting correct radial sorting and myelination of axons, which
induce proper brain development.103 Nrf2, as a ferroptosis-suppressor gene, is highly expressed in astrocytes and plays
a neuroprotective role in the brain. It is largely activated in abnormal states such as diseases.104

Ferroptosis is also closely related to the functional maintenance of the nervous system. In the adult mammalian brain,
inherent neural progenitor cells in the dentate gyrus of the hippocampus produce new functional neurons that are
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integrated into existing neural circuits to maintain the integrity of hippocampal learning, memory, emotion, pattern
separation, and other functions.105,106 Therefore, it is crucial to understand the factors that control maintenance,
differentiation, and integration of adult neural stem cells (NSCs). Studies have demonstrated that loss of LCN2, an
iron transporter of NSCs, may lead to intracellular iron accumulation and induce iron-dependent endogenous oxidative
stress. This leads to cell cycle arrest and defects in the proliferation, differentiation, and maturation of NSCs, after which
affects hippocampus-dependent contextual fear discriminative tasks in mice, with manifestations of behavioral and
spatial learning disorders similar to anxiety and depression.107

Ferroptosis is also involved in aging and neurodegeneration.108–110 Iron is excessive with aging.108 The reasons for
this are the following: (i) the body’s metabolic rate decreases with aging, resulting in a decrease in iron requirements and
an increase in iron accumulation; (ii) the amount of hemoglobin that stores 60% of total iron decreases with aging; and
(iii) menopause causes relative iron excess in women. It is conceivable that excess iron can adversely affect cell
functionality, ultimately leading to cell death. Brain iron accumulation in the caudate nucleus, putamen, globus pallidus,
and hippocampus promotes oxidative damage and protein oligomerization, inducing age-related neurological diseases
such as AD, PD, and dementia with Lewy bodies.111 Reduced GSH expression in an aging brain induces oxidative stress
and cellular ferroptosis. This leads to cognitive dysfunction, which is accelerated in many central nervous system
diseases, including AD.112 Currently, the functional study of ferroptosis and its related genes in the nervous system at
various stages is imperfect and warrants further investigation.

Ferroptosis and Neurological Diseases
Brain tissue has more oxidative metabolism, fewer antioxidant enzymes, and high lipid content. PUFAs such as AA and
docosahexaenoic acid (DHA) are also predominant.113,114 Therefore, brain tissue is more sensitive to lipid peroxidation
and ferroptosis. Existing studies have demonstrated that ferroptosis may cause neurological dysfunction and cell death
and driver neurological diseases such as stroke, PD, AD, and HD.115 Therefore, ferroptosis modulators may have
significant therapeutic potential for neurological disorders. Hereafter, we elaborate on the relationship between ferrop-
tosis and these neurological disorders (Table 2).

Alzheimer’s Disease
AD is the most common form of dementia and is characterized by a progressive decline in memory and cognitive
function, affecting tens of millions of people on a global scale. The most typical histopathological features of AD are
amyloid plaques formed by extracellular amyloid-β (Aβ) deposition and intracellular neurofibrillary tangles (NFTs)
formed by tau protein hyperphosphorylation.116 However, Aβ-based treatments have not achieved the desired results, and
to date, there are still no drugs that can slow down AD progression.117 Neuronal ferroptosis provides a new direction for
future studies on AD.

Iron deposition is among the first reported brain chemical changes in AD patients (first discovered in 1953118).
Pathological neuronal iron accumulation in the brain of an AD patient, which produces large amounts of free radicals through
the Fenton reaction, is an important factor that leads to oxidative damage in AD.119 Some AD patients similarly induce
oxidative stress and experience lipid peroxidation and ferroptosis after the dysregulation of iron homeostasis caused by
elevated ferritin levels in the absence of increased iron.120 In fact, ferritin in AD brain differs from physiological ferritin, and
its catalytic site can be used in Fenton reaction to enhance oxidative stress.121 It has been found that a relatively high content of
iron (the iron content remains within the normal range) may change the processing of the amyloid-β precursor protein (APP)
through iron-dependent ferroptosis, accelerate the formation of plaques and NFTs, and play an upstream role in AD
pathogenesis.122 The down-regulation of FPN and brain atrophy in the neocortex and hippocampus were observed in the
hippocampus of model mice and brain tissue of AD patients, so the down-regulation of FPN may be greatly involved in
progressive brain atrophy of AD by promoting ferroptosis.123 In addition, there is increasing evidence that Aβ accumulates in
neurons in the AD brain. This can occur in various subcellular regions, producing synaptic disruption, inhibiting the ubiquitin-
proteasome system, and inducing toxic effects such as mitochondrial dysfunction and proinflammatory responses.124,125 The
cytotoxicity of Aβwas demonstrated to bemediated by ferroptotic cell death, and the slow accumulation of Aβ in neurons may
lead to prolonged cellular ferroptosis, thus resulting in additional toxic responses.126 During the exploration of targeting
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ferroptosis, it was demonstrated that supplementation with tetrahydroxy stilbene glycoside, γ-glutamylcysteine, etc., can
restore the GSH-GPX4 antioxidant system and reduce ROS levels in AD patients, thereby reducing Aβ-induced brain
injury.127,128 The metal ion chelator deferoxamine (DFO) can reduce the accumulation of iron in the brain region of
experimental animals, inhibit Aβ lamellae or plaque formation, and dissolve the already prepared lamellae.129 DFO treatment
has been found in the clinical treatment of AD that may slow down the related dementia symptoms.130 Alpha-lipoic acid (LA)
has antioxidant and iron chelating properties. LA administration significantly blocked tau-induced iron overload and lipid
peroxidation, reducing neuronal loss in AD mice.131 Activation of the Nrf2 pathway can reduce oxidative stress, neuroin-
flammation, and ferroptosis in AD, thereby improving cognitive deficits.132 In addition, in elderly AD patients with cardiac
insufficiency, mitochondrial aldehyde dehydrogenase (ALDH2) was found to eliminate the manifestations of increased
NCOA4, decrease GPX4 and SLC7A11 in APP/PS1 mice by inhibiting lipid peroxidase ACSL4-dependent ferroptosis,
and improve their cognitive deficits and cardiac insufficiency.133 Targeting ferroptosis key pathways such as iron metabolism,
lipid metabolism, and the GPX4 antioxidant system can potentially become a major breakthrough in AD treatment.

Table 2 Key Mechanisms and Regulators of Ferroptosis in Nervous System Diseases

Diseases Key Mechanisms Regulators References

AD Iron overload
Decrease FPN expression

Decrease SLC7A11, GSH, and GPX4 protein levels

Increase NCOA4 protein levels

Inhibitor:
γ-glutamylcysteine
Deferoxamine

LA

[119,123,128–
131,133]

PD Iron overload

Ferritinophagy and increased DMT1 expression
Decrease SLC7A11 and GSH protein levels

Decrease CoQ10 protein levels

Inhibitor: Deferiprone

Clioquinol

[136,137,139,141–

143]

HD Iron overload

Decrease GSH protein level

Inhibitor:

Fer-1

[18,148,150]

Epilepsy Iron overload

Increase extracellular glutamate level
Decrease GSH and GPX4 protein levels

Inhibitor:

Fer-1
EPI-743

[153–155]

Gliomas Increase intracellular glutamate level
Decrease ACSL4 expression

Increase GPX4 and FSP1 expression

Inducer:
PAB IONPs

[37,158,159,161,162]

Strokes Ischemic Strokes Iron overload

Decrease SLC7A11, GSH and GPX4 protein levels

Decrease CoQ10 protein levels

Inhibitor:

Fer-1

Lip-1

[19,168,170,172]

Hemorrhagic Strokes Iron overload

Increase ROS level

Inhibitor:

Fer-1
PIH

N-acetylcysteine PGE2

[174,176,178–180]

TBI Iron and ROS accumulation

Decrease GPX4 activity

Increase COX2, 15-LOX and ACSL4 protein levels

Inhibitor:

Fer-1

Melatonin Polydatin

[20,183–185]

Abbreviations: AD, Alzheimer’s disease; FPN, ferroportin; GSH, glutathione; GPX4, glutathione peroxidase 4; NCOA4, nuclear receptor coactivator 4; LA, alpha-lipoic
acid; PD, Parkinson’s disease; CoQ10, coenzyme Q10; HD, Huntington’s disease; Fer-1, ferrostatin-1; EPI-743, vatiquinone; Lip-1, liproxstatin-1; ROS, reactive oxygen
species; PIH, pyridoxal isonicotinoyl hydrazine; PGE2, prostaglandin E2; 12/15-LOX, 12/15-lipoxygenase; ACSL4, acyl-CoA synthetase long-chain family member 4; FSP1,
ferroptosis suppressor protein 1; PAB, pseudolaric acid B; IONPs, iron oxide nanoparticles; TBI, traumatic brain injury; COX2, cytochrome c oxidase subunit 2.
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Parkinson’s Disease
PD is a common progressive neurodegenerative disorder characterized by dyskinesias such as resting tremor and myotonia
and non-motor symptoms, including anosmia, constipation, anxiety, depression, and cognitive impairment. Dopamine-based
therapy has a significant impact on symptoms during the early stages of the disease, with no disease-modifying effect. PD
continues to deteriorate after medication and cannot be cured.134 Studies have found that, in addition to progressively
worsening dopaminergic neuron degeneration and Lewy bodies formed by α-synuclein accumulation, many key features, and
triggers of ferroptosis pathways are also important pathophysiological features of PD.135 This suggests that ferroptosis has
a broad prospect in the research and development of neuroprotective drugs for PD.

An important pathological feature of PD is the imbalance of iron homeostasis and accumulation in the substantia
nigra caused by alterations in iron regulatory proteins. In a rat model of PD, ferritin heavy chain FTH1 expressed at low
levels recruits LC3 and selectively binds to NCOA4 in the autophagosome, inducing ferritin autophagy to further degrade
FTH1 and form a loop.136 This eventually leads to free ferrous ions and ROS accumulation, thus inducing cellular
ferroptosis. Elevated levels of DMT1 were found to contribute to intracellular iron accumulation and promote neurode-
generation in PD models.137 Subjects with TF gene variants tend to have a significantly reduced risk of PD.138 This
suggests that ferroptosis caused by iron accumulation is critical in neuronal degeneration in PD. A clinical randomized
controlled trial also reported a reduction in iron accumulation in the substantia nigra and a slowing in the progression of
motor dysfunction in PD patients after treatment with the iron chelator deferiprone.139 The decrease in SLC7A11
expression and GSH depletion increase ROS content, induce cell ferroptosis, and promote the degradation of dopami-
nergic neurons in PD.140,141 Meanwhile, GSH supplementation or activation of Nrf2 pathway is expected to be an
effective therapeutic procedure for neuroprotection in PD. There exists a deficiency of CoQ10 in PD patients,142 which
may induce ferroptosis by reducing the body’s antioxidant capacity, thereby promoting PD progression. It was shown that
Clioquinol treatment significantly improved both motor and non-motor symptoms in a monkey model of Parkinson’s
disease, which may act by decreasing iron content in the substantia nigra and inhibiting ferroptosis.143 Targeting
ferroptosis may have an important role in slowing or even inhibiting the sustained progression of PD.

Huntington’s Disease
HD is an autosomal dominant neurodegenerative disease caused by the repeated amplification of dominant CAG
trinucleotide of Huntington gene on chromosome 4, primarily manifested in dance-like involuntary movement, cognitive
impairment, and mental symptoms.144 Although HD has an explicit genetic origin and causes the accumulation of mutant
huntingtin protein (mHTT) in neural cells, the specific molecular mechanism causing neuronal death is unknown.
Therefore, there is no effective strategy to prevent or delay the process of HD, and only supportive and symptomatic
treatments are clinically available. Prior studies have reported that mHTT is expressed in neurons and glial cells and can
trigger oxidative stress and increase intracellular ROS levels.145 Ferroptosis manifestations such as iron accumulation and
oxidative stress have also been observed in HD patients and model animals.18,146 This suggests that ferroptosis may
potentially be involved in neuronal cell death in HD. Decreased GSH expression has been detected in the striatum,
cortex, and hippocampus of HD patients and model animals,147,148 and insufficient GSH reduces the body’s antioxidant
capacity, causing LPO accumulation and inducing ferroptosis. Quinti et al149 detected an Nrf2 activation signal in neural
stem cells of HD patients and demonstrated that this signal inhibited the release of inflammatory factors. It is well-known
that Nrf2 activates downstream pathways to play a role in inhibiting ferroptosis, so it is important to further explore Nrf2
downstream ferroptosis-related genes. In addition, Skouta et al150 found that treatment with ferrostatin-1 (Fer-1),
a ferroptosis inhibitor, inhibited lipid peroxidation in HD cells and had a significant neuroprotective effect. In summary,
an in-depth investigation of the specific mechanism of ferroptosis involved in HD pathogenesis and nerve cell death, and
targeting HD with ferroptosis modulators, is a worthy direction of basic and clinical research of HD.

Epilepsy
Epilepsy is a central nervous system dysfunction caused by highly synchronized abnormal discharges of neurons in the brain,
which is clinically characterized by repetitive and refractory manifestations due to its diverse etiologies and complex
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pathogenesis. Recent studies have revealed that ferroptosis is highly associated with epilepsy. On the one hand, stroke and
traumatic brain injury are common causes of seizures that may be linked to the breakdown of hemoglobin and abnormal
accumulation of iron.151,152 In addition, the up-regulation of 4-HNE and ferritin expression and intracellular iron accumula-
tion have been found in tissues of tubular sclerosis (TS), which is a common cause of drug resistance in epilepsy. These all
suggest that abnormal iron metabolism and ferroptosis it causes may play a role in seizures. On the other hand, the
dysfunctional GPX4 antioxidant system may also be an important pathogenesis of epilepsy. During seizures, the brain
often has a high expression of extracellular glutamate, which is also among the causes of recurrent seizures. High
extracellular glutamate levels can inhibit system Xc- and reduce GSH synthesis, thereby inducing ferroptosis.153 GPX4
expression was decreased, and lipid peroxidation appeared in the hippocampus of epileptic model rats, which could be
reversed by Fer-1.154 Alternatively, related studies suggest that vatiquinone can modulate ferroptosis by targeting GPX4 and
15-lipoxygenase. Vatiquinone effectively prevented cellular ferroptosis from patients with epilepsy.155 In summary, ferrop-
tosis inhibition may be an effective treatment for patients with epilepsy and warrants further investigation.

Glioma
Glioma, especially glioblastoma (GBM), is the most common primary malignancy in the central nervous system, with
complex drug resistance and survival mechanisms and high patient mortality.156 Cancer cells require more iron than
normal tissue to support the strong energy demands imposed by unlimited proliferation. This cannot avoid significantly
expanding the LIP of cancer cells and allows cancer cells to become more dependent on cellular defense mechanisms to
protect against ROS and ferroptosis.157 Prior studies have reported that the reason for poor prognosis and strong drug
resistance of gliomas may be that these tumors can effectively avoid ferroptosis. Gliomas exhibit metabolically-adaptive
glutamine addiction158 that produces large amounts of glutamate and promotes system Xc- to transport cystine, thereby
improving ferroptosis resistance. ACSL4 is down-regulated in human glioma tissues and cells, reducing lipid peroxida-
tion and ferroptosis.159 MiR-670-3p can then inhibit human glioblastoma ferroptosis by downregulating ACSL4
expression.160 Additionally, GPX4 and FSP1, key peroxidation inhibitors of ferroptosis, are highly expressed in gliomas,
inhibiting cellular ferroptosis and promoting glioma survival.161

Targeting and regulating key proteins of ferroptosis to induce ferroptosis would potentially inhibit glioma cell
proliferation. Knockdown of COPZ1 can up-regulate NCOA4, induce ferritin degradation, increase intracellular
ferrous ion levels and lipid ROS accumulation, and ultimately lead to ferroptosis.34 PAB increases intracellular
iron content by up-regulating TFRC, leading to the overproduction of H2O2 and lipid peroxides, which induces
ferroptosis. Meanwhile, PAB can reduce intracellular GSH levels through the p53-mediated system Xc- pathway and
further exacerbate ferroptosis in glioma cells.37 Iron oxide nanoparticles (IONPs) target glioblastoma and signifi-
cantly increase ionic iron and ROS content, followed by the initiation of ferroptosis for local chemotherapy. The co-
released si-GPX4 in nanoparticles can also play a synergistic therapeutic effect by inhibiting the expression of GPX4
and triggering ferroptosis.162 Inducing ferroptosis in early glioma cells can stimulate the release of DAMPs such as
ATP and HMGB1 to promote the activation and maturation of bone marrow-derived dendritic cells (BMDCs),
initiating adaptive immune responses, and injecting early ferroptosis cells induced in vitro into model mice, can
have a similar vaccine effect.163 This provides us with new ideas for immunotherapy of tumors. In addition,
ferroptosis-inducing agents are expected to synergize with anti-PD-1 antibodies for the immunotherapy of GBM
and increase the sensitivity of tumor cells to immunotherapy to counteract the powerful immunosuppressive and
immune evasion properties of GBM.164 The induction of ferroptosis can also reduce drug resistance in gliomas.
Protein inhibitors such as GPX4 and SLC7A11 can reverse the resistance of Temozolomide (TMZ, the current first-
line treatment for glioblastoma) by inducing ferroptosis and synergistically be used to treat glioma patients.165

Interestingly, recent studies have revealed that neutrophils can regulate the expression of genes such as GPX4,
ACSL4 by transferring myeloperoxidase (MPO) into tumor cells, which in turn induces iron-dependent accumulation of
lipid peroxides and ferroptosis in tumor cells. This pro-tumor cellular ferroptosis effect may be involved in and promote
late GBM necrosis and enhance tumor aggressiveness causing advanced GBM necrosis and enhancing tumor
invasiveness.15 Therefore, ferroptosis modulators have a positive therapeutic effect on gliomas during various stages,
and targeting ferroptosis may provide a new direction for glioma therapy.
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Strokes
Strokes are among the leading cause of death and disability worldwide, including ischemic strokes and hemorrhagic
strokes.166 To date, the exact mechanism that leads to neuronal cell death in strokes remains unclear. There are great
challenges in preventing and rescuing neuronal cell death in strokes. Therefore, elucidating the role of ferroptosis in
neuronal cell death in strokes is vital for etiological research and drug development.

Ischemic stroke is a clinical syndrome in which hypoxic-ischemic damage of brain tissue and a series of neurological
deficits occur due to various cerebrovascular lesions and cerebral blood supply disorder, accounting for approximately 85%
of all stroke cases.167 Ischemic brain tissue can be functionally divided into the central necrotic areas and the surrounding
ischemic penumbra. Saving the ischemic penumbra and avoiding or alleviating primary brain injury are the treatment
priorities for ischemic strokes. However, the exact mechanism of neuronal death in ischemic strokes remains unclear. The
acidic environment of brain tissue after cerebral ischemia has been found to reduce the pH-dependent affinity of TF for iron,
leading to iron release from TF. Unbound iron can be easily absorbed by neurons, causing iron accumulation, leading to
ferroptosis.19 Multiple iron chelates or iron export compounds have indicated neuroprotective effects in ischemic strokes
models,168,169 supporting iron accumulation as a therapeutic target in ischemic strokes. In addition, GSH, SLC7A11, and
GPX4 levels were significantly reduced in ischemic brain tissue of ischemic stroke model rats, while cysteine supplementa-
tion to restore depleted GSH levels or administration of ferroptosis inhibitors (ferrostatin-1 or liproxstatin-1) significantly
reduced neuronal injuries after ischemic strokes.168,170,171 CoQ10 deficiency is widespread in stroke patients taking statins
for a lengthy duration, while CoQ10 supplementation was effective in improving functional deficits and reducing cerebral
infarction volume in rats after ischemic strokes.172 This may be associated with regulating inflammation, degrading ROS,
and inhibiting ferroptosis. The above studies indicate that ferroptosis plays a vital role in neuronal death after ischemic
strokes, and it is important to identify appropriate ferroptosis inhibitors to protect ischemic penumbra neurons.

Endothelial cells, astrocytes, pericytes, and neurons constitute the neurovascular unit (NVU) and play an important
role in maintaining the structural and functional integrity of the blood-brain barrier (BBB).173 BBB dysfunction is among
the important mechanisms in the development of hemorrhagic strokes. After this type of stroke, various cells constituting
NVU are associated with iron metabolism disorders and ROS accumulation.174 This suggests a significant association
between ferroptosis and hemorrhagic strokes. Further studies revealed that vascular rupture causes blood spillage and
damage to red blood cells and hemoglobin in hemorrhagic strokes, releasing large amounts of iron and ROS and inducing
neuronal ferroptosis. After Fer-1 treatment, hemoglobin-induced iron accumulation and ROS production were signifi-
cantly reduced, and neural cells were protected.175,176 Targeting GPX4 also showed significant neuroprotection. The
upregulation of GPX4 and the inhibition of ferroptosis can significantly alleviate BBB injury, oxidative stress, and
inflammation after intracerebral hemorrhage (ICH) and restore its neuronal function.177 Treatment with the lipophilic iron
chelator pyridoxal isonicotinoyl hydrazine (PIH) can up-regulate GPX4 and down-regulate epoxylyase-2, IL-1β, and
TNF-α to reduce ROS production and iron accumulation in perihematomal tissues, and inhibit lipid peroxidation and
inflammation, thereby reducing cellular ferroptosis and brain tissue damage after ICH.178 In addition, overexpression of
miR-137 may reduce hemoglobin-induced apoptosis and mitochondrial dysfunction by inhibiting ferroptosis through the
miR-137-COX2/PGE2 signaling pathway.179 On the other hand, N-acetylcysteine can reduce neuronal ferroptosis and
neurological dysfunction after ICH by reducing toxic ROS produced catalyzed by ALOX5. This can take effect
synergistically with clinically approved prostaglandin E2 (PGE2).180 Recent studies have reported that selenium (Se)
adaptively enhances transcription to protect cells from ferroptosis after hemorrhagic strokes. However, selenium
supplements can drive many selenoprotein transcriptions and synergistically activate transcription factors TFAP2c and
Sp1 to up-regulate GPX4, inhibit cell ferroptosis, and improve hemorrhagic stroke symptoms. Different doses of
selenium supplements only show strong or weak effects without evident toxicity, which suggests that selenium supple-
ments are effective and relatively safe. Therefore, targeted ferroptosis therapy is promising for hemorrhagic strokes.

Traumatic Brain Injury
TBI typically originates from primary injury, attributable to brain trauma, which gradually develops into secondary
injury. This releases glutamate, ROS, and Fe2+, inducing mitochondrial injury and inflammatory response and resulting in
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temporary or permanent neurological deficits.181,182 The primary features of ferroptosis are iron overload and ROS
accumulation. Ferroptosis may thus play a prominent role in inducing cell death and secondary injury of TBI, which is
considered a significant cause of high mortality and poor prognosis of TBI.183 Xie et al20 found that ferroptosis
manifestations such as iron accumulation, decreased GPX4 activity, and LPO accumulation occurred in a controlled
cortical impact (CCI) mouse TBI model. Transmission electron microscopy confirmed the presence of mitochondrial
contraction, a typical feature of ferroptosis. Intraventricular injection of Fer-1 significantly reduced iron accumulation
and neuronal degeneration while improving long-term motor and cognitive functionality. As the primary form of
intracellular iron storage, ferritin is composed of heavy chain subunit (FTH) and light chain subunit (FTL). FTH
comprises ferroxidase activity, converting Fe2+ to Fe3+, while FTL stores excess iron by nucleation uptake. Rui et al184

found that melatonin inhibited iron accumulation and the expression of ferroptosis-related proteins such as COX2 after
TBI to rescue neuronal ferroptosis and improve neurological deficits. Melatonin acts in part by inhibiting neuronal
ferritin H. In addition, the up-regulation of lipid metabolism-related proteins such as 15-LOX and ACSL4 was also
observed in the CCI model. This allows the abundant presence of AA/AdA in the brain to be oxidized, leading to lipid
peroxidation injuries and inducing ferroptosis.185 Recent studies have also confirmed that polydatin can exert long-term
neuroprotective effects and significantly improve subacute motor dysfunction in TBI by maintaining GPX4 activity in
nerve cells and inhibiting neuronal ferroptosis.183 Ferroptosis may be an important therapeutic target for TBI patients;
targeting this may significantly improve TBI patient outcomes.

Conclusion and Outlook
Ferroptosis is primarily caused by a disruption in the body’s oxidative balance. Disturbances in iron and lipid metabolism
cause excessive accumulation of LPO within the lipid bilayer, causing oxidative destruction of the membrane. Disruption
of antioxidant systems such as GPX4, FSP1, and DHODH result in the inability to timely remove LPO continuously
produced in the cell, ultimately leading to the massive destruction of the lipid bilayer membrane and cell death. However,
the exact cause of cell death in ferroptosis is not clear. With the ongoing progress of ferroptosis research, numerous
regulators and pathophysiological phenomena such as Nrf2, p53, and autophagy are closely linked to ferroptosis. The
occurrence and regulatory network of ferroptosis are constantly improving, laying the foundation for ferroptosis to serve
in clinics.

Ferroptosis and its related genes may be involved in a series of processes of maturation, functional maintenance, and
aging of the nervous system. They may also play an important role in neurodegenerative diseases, strokes, epilepsy, brain
tumors, as well as other neurological diseases with unclear mechanisms and poor prognosis. Therefore, attempts to detect
ferroptosis and its related genes may have a significant role in the early diagnosis and prevention of neurological
dysplasia or congenital functional defects. Further studies of the role of ferroptosis in neurological diseases may reveal
part of the pathogenesis of complex refractory diseases such as AD, PD, and epilepsy and provide novel ideas for the
development of new drugs to slow or even reverse the progression of the mentioned diseases. Exploring the occurrence
and development of ferroptosis in brain tumors and attempting to induce tumor cell death with ferroptosis inducers are
expected to cooperate with traditional tumor therapy and immunotherapy in the treatment of GBM and other refractory
tumors and drug-resistant tumors to prolong the life of tumor patients and improve their overall quality of life. However,
in the context of glioma, by promoting ferroptosis to kill tumor cells, whether it is possible to damage nerve cells at the
same time, aggravating the original combined neurodegenerative diseases, stroke and other neurological diseases or
leading to similar symptoms in glioma patients without original related complications. This conundrum needs further
study. In conclusion, exploring the underlying mechanisms of ferroptosis and effective and specific ferroptosis regulators
is a worthy direction for future research on neurological diseases.
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