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Abstract

Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis
of several neurodegenerative disorders and Alzheimer’s disease (AD) in particular. AD is characterized by extracellular
amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive
oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive
impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with
AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of
rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome
proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they
are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and
inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review
aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed
“anti-ageing pathways”, for their potentiality in multi-target therapies against AD where cellular metabolic
processes are severely impaired.
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Lay abstract
Alzheimer's disease (AD) is characterized by the pro-
gressive loss of cholinergic neurons leading to dementia.
Deciphering the molecular basis underlying this multi-
factorial neurodegenerative disorder remains a signifi-
cant challenge. Increased oxidative stress and misfolded
protein formations are the basis of AD. Recently, the
several new cellular signaling pathways have been impli-
cated in the pathobiology of AD. These include Wnt sig-
naling, 5' adenosine monophosphate-activated protein
kinase (AMPK), mammalian target of rapamycin (mTOR),
Sirtuin 1 (Sirt1, silent mating-type information regulator 2
homolog 1), and peroxisome proliferator-activated recep-
tor gamma co-activator 1-α (PGC-1α). These new signal-
ing pathways may provide new therapeutic targets to slow
down or prevent the development of AD.
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Introduction
Alzheimer’s disease (AD) is a debilitating neurodegener-
ative disorder characterized by the progressive loss of
cholinergic neurons, leading to the onset of severe be-
havioral, motor and cognitive impairments. In order to
establish the criteria that would accurately define AD,
patients with senile dementia were traditionally excluded
since, despite its similarity, senile dementia was generally
considered an age-associated phenomenon, and not a
true disease. However, since extracellular amyloid β (Aβ)
plaques and intracellular neurofibrillary tangles (NFTs)
containing hyper-phosphorylated tau, are frequently
present in the brain of patients with senile dementia,
investigators eventually expanded the definition of AD
to also include those with senile dementia, plaques and
tangles (Figure 1) [1].
Energy demands and calcium fluctuation within neur-

onal synapses are the prerequisite of neuronal communi-
cation; to meet this process, the mitochondria are
enriched in synapses for site-directed energy provision
and calcium homeostasis. Reduced energy metabolism,
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Figure 1 Hallmarks of AD, progression of the disease and mitochondrial dysfunction. A: The diagram shows the hallmarks in AD. B: The
multiple pathogenic mechanisms contributing to the pathological hallmarks of AD consist of increased of ROS production, Aβ-induced mitochondrial
dysfunction, and apoptosis due to impairment of mitochondrial Ca2+ handling ability, altered Ca2+ homeostasis, increased mitochondrial permeability
transition pore opening, and promotion of cytochrome c release. Aβ inhibits protein import inside the mitochondria. APP also alters Ca2+ homeostasis
leading to apoptosis. Mitochondrial DNA mutations and mitochondrial DNA damage are also involved in the pathogenesis of AD, and are associated
with synaptic and neuronal loss, amyloid plaques, and NFTs. Perturbed cerebral energy metabolism plays a central role in multiple pathogenic cascades
of AD. Abbreviations: AD, Alzheimer’s disease; Ca2+, calcium; Mptp, mitochondrial permeability transition pore; ROS, reactive oxygen species.
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particularly related to low levels of glucose, in the dis-
eased brain is one of the best documented metabolic
abnormalities in AD. In fact, the decline in baseline glucose
metabolism is viewed as a sensitive measure, useful for
monitoring change in cognition and functionality in AD.
Deficits in mitochondrial function and increased Aβ accu-
mulation in synapses lead to reduced synaptic activity and
consequent neuronal damage. Such synaptic alteration and
mitochondrial dysfunction have been observed in many
neurodegenerative disorders including AD. The normal
physiological function of the mitochondria is dependent
upon their intact structure to maintain the electrochemical
gradient. Structurally damaged mitochondria, as evidenced
by partial or near complete loss of the internal struc-
ture and cristae, are abundant and represent a promin-
ent feature in dystrophic neurons in postmortem AD
brains [2]. On the other hand, calcium (Ca2+) mishand-
ling has been reported in peripheral cells isolated from
AD patients, with the endoplasmic reticulum (ER) de-
veloping calcium overload due to reduced calcium
uptake (Figure 1) [3].
Mitochondria are highly metabolic organelles that com-

bine nutrient sensing and growth signaling pathways to
regulate health span and longevity by maintaining energy
production and Ca2+ homeostasis, and reducing apoptosis.
Genetic approaches have identified several signaling path-
ways which represent critical modifiers of mitochondrial
function. These pathways have been shown to increase the
transcription of important mitochondrial genes following
exposure to oxidative and inflammatory insult within the
cell. Among these signaling pathways are the Wnt signal
transduction pathways, 5' adenosine monophosphate-
activated protein kinase (AMPK), mechanistic target of
rapamycin (mTOR) complexes, and activation of the
Sirtuin 1 (silent mating-type information regulator 2
homolog 1)/peroxisome proliferator-activated receptor
gamma co-activator 1-α (Sirt1/PGC-1α) axis.
In this review, we will focus on already published evi-

dence that allows, based in our own experience, to
propose a potential connection between several mech-
anisms already described as neurodegenerative/AD-
related and how these signaling pathways will contri-
bute to AD. We consider that a greater understanding
of the molecular basis of these pathways and how they
interact within the cell will foster efforts to slow down or
attenuate metabolic deficits that are observed in AD.
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Role of Wnt signaling in neuronal synaptogenesis and AD
The Wnt signaling pathway is involved in several key
cellular processes associated with cellular proliferation,
differentiation, adhesion, survival, and apoptosis in sev-
eral catabolic and anabolic cells, including neurons and
glial cells which are the key resident cells of the Central
Nervous System (CNS) [4,5]. Wnt proteins are a family
of secreted cysteine-rich glycosylated protein that are
named after the Drosophila protein “wingless” and the
mouse protein “Int-1” [4]. Currently, 19 of the 24 Wnt
genes expressing Wnt protein have been identified in
humans, while 80 Wnt target genes have been indenti-
fied from genetic studies in human, mice, Drosophila,
Xenopus, and Zebrafish populations [4,5]. Wnt binds to
Frizzled (Fz) transmembrane receptors located on the
cell surface leading to the induction of at least three
distinct downstream signaling pathways [5]. The first is
known as the canonical Wnt pathway which regulates
gene transcription through β-catenin, also called Wnt/β-
catenin. The second, is the non-canonical pathway mod-
ulates by intracellular Ca2+ release, also called Wnt/Ca2
+, and the third one, the Wnt cell polarity, in which the
Jun N-terminal kinase (JNK) plays a role, also called the
Wnt/PCP-JNK pathway [6-8].

Wnt Signaling protects synaptic integrity from Aβ toxicity
Numerous studies have shown that Wnt signaling compo-
nents are altered in AD: (a) among the Wnt components
that are affected in AD, it was shown that β-catenin levels
are reduced in AD patients carrying presenilin-1
(PS1)-inherited mutations [9]; (b) exposure of cultured
hippocampal neurons to Aβ results in the inhibition of
canonical Wnt signaling [10,11]; (c) Dickkoff-1 (Dkk1) a
Wnt antagonist is induced by the Aβ protein in hippocam-
pal neurons [12]; and it is elevated in post-mortem brain
samples from AD patients and brains from transgenic AD
animal models [13,14]; (d) Dkk3, highly related to Dkk1,
is elevated in plasma and cerebrum spinal fluid from AD
patients [15]; (e) apo-lipoprotein E (apoEε4), a risk AD
factor, inhibits canonical Wnt signaling [16]; (f) a common
genetic variation within the low-density lipoprotein
receptor-related protein 6 (LRP6) lead to disease progres-
sion [17]; (g) Dkk1 reversibly reduces the amount of syn-
aptic proteins and the number of active pre-synaptic sites,
inducing synaptic disassembly at pre- and postsynaptic
sites [18,19]; (h) clustering, a susceptibility factor for late-
onset AD, regulates Aβ amyloid toxicity via Dkk1-driven
induction of the non-canonical Wnt/PCP-JNK pathway,
which contributes to tau phosphorylation and cognitive
impairment [20].
Synaptic failure is an early event in AD, and soluble

Aβ oligomers are proposed to be responsible for the syn-
aptic pathology that occurs prior to plaque deposition
and neuronal death [21]. The non-canonical Wnt-5a
ligand prevents the decrease in the amplitude of excita-
tory postsynaptic currents induced by Aβ oligomers, in-
dicating that this ligand prevents the synaptic damage
triggered by Aβ [22]. Wnt-5a prevents the decrease in
the PSD-95 postsynaptic clusters through the Wnt/PCP-
JNK pathway. However, Wnt-5a also stimulates the traf-
ficking of GABAA and NMDA receptors to the neuronal
surface [23,24], the development of dendritic spines [25]
and protects neuronal mitochondria from Aβ oligomers
[26], through the activation of the Wnt/Ca2+ pathway.
More recent studies, using small Wnt molecules to acti-
vate both canonical and non-canonical Wnt signaling
in vivo, enhances cognition in adult mice and reverses
cognitive deficits and LTP in the APPswe/PS-1 trans-
genic model of AD [27]. These studies support the idea
that alterations in the Wnt signaling pathway, both the
canonical (Wnt/β-catenin) and the non-canonical (Wnt/
PCP and Wnt/Ca2+) are involved in the modulation of
synaptic development, as well as, in the progression of
AD [28].
Finally, the activation of several signaling pathways

that cross talk with the Wnt pathway, including the
nicotinic and muscarinic ACh receptors, peroxisome
proliferator-activated receptor (PPAR)α and γ, antioxi-
dants, and anti-inflammatory pathways, support the
neuroprotective potential of the Wnt signaling cascade
in AD [29-31].

Cholinergic system and Wnt Signaling cross-talk: ancient
and new strategy
The “cholinergic hypothesis” of AD, which was devel-
oped after disturbances were found in the metabolism of
acetylcholine in postmortem AD brains [32], states that
there is a loss of cholinergic neurons in the basal fore-
brain and that the impairment of cognitive functions
and the behavioral disturbances observed in patients
with AD are due, in part, to cortical deficiencies in cho-
linergic neurotransmission. The decrease of cholinergic
neurons leads to the alteration of several proteins in the
cholinergic system, such as decreased activity of acetyl-
cholinesterase (AChE) and cholineacetyl transferase [32].
We have previously shown that a macromolecule found
in the synapses interacts with Aβ to form a complex
which alters the normal synaptic function in hippo-
campal neurons [33,34]. Additionally, our group has also
demonstrated that Aβ-AChE complexes were more
neurotoxic than those of Aβ alone, depending on the
level of AChE [34], suggesting that AChE may plays a
key role in the neurodegenerative changes observed in
the AD brain. Interestingly, hyperforin, a phytochemical
drug which modulates acetylcholine release in the CNS,
[34], is able to prevent the Aβ-induced spatial memory
impairments and Aβ neurotoxicity in vivo [35,36]. More-
over, tetrahydrohyperforin (THH), a semi-synthetic
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derivative of hyperforin, restores brain AChE activity,
reduces the levels of cholinergic markers associated with
amyloid plaques, oxidative stress, and apoptosis, and pro-
tects cholinergic neurons in a double transgenic mouse
model of AD [36,37].
A recent study has shown that a Wnt signaling path-

way may be involved in maintaining synaptic strength
in the CNS by modulating the translocation of a subset
of acetylcholine receptors (AChRs) to synapses [38]. In
Caenorhabditis elegans, mutations in the Wnt ligand,
CWN-2, the Fz receptor, LIN-17, the Ror receptor tyrosine
kinase, CAM-1, and the DSH cytoplasmic phosphoprotein,
DSH-1 (involved in both canonical and non-canonical Wnt
signaling) lead to synaptic accumulation of the AChR, a
mutant α7−nACh receptor (ACR-16/α7), impaired syn-
aptic function, and trigger significant behavior deficits
[37,38]. Results of this study suggest that synaptic
plasticity is mediated, at least partly, by Wnt signaling.

Reducing oxidative stress by Wnt signaling activation
Aβ accumulation is believed to plays a key role in the
cognitive deficits observed in AD patients. There is
evidence relating the etiopathology of the disease with
free radicals [39]. Through in vitro experiments it has
been shown that one of the neurotoxicity mechanism of
Aβ peptides is through oxidative stress, and inhibitors of
catalase-Aβ interactions protect from Aβ toxicity [40].
Moreover, the enhancement of the oxidative state by the
in vivo depletion of vitamin E has been shown to result in
an increased amount of Aβ by the inhibition of it clear-
ance from the brain [41]. Previously, we have shown that
the peroxisomal proliferation, simultaneously with an in-
crease in catalase, is able to protects against the neurotox-
icity of Aβ in cultured rat hippocampal neurons, leading
to significant improvements in spatial memory, lower
levels of Aβ aggregates, reduced glial activation, decreased
tau phosphorylation, and increased postsynaptic proteins
and long-term potentiation (LTP) [42].
Wnt signaling may also confer neuroprotection against

oxidative stress in AD. Wnt1 overexpression has been
shown to protect neurons against Aβ-mediated oxidative
stress, and oxidative DNA damage in primary hippocam-
pal murine neurons [4]. Reduced Wnt activity may also
increase the vulnerability of neuronal cells to oxidative
insult [43]. In AD, Aβ toxicity can induce the expression
of glycogen synthase kinase 3 (GSK-3β), a serine/threonine
protein kinase which phosphorylates β-catenin, and thus
leading to its depletion [5,18]. Also, reduced production of
Aβ can occur in response to increased PKC activity which
is regulated by the Wnt pathway [5,18]. Overexpression
of DSH-1 and DSH-2 has been shown to inhibit GSK-3β
mediated phosphorylation of tau protein, thus preventing
the formation of NFTs (one of the main pathological
hallmarks of AD), and increasing neuroprotection [44].
Cross-talk between AMPK and mTOR pathway
AMPK is a heterotrimeric protein kinase complex expressed
widely in most cell and tissue types. The primary func-
tion of AMPK is to act as a sensor of intracellular ATP
levels and is coupled to phosphorylation of downstream
substrates of ATP producing pathways [45]. The regula-
tion of AMPK involves two upstream pivotal enzymes:
Serine/threonine kinase 11 (STK11) also known as liver
kinase B1 (LKB1), the Ca2+/CaM-dependent protein
kinase kinase β (CaMKKβ) and also other stimulus like
as nitric oxide (NO) [46]. AMPK is returned to its in-
active form by dephosphorylation mediated by specific
phosphatases (PPase) [47]. AMPK possesses several
downstream targets including enzymes associated with
glycolytic pathways and lipolysis, and even "master en-
ergy regulators" [48], such as the PPARγ coactivator-1α
(PGC-1α), which triggers mitochondrial biogenesis via
Sirt1-mediated de-acetylation in response to AMPK
activation (Figure 2) [49]. AMPK also directly phos-
phorylates several sites of the transcription factor,
Forkhead box O3 (FOXO3), activating transcription of
several genes, including some associated with resistance to
oxidative stress [50]. Additionally, AMPK inhibits protein
synthesis by direct phosphorylation of Raptor and ULK1, a
novel serine/threonine kinase and subunit of the mTORC1
complex, triggering autophagy to recycle amino acids and
other cell components during cellular starvation (Figure 2)
[51,52]. In neuronal cells, increased mTOR activity re-
sults in several stimuli, including BDNF, leptin and Ca2+

influx, and contributes to the maintenance of synaptic
plasticity through regulation of protein synthesis re-
quired for the late-phase of long-term potentiation
(LTP) [53]. Therefore AMPK functions as a "master of
master cell physiology", and pharmacological modula-
tion represents an attractive therapeutic target for many
age-related disorders, such as neurodegenerative dis-
eases and AD in particular.

Deciphering the role of AMPK-mTOR in AD
Currently the role of AMPK and mTOR in the develop-
ment and progression of AD is poorly understood, and
recent studies have provided evidence that AMPK and
mTOR are main targets for deregulations in AD [54,55].
Controversially, in vitro models have shown that AMPK
activation inhibits tau phosphorylation in rat cortical
neurons [56], while others confirmed that AMPK could
phosphorylate tau at several sites (including Thr231 and
Ser396/404), and interrupts the binding of tau to micro-
tubules [57,58]. On the other hand, several studies have
shown that AMPK activation represses amyloidogenesis in
neurons [59]. Additionally, AMPK activation decreases
mTOR signaling and enhances autophagy and lysosomal
degradation of Aβ [60-63]. Nevertheless, a recent study
demonstrated that metformin, an oral antidiabetic drug in



Figure 2 Interplay between Wnt signaling and other anti-ageing pathways. In this scheme we show the integration and interaction of
multiple signaling pathways: the first line (top) shows a Wnt ligand, binding Frizzled receptor and activated canonical and non-canonical Wnt
signaling. The canonical pathway (left) leads to GSK3β inhibition. AMPK activation is known to inhibit by GSK3β. The non-canonical pathway
(right) increases intracellular Ca2+ levels. Nitric oxide (NO), a second messenger, is known to directly activate AMPK. AMPK is also activated by
Ca2+ through CaMKK2. Therefore, AMPK activation by the Wnt pathway represents a hypothetical concept (“theoretical model” in transparent gray
box). In the second line, AMPK leads to activation of Sirt1 (right). Sirt1 de-acetylates PGC-1α, and this transcription factor translocates to the nucleus and
interacts with PPARγ heterodimerization to enhance the expression of mitochondrial biogenesis genes. As well, AMPK inhibits mTOR complex (right)
resulting in autophagy stimulation. Additionally, we show the established target of several compounds (Li+, Metformin, Rapamicin, Resveratrol
and Thiazolidinediones) on these intricate inter-linking signaling pathways to neuronal energy availability and cellular life span. Abbreviations:
G, G-protein-coupled receptor; Dvl, Segment polarity protein disheveled homolog DVL-1; APC, adenomatous polyposis coli protein; Ca2+,
calcium; Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ); AMPK, 5' adenosine monophosphate-activated protein kinase; mTOR, mechanistic
target of rapamycin, Sirt1, silent mating-type information regulator 2 homolog 1; PGC-1α, peroxisome proliferator-activated receptor gamma
co-activator 1-α; GSK-3β, Glycogen synthase kinase 3; P,PPARα, phosphorylation; peroxisome proliferator-activated receptor alpha; Li+; lithium.
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the biguanide class, can lead to activation of the AMPK
and transcriptional up-regulation of β-secretase (BACE1),
the rate-limiting enzyme for Aβ generation, at therapeutic
doses, and significantly increasing the generation of both
intracellular and extracellular Aβ species [64]. These find-
ings suggest a potentially harmful effect for the use of
metformin in diabetic elderly demented patients.

Can new and old drugs that activate AMPK prevent AD?
Several animal studies have highlighted the “anti-AD” ef-
fects of naturally occurring phytochemicals which have
been shown to activate AMPK. For example, phytic acid
[64], which is found in food grains could attenuate levels
of ROS and Aβ oligomers in transgenic mice, and moder-
ately up-regulate the expression of the autophagy protein
(beclin-1), Sirt1 and the AMPK pathway [65]. Moreover,
arctigenin, derived from Arctium lappa, could reduce both
Aβ production by β-site amyloid precursor protein cleav-
age enzyme 1, and enhance Aβ clearance by potentiated
autophagy by inhibition of protein kinase B PKB/mTOR
signaling, and AMPK activation, and improve memory in
APP/PS1 AD mice [66]. Similarly, resveratrol promotes
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anti-ageing pathways and previously has been described as
anti-AD agent [67]. Resveratrol has been previously shown
to increase cytosolic Ca+2 levels and enhance AMPK activa-
tion through CAMKK2 activation, promoting autophagy
degradation of Aβ and reduced cerebral Aβ deposition [59].
Another study showed that curcumin could up-regulate two
new regulators of tau protein, BCL2-associated athanogene
2 (BAG2), and lysosomal-associated membrane protein 1
(LAMP1) [68]. As well, methylene blue has shown neuro-
protective effects in neuropathological conditions [69] by
promoting macroautophagy via AMPK activation rather
than inhibition of mTOR pathway in vitro, and robustly in-
creased the anti-apoptotic Bcl-2 protein levels [70]. A com-
pound named butyrolactone, a product for γ-hydroxybutyric
acid (GHB), also known as 4-hydroxybutanoic acid, a
naturally occurring substance found in the CNS, as well as
in wine, beef, and citrus fruits, increases the levels of the
insulin-degrading enzyme (IDE), suppresses autophagy via
the mTOR pathway, lowers Aβ levels and prevents AD-like
cognitive deficits in APP/PS1 mice [71].
Other authors have reported that topiramate (TPM)

and levetiracetam (LEV), two classical drugs used in the
management of epilepsy, alleviated behavioral deficits
and diminished senile plaques in APP/PS1 mice. The
mechanism underlying these observed effects involved
increased Aβ clearance and up-regulated Aβ autophagic
degradation through GSK-3β deactivation and AMPK
activation [72]. Another recent study, showed that
carbamazepine, an anticonvulsant and mood-stabilizing
drug used primarily in the treatment of epilepsy and bi-
polar depression, demonstrates anti-AD effect in APP/
PS1 transgenic mice via mTOR-dependent pathway and
increased autophagy, leading to reduced amyloid plaque
load and Aβ42 levels [73]. During a phase-II study, latre-
pirdine, an antihistaminic drug, also showed potent anti-
AD effects. In vitro, latrepirdine stimulated mTOR and
ATG5 dependent autophagy, leading to the reduction of
intracellular levels of APP metabolites, including Aβ and
the abrogation of behavioral deficit and autophagic
malfunction in TgCRND8 mice [74]. Finally, rapamycin,
which is extensively used in transplantation medicine to
prevent organ rejection, represents a very attractive drug
in AD because it can promote neuronal survival. How-
ever is has never been considered as a potential treat-
ment for AD due to its potent immunosuppressive effect
[75]. To date, the mechanism underlying the anti-AD
properties of rapamycin are still debatable. However, it
has been suggested that inhibition of mTOR by rapamy-
cin improves cognitive deficits and rescues Aβ pathology
and NFTs through increased autophagy [76-78].

The Sirt1-PGC-1α transcriptional complex
Sirtuins are a new class of histone deacetylases depen-
dent on the coenzyme nicotinamide adenine dinucleotide
(NAD+) as the essential substrate. Sirtuins are widely
expressed through the mammalian body, but appear to be
selectively localized at the subcellular level: Sirt3, 4 and 5
are primarily mitochondrial; Sirt1, 6 and 7 are mainly nu-
clear; while Sirt2 is the only sirtuin located in the cytosol
[79]. Sirt3 regulates mitochondrial metabolism and may
sense NAD+ levels in the mitochondria, since increased
NAD+ triggers a regulatory pathway that would activate
Sirt3 leading to the deacetylation of specific targets [80]. It
has been demonstrated that mice deficient in Sirt3 present
hyperacetylation [81] of the metabolic enzyme glutamate
dehydrogenase (GDH), suggesting that Sirt3 may have
profound impact on metabolic control [82].
Recent evidence suggests that mitochondrial biogen-

esis is regulated in part by PGC-1α, a transcriptional co-
activator of PPARγ, as well as other transcription factors
[83]. It was therefore of considerable interest when it
was shown that PGC-1α activity was dependent on
Sirt1-deacetylation [84]. Despite this, the role of PGC-1α
in AD remains unclear. Reduced PGC-1α expression has
been previously reported in brains of AD patients, and
Tg2576 mice which have developed insulin resistance
following chronic feeding with a high fat diet [85]. As
well, PGC-1α and its closely related isoform, PGC-1β,
are abundantly expressed and widely distributed in the
brain, where they are thought to exhibit interchangeable
roles for certain functions, such as maintenance of neur-
onal mitochondrial biogenesis [86].
Sirt1 has been shown to function together with PGC-1α

to promote adaptation to caloric restriction by regulating
the genetic programs for gluconeogenesis and glycolysis in
the liver. Sirt1 interacts with and deacetylates PGC1α
at multiple lysine sites, increasing PGC-1α activity and
leading to the induction of liver gluconeogenic genes
transcription [87]. This interaction suggests that the
Sirt1-PGC-1α transcriptional complex may represent a
core component of the brain neural circuitry concerned
with modulating energy homeostasis.

PGC-1α: a bioenergetics sensor in AD
It has been suggested that mitochondrial biogenesis
might be regulated by tissue energetic status, and that
sirtuins may represent important energy sensors in this
homeostatic loop. Indeed, the notion that PGC1α acetyl-
ation and function, and by extension mitochondrial
activity, are regulated in a nutrient-dependent fashion by
Sirt1 is appealing. Nonetheless, the concept that Sirt1 in
turn functions in response to nutrient-sensitive changes
in basal NAD+ levels, although often invoked, until re-
cently has had little experimental support [88]. Resvera-
trol, a Sirt1 activator, induces mitochondrial biogenesis
and protects against metabolic decline, but whether Sirt1
mediates these benefits is the subject of continuous
debate. Interestingly, studies conducted in adult Sirt1
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conditional-knockout mice have shown that resveratrol-
mediated AMPK activation is dose-dependent, and that
the Sirt1 is the key effector of this interaction. These
data indicate that Sirt1 plays an essential role in stimu-
lating AMPK, and improves mitochondrial function
both in vitro and in vivo [89].
The Sirt1-PGC-1α transcriptional complex has recently

been implicated in the pathogenesis of AD. One study
showed that the transcription of BACE1 is modulated by
up- or down regulation of PGC-1α in vitro and in vivo, in
eNOS-deficient mouse brains exposed to a high fat diet
[90]. Modest fasting in these mice showed reduced BACE1
transcription in the brains, parallel to elevated PGC-1α
expression and activity. The inhibitory effect of PGC-1α
was dependent on activation of PPARγ via Sirt1-mediated
deacetylation in a ligand-independent manner [90]. The
direct interference between Sirt1-PPARγ-PGC-1α and
BACE1 represents a unique non-canonical mechanism of
Sirt1-PGC1α in transcriptional repression in neurons in
response to metabolic impairment.

Exploring mitochondrial dysfunction in AD
For almost two decades, the “amyloid cascade hypoth-
esis” has dominated our understanding of the aetiology
and progression of AD. Briefly, this hypothesis suggested
that accumulation of Aβ, a product of APP cleavage
induces salient biochemical changes in the brain leading
to the development of pathological and clinical changes
observed in AD [91-93]. This hypothesis stems from the
identification of an APP mutation in a family with au-
tosomal dominant amyloid angiopathy, dementia, and
AD-typical histology [94]. Two other genes that were
subsequently found to contain mutations in autosomal
dominant AD were PS1 and PS2 [95]. These protein
form is important components of the γ-secretase com-
plex, which is necessary for the processing of APP.
While this hypothesis has been extrapolated to account
for sporadic AD, it is important to note that sporadic
AD patients do not have mutations in APP or PS genes,
and the molecular basis for the accumulation of neuro-
toxic forms of Aβ is unknown [96]. The “mitochondrial
cascade hypothesis” was proposed in 2004 to provide a
greater explanation for the continuous correlation be-
tween advancing age and AD risk, and to provide a
more accurate explanation of the biochemical abnor-
malities that have been observed in AD patients [97,98].

Revisiting the mitochondrial cascade hypothesis of sporadic
AD
The “mitochondrial cascade hypothesis” emerged in re-
sponse to the growing body of evidence for AD-related
mitochondrial dysfunction [97,98]. Many studies have
demonstrated that Aβ can induce mitochondrial abnor-
malities. Since 1983, studies using transgenic animal
models have demonstrated alterations in mitochondrial
enzymes in the Alzheimer’s disease brain. Moreover,
FDG PET studies have shown that in AD, decreased glu-
cose metabolism precedes clinical diagnosis. This could
be interpreted as an early clinical finding of mitochon-
drial failure in AD [99,100].
The main evidence implicating mitochondrial dysfunc-

tion in AD can be summarized by at least five general
statements: (i) reduced energy metabolism due to alter-
ations in the key enzymes involved in oxidative phosphor-
ylation, are associated with reduced neuronal expression
of nuclear genes encoding subunits of the mitochondrial
electron transport chain [101], (ii) Ca2+ imbalance through
impaired buffering capacity and modifications to the
endoplasmic reticulum (ER) Ca2+ channels leads to neur-
onal apoptosis, triggered by the calmodulin-dependent
kinase and calpain activations [102,103]; (iii) abnormal
mitochondrial dynamics have revealed significantly
reduced mitochondrial length. In biopsied AD brains,
biochemical data collectively suggest that there is likely
enhanced fission, overexpression of dynamin-like pro-
tein 1 protein (DLP1) and down regulation of the optic
atrophy protein 1 (OPA1) [104]; (iv) mitochondrial bio-
genesis is regulated by the Sirt1-PGC-1α axis and nuclear
respiratory factor (NRF). In hippocampal tissues from AD
patients and APP mice M17 cells, the levels of PGC-1α,
NRF1and NRF2 were significantly decreased in compari-
son with healthy patients and wild type mice [105]. In this
sense, PGC-1α overexpression has been shown to be neu-
roprotective both in in vitro and in vivo in several models
for neurodegenerative diseases. Contrary to these findings,
a recent study showed that continuous PGC-1α overex-
pression was cytotoxic to dopaminergic neurons in vivo
[106,107]; (v) finally, by products of macromolecular
oxidation, such as 4-hydroxynonenal (4-HNE), which is
produced by lipid peroxidation in cells, may facilitate
the self-assembly of tau protein into fibrillar polymers
similar to those found in paired helical filaments (PHF),
present in the brain of AD patients. These result strong
suggest that oxidative stress, either by itself or as part of
a “two hit process”, causes neuronal dysfunction, and
AD [108].

Overcoming mitochondrial damage as an anti-ageing
approach
Tremendous investments in basic research have been
focused on preserving mitochondrial function in AD.
Multiple approaches include strategies aimed at increasing
mitochondrial mass, promoting fusion-fission balance, pre-
venting mitochondrial Ca+2 overload, avoiding membrane
swelling and improving the overall redox status. Novel
therapeutics which exert a positive effect on these targets,
may reinforce energy delivery from the mitochondria
[109]. In this regard, dietary zeolite (micronized zeolite)
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supplementation has been shown to reduce mitochon-
drial ROS, increase superoxide dismutase (SOD) levels,
and attenuate Aβ accumulation in the APP/PS1 mouse
brain [110]. In the same way, Salvia sahendica extracts
prevented reduction in the level of NRF1 and mitochon-
drial transcription factor A (TFAM), induced by Aβ [111].
In another study, melatonin and caffeine treatment, al-
most completely restored mitochondrial function in assays
of respiratory rate, membrane potential, ROS production,
and ATP level in the brains of the APP/PS1 [112]. Api-
genin, a poor toxic and non-mutagenic subclass of flavon-
oid, has been reported to reduce the toxic effects of Aβ,
although it did not provide a sufficient effect on de-
creasing APP expression and Aβ burden; However, res-
titution of redox balance due to increased intracellular
glutathione levels and potentiation of cellular SOD and
glutathione peroxidase activities was noted [72]. Treat-
ment of 3xTgAD mice with nicotinamide also resulted in
improved cognitive performance, concordant with nor-
malizing mitochondrial dynamics and increased expres-
sion of the fission protein, DLP1 in the cerebral cortex
[68]. We have previously demonstrated that St. John's
wort semisynthetic derivate THH counteracts oxidative in-
sult in APP/PS1 mice brain, by reducing the formation of
4-HNE adducts and caspase-3 activation [36]. The under-
lying mechanism of action seems to be related to the pre-
vention of mitochondrial Ca2+ overload, and modulation
of the fusion-fission process, arresting mitochondrial dys-
function [36]. In the other hand, moderate exercise pro-
motes increased activity of the mitochondrial complexes I,
III and IV in the brain and prevents age-dependent mito-
chondrial decline reported in sedentary rodents [113].
As well, another study demonstrated that brain adap-

tations to endurance training included overexpression of
PGC-1α and Sirt1 mRNA overexpression, together with
increased mitochondrial DNA content, suggesting in-
creased mitochondrial mass [114]. Similarly, it is also
well known that exercise induces the regulation of brain
mitochondrial redox balance, and chronic exercise re-
duces apoptotic signaling in the AD brain [115]. Finally,
different approaches using 10 selected polyphenols, shown
to ameliorate membrane disruption caused by the Aβ42
peptide, and tau-441 proteins, suggest that these abnormal
protein aggregates might interfering with the mitochon-
drial membrane [116].
The maintenance of intracellular NAD+ levels in human

brain cells may also be crucial for the retention of cellular
viability during conditions of chronic oxidative stress and
mitochondrial dysfunction through the promotion of
oxidative phosphorylation (ATP production). NAD+ is also
closely associated with the DNA binding family of en-
zymes known as poly (ADP-ribose) polymerases (PARPs)
[117,118]. Under physiological conditions, PARP activa-
tion leads to DNA repair and recovery of normal cellular
function. However, under pathological conditions, PARP
activation leads to increased NAD+ turnover, leads to
reduced ATP synthesis, and the cessation of all energy
dependent functions and consequent cell death [119-121].
Increased levels of functional PARP enzyme have been re-
ported in the frontal and temporal cortex more frequently
than age-matched controls in postmortem brains of AD
patients. Maintenance of intracellular NAD+ pools may re-
duce cellular injury. NAD+ treatment has been shown to
reduce PARP-induced astrocyte death [122]. Additionally,
NAD+ may also prevent neuronal injury by enhancing sir-
tuin activities and/or improving energy metabolism [123].

Conclusion
As the world’s ageing population continues to increase
and age appears to be a prominent risk factor for most
neurodegenerative diseases, novel therapeutic regimens
which delay the onset of age-related disorders are highly
desirable. There are multiple connections between neuro-
degenerative diseases, such as increased oxidative stress,
decreased autophagy, and formation of misfolded proteins,
impaired neuronal metabolism and mitochondrial dysfunc-
tion. Central to the maintenance of cellular function, and
particularly synaptic structure and function, and mitochon-
drial integrity are the proto-oncogene Wnt, AMPK, mTOR,
Sirt1 and PGC-1α. Wnt signaling activation (Figure 2),
which protects neurons against neurotoxic damage and,
in this sense, represents a new perspective regarding the
underlying pathobiology of AD. Furthermore, strong
evidence suggests that AMPK might be key master con-
troller of important metabolic pathways and is closely
aligned with Sirt1 and mTOR activities. Moreover, the
crosstalk between these main pathways, as well as, with
secondary cellular mechanisms are far to be addressed,
but the currently available evidence suggest a more than
plausible connection between the pathways herein pre-
sented. Of course important questions should be an-
swered in order to fulfill the inconsistencies of some
observations. Mainly, that several research groups have
conducted some clinical trials using different kinds of
drugs, such as PPARγ agonists (TZD) or SIRT1 agonists
(Res), with disappointing results [124]; however, accord-
ing to our experience, these sort of negative results are
not due to the lack of action of the drug, but probably
because of the inner complexity of the disease, and the
lack of understanding between live animal models and
human physiological response [125-131]. Moreover, re-
searchers still avoid considering the response of adja-
cent tissues as a result of systemic AD therapies; what if
the systemic administration of some drug induces an
alteration of the blood–brain barrier health, limiting the
further benefits of the drug within the brain paren-
chyma? Today, AD research is usually focused to unveil
limited areas of the disease with unsuccessful results
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when challenged in real patients, we believe that through
renewed insight on the cellular and molecular mecha-
nisms responsible for cellular and mitochondrial abnor-
malities reported in AD, efficient and safe translation of
these signaling pathways into novel therapeutic alterna-
tives against neuronal degeneration may shorten the gap
between basic science and clinical research. The fast and
efficient translation of innovative therapeutics into clinical
candidates, and eventually approved therapeutics will
improve outcomes for AD patients.
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