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Abstract: Based on the statics and quasi-statics analysis methods, the thermal deformation calculation
model of a deep-groove ball bearing was constructed for the helical gear transmission system of
a high speed electric drive, and the radial and axial bearing stiffness values of the bearing were
calculated under the thermal deformation in this study. The obtained radial and axial stiffness
values were introduced into the established dynamics model of helical gear system, and the influence
of changed bearing stiffness, resulting from the thermal deformation, on the nonlinear dynamic
characteristics of gear pair was analyzed using the Runge–Kutta method. The results show that the
axial and radial deformations of bearing occur due to the increase of working speed and temperature,
in which the axial stiffness of bearing is improved but the radial stiffness is reduced. The decreasing
degree of axial stiffness and the increasing degree of radial stiffness decrease with the gradually
increasing working rotational speed. When considering the influence of thermal deformation on
the bearing stiffness, the helical gear system will have nonlinear behaviors, such as single periodic,
double periodic, and chaotic motion with the change of working speed. Therefore, in order to
improve the nonlinear dynamic characteristics of high speed electric drive gear systems, the influence
of bearing stiffness change on the dynamic performance of a gear system should be considered in the
industrial applications.

Keywords: bearing; thermal deformation; nonlinear dynamic; electric drive; gear system

1. Introduction

The transmission system is a core unit of automobile and train power systems, and it
plays a critical role in the dynamic performance of automobile and high speed trains [1,2].
Compared with the conventional transmission system, the transmission system of a high
speed electric drive has its specific characteristics of higher rotational speed and great
torque, which may increase the failure risk of gear bonding. Moreover, as there is no engine
cover effect in the electric drive, the vibration and noise of gear pairs may become more
prominent under the working conditions of high speed and great torque, in which the
better working performance and vibration control of key components, such as gears and
bearings, are required [3–6]. Therefore, it is of great significance to study the dynamics
and vibration characteristics of high speed electric drive [7], determining the NVH (noise,
vibration, and harshness) performance of automobiles.

The dynamic characteristics of gears and bearings under the high speed working condi-
tions have been well studied by previous researchers [8,9]. Ouyang Tiancheng et al. [3] analyzed
the lubrication and dynamic characteristics of high speed spur gears. Hu Zehua et al. [10]
proposed the dynamic characteristics of a high speed surface gear rotation coupling sys-
tem. Kunpeng Xu et al. [11] investigated the influence of rotation speed on the nonlinear
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dynamic characteristics of the angular contact ball bearing. B. Choe et al. [12] studied
the dynamic characteristics of ball bearings immersed in the low-temperature liquid at
different speeds and loads. S. Jain [13] and Y. Wang [14] found the sliding characteristics of
angular contact ball bearings with the influence of gyroscopic moment and centrifugal force
at high speed. When analyzing the nonlinear dynamic characteristics of the transmission
system, the bearing was generally simplified and only the radial bearing stiffness was
considered, ignoring the axial stiffness of the bearing [15,16], or the axial stiffness of the
bearing was regarded as a linear spring [17,18]. However, with the development of electric
drive technology towards low noise, high efficiency, high speed, and multigear, the change
of bearing stiffness cannot be ignored at the high speed due to the thermal deformation.
Therefore, Feng Haisheng [19] and Li Tongjie et al. [20] studied the influence of bearing
stiffness on the system dynamics performance under the high speed working conditions.
Kahraman et al. and Ozguven et al. [21,22] established a nonlinear dynamic model of
the gearing-rotor-bearing system, aiming at considering the bearing stiffness and other
factors, and studied the influence of bearing stiffness on the nonlinear characteristics of the
transmission system. When analyzing the dynamic characteristics of a high speed electric
drive gear transmission system, the axial and radial loads not only create a contact stress
between the ball and the inner ring, or the outer ring, changing its contact angle, resulting
in the bearing wear failure [23], but also the temperature rise of bearing can change the
dynamic stiffness [24], the dynamic response of the gear and its amplitude [25,26], which
may affect the whole transmission.

In order to improve the NVH performance of a high speed electric drive transmission
system [27], this paper studied the thermal deformation of bearing under the high speed
working conditions and the influence of bearing stiffness, which was changed by the
thermal deformation [28,29], on the nonlinear dynamic characteristics of an electric drive
helical gear transmission system. Firstly, through the statics and quasi-statics analysis of
bearings, the heat generation of the deep groove ball bearing was calculated for the high
speed electric drive, and the temperature rise and thermal deformation of the bearing were
calculated based on the thermal resistance network method. Then, the bearing stiffness
values under different thermal deformation conditions were calculated and introduced
into the nonlinear dynamic model of the high speed electric drive helical gear transmission
system. The dynamic transfer error bifurcated diagrams of gear pair were analyzed, and
the influence of bearing thermal deformation on the nonlinear dynamic characteristics of
the high speed electric drive gear system was studied. The average rotating speed of car
engines is around 10,667 rpm when it is running at the maximum highway speed limit of
120 km/h, and the maximum design speed (16,000 rpm, corresponding to 180 km/h) is
marked in all figures in this paper.

2. Thermal Deformation of Deep Groove Ball Bearings in the High Speed Electric
Drive System

The sectional view of a high speed electric drive helical gear drive system and a
primary gear pair connected to the motor output shaft are shown in Figure 1, respectively.
Firstly, the statics and pseudo-statics models of the deep groove ball bearing in the primary
gear pair were established. Then, based on the thermal resistance network method, the
deformation of the temperature rise of the ball bearing under the high speed working
condition was obtained, which laid a foundation for the bearing stiffness calculation under
the subsequent thermal deformation conditions.
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Figure 1. (a) Sectional view of the structure of an electric drive system and (b) the assembly drawing of primary gear pair. 
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Figure 2. Geometric deformation of a deep groove ball bearing under different loads: (a) axial load, (b) radial load, and (c) 

torque load. 
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Figure 1. (a) Sectional view of the structure of an electric drive system and (b) the assembly drawing of primary gear pair.

2.1. Statics Analysis and Geometric Deformation Relationship of a Deep Groove Ball Bearing

When the deep groove ball bearing was imposed under the different direction loads,
the geometric deformation and force diagrams of bearing are shown in Figure 2, respec-
tively. The point contact exists between the bearing ball with the inner ring and the outer
ring, respectively. According to the Hertz contact theory [30,31], it is assumed that the
elastic deformation is only generated by the contact, and the load is perpendicular to the
contact surface with an oval shape, which is completely smooth without the tangential
friction. Based on the least square method, the ellipticity κ, the first and the second types
of complete elliptic integral Γ and Π can be obtained, respectively. The subscripts are i
and o, and they represent the contact ellipse of the bearing ball with the inner and outer
rings, respectively [32]. The contact stiffness between the ball and the inner ring (Ki), and
between the ball and the outer ring (Ko) can be expressed as: Ki =

3
2

(
πκiE′i

3Γi

)2/3( 2Πi
Γi∑ ρi

)1/3
Q1/3

i

Ko =
3
2

(
πκoE′o

3Γo

)2/3( 2Πo
Γo∑ ρo

)1/3
Q1/3

o

(1)
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Figure 2. Geometric deformation of a deep groove ball bearing under different loads: (a) axial load, (b) radial load, and (c)
torque load.



Sensors 2021, 21, 309 4 of 27

It can be seen in Figure 2c that the contact load on the normal bearing ball is:
Q = Fa/(Zbsinα). The relation between the axial force of bearing and the deformation
coefficient of contact load is denoted as [33]:

Fa

ZbKn

(
B f Db

)1.5 = sin α
(cos α0

cos α
− 1
)1.5

(2)

where, Fa is the axial load (including the axial preload and axial load), Kn is the bearing
equivalent contact load deformation coefficient, proposed in Equation (3), Zb is the number
of bearing balls, Bf = fi+fo-1, is the total curvature, where fi = ri/Db and fo = ro/Db are the
internal and external curvature coefficients, respectively, ri and ro are the radius values of
curvature of inner and outer raceway, respectively, Db is the diameter of ball, and α0 is the
initial contact angle of the bearing. The Newton–Raphson method was used to calculate
the actual contact angle under the action of axial preload, and its iterative equation can be
described in Equation (4).

Kn =
(

K−2/3
i + K−2/3

o

)−3/2
(3)

α′ = α +

Fa
ZDb

2K
− sin α

( cos α0
cos α − 1

)1.5

cos α
( cos α0

cos α − 1
)1.5

+ 1.5 tan2 α
( cos α0

cos α − 1
)0.5 cos α0

(4)

The deflection of the bearing around the x and y directions is ignored, but the deflection
around the z direction is considered. In this case, the contact angles, deformations, and
displacements for the ball–raceway contacts at azimuth ψj are shown in Figure 3. Then, the
axial and radial distances between the loci of inner and outer raceway groove curvature
center (A1j and A2) can be expressed as:{

A1j = B f Db sin α0 + δa + Rriθ cos ψj
A2j = B f Db cos α0 + δr cos ψj

(5)

{
Rri = Dm/2 + ( fi − 0.5)Db cos α
Rro = Dm/2 + ( fo − 0.5)Db cos α

(6)

ψj = 2π(j− 1)/Zb (7)

where, δa and δr are the relative displacements of the inner and outer ring under the action
of external forces, respectively, and θ is the angle of the bearing under the external forces.
Rri and Rro are the radius values to locus of inner and outer raceway groove curvature
centers, respectively, and the calculation equation is shown in Equation (6). ψj is the
position angle of the jth ball, and the calculation equation is shown in Equation (7).

Sensors 2021, 19, x FOR PEER REVIEW  4 of 27 

It can be seen in Figure 2c that the contact load on the normal bearing ball is: Q = 

Fa/(Zbsinα). The relation between the axial force of bearing and the deformation coefficient 

of contact load is denoted as [33]: 

( )

.

.

cos
sin

cos

a

b n f b

F

Z K B D






 
= − 

 

1 5
0

1 5
1

 

(2) 

where, Fa is the axial load (including the axial preload and axial load), Kn is the bearing 

equivalent contact load deformation coefficient, proposed in Equation (3), Zb is the num-

ber of bearing balls, Bf = fi+fo-1, is the total curvature, where fi = ri/Db and fo = ro/Db are the 

internal and external curvature coefficients, respectively, ri and ro are the radius values of 

curvature of inner and outer raceway, respectively, Db is the diameter of ball, and α0 is the 

initial contact angle of the bearing. The Newton–Raphson method was used to calculate 

the actual contact angle under the action of axial preload, and its iterative equation can be 

described in Equation (4). 

( )n i oK K K
−

− −= +
3 22 3 2 3

 
(3) 

.

. .

cos
sin

cos
= +

cos cos
cos . tan cos

cos cos

a

b

F

ZD K





 

 
  

 

 
− − 

 


   
− + −   

   

1 5
0

2

1 5 0 5
20 0

0

1

1 1 5 1

 

(4) 

The deflection of the bearing around the x and y directions is ignored, but the deflec-

tion around the z direction is considered. In this case, the contact angles, deformations, 

and displacements for the ball–raceway contacts at azimuth ψj are shown in Figure 3. 

Then, the axial and radial distances between the loci of inner and outer raceway groove 

curvature center (A1j and A2) can be expressed as: 

sin cos

cos cos

j f b a ri j

j f b r j

A B D R

A B D

   

  

= + +


= +

1 0

2 0  

(5) 

 

Figure 3. The contact angles, deformations, and displacements for the ball–raceway contacts at 

azimuth ψj with the imposed load. 

( )

( )

. cos

. cos

ri m i b

ro m o b

R D f D

R D f D





 = + −


= + −

2 0 5

2 0 5
 

(6) 

( )j bj Z = −2 1
 

(7) 

where, δa and δr are the relative displacements of the inner and outer ring under the action 

of external forces, respectively, and θ is the angle of the bearing under the external forces. 

Rri and Rro are the radius values to locus of inner and outer raceway groove curvature 

Oi

Ob

(Oo)
0

oO

0

iO

0

bOX2j

A1j

A2j

X1j

oj

0

ij

cosa i jr  +

cosr j 

f bB D

Figure 3. The contact angles, deformations, and displacements for the ball–raceway contacts at
azimuth ψj with the imposed load.
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2.2. Quasi-Statics Analysis of the High Speed Running Bearing and Its Deformation
Geometry Equation

Under the condition of high speed, the diameter of bearing inner groove and contact
angle can be changed by the centrifugal force. Therefore, for the high speed electric drive
system, it is necessary to analyze the deformation and stiffness of bearing under the high
speed working condition. In order to simplify the calculation, the rotational slipping of the
bearing ball is ignored and only the axial and radial forces of the bearing are considered in
this study. Then, the force on the jth ball at the high speed is shown in Figure 4 [34].
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When the ball is subjected to the contact loads Qij and Qoj, gyroscopic moment Mgj,
and the friction forces Fij and Foj generated between the inner and outer rings of the bearing,
the equations of mechanical equilibrium under the load of the bearing and its ball can be
obtained as: 

Fa −
Z
∑

j=1

(
Qij cos αij + Fij cos αij

)
= 0

Fr −
Z
∑

j=1

(
Qij cos αij + Fij sin αij

)
cos ψj = 0

Mgi −
Z
∑

j=1

[(
Qij sin αij + Fij cos αij

)
Rri − riFij

]
cos ψj = 0

(8)

where, Fa is the axial force (including the preload Fa0), Fr is the radial force, Mgi is the
torque around the axial center of the bearing, and αij and αij represent the actual contact
angle between the jth bearing ball and the inner and outer rings of the bearing, respectively.
According to the Hertz contact theory, the normal contact load between the ball and bearing
inner or outer rings can be expressed as:{

Qij = Kijδ
1.5
ij

Qoj = Kojδ
1.5
oj

(9)

where, Kij and Koj are the load deformation coefficients of the jth bearing ball and the inner
and outer ring, respectively. At the same time, according to the calculation equation [35],
when the outer diameter of the thick-walled cylinder is under the pressure of p, the relative
displacement of the inner and outer rings of the bearing under the centrifugal force can be
calculated. The specific expression can be denoted as:

ur|r=D/2 =
(1 + νs)D

[
D2

s + (1− 2νs)D2]
2Es(D2

s − D2)
p +

(1 + νs)D
[
(2− 3νs)D2

s − (1− 2νs)D2]
32Es

ρsω2 (10)
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where ρs, vs, Es, and Ds are the material density, Poisson’s ratio, elastic modulus, and
diameter of the transmission shaft, respectively, and D is the diameter of the connecting
surface of the transmission shaft [35].

The axial and radial distances between the loci of inner and outer raceway groove
curvature center (A1j and A2j) can be expressed as:{

A1j = B f Db sin α0 + δa + Rriθ cos ψj
A2j = B f Db cos α0 + δr cos ψj + ur

(11)

where, compared with the static load, the vertical distance increases the displacement ur
caused by the centrifugal force. According to the geometrical relationship, the contact
angles between the ball and the inner and outer raceway are expressed as: αoj = arccos

( X2j
( fo−0.5)Db+δoj

)
αij = arcsin

( A1j−X1j
( fi−0.5)Db+δij

) (12)

where, X1j and X2j, are the axial and radial projection values of distance between ball center
and outer raceway center, respectively, and δij and δoj are the elastic deformation of the
inner and outer ring in contact with the ball, respectively.

Combining Figure 5 and Pythagorean Theorem, the compatible equation of defor-
mation geometry of contact between the ball and the inner and outer raceways can be
obtained by: {

(A1j − X1j)
2 + (A2j − X2j)

2 =
[
( fi − 0.5)Db + δij

]2
X2

1j + X2
2j =

[
( fi − 0.5)Db + δoj

]2 (13)
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Figure 5. The contact angles, deformations, and displacements for the ball–raceway contacts at
azimuth ψj with the working load and centrifugal force.

According to Figures 4 and 5, considering the centrifugal and gyro effects during the
high speed operation of the bearing [33], the equilibrium equations of the bearing ball are
obtained as follows:{

Qij sin αij −Qoj sin αoj + Fij cos αij − Foj cos αoj = 0
Qij cos αij −Qoj cos αoj − Fij sin αij + Foj sin αoj + Fcj = 0

(14)
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where, the friction forces Fij and Foj are related to the gyroscopic moment Mgj of the bearing
ball. Meanwhile, the torque caused by the friction is balanced with the torque caused by
the gyroscopic moment, and Equation (14) can be expressed as: Qij sin αij −Qoj sin αoj + λij

Mgj
Db

cos αij − λoj
Mgj
Db

cos αoj = 0

Qij cos αij −Qoj cos αoj − λij
Mgj
Db

sin αij + λoj
Mgj
Db

sin αoj + Fcj = 0
(15)

The centrifugal force, generated by the high speed operation of the bearing, makes the
ball purely roll on the bearing outer raceway. Thus, in Equation (15), λij = 0 and λoj = 2 [31].
Fcj is the ball centrifugal force, and it can be expressed as:

Fcj =
πρbD2

b Dmω2
cj

12
(16)

where, ρb is the density of ball, and ωcj is the ball orbit velocity. The calculation equation of
gyroscopic moment is denoted as follows:

Mgj = Jbωcjωbj sin β j (17)

where ωbj is the spinning speed of ball, Jb is the mass moment of inertia of ball, proposed
in Equation (18), and βj is the attitude angle of the jth ball, as shown in Equation (19) [33].

Jb =
ρbπD5

b
60

(18)

β j = arctan
sin αoj

cos αoj + γ′
(19)

where, γ’ = Db/Dm is the ratio of the ball diameter to the pitch diameter of bearing.

2.3. Calorific Value Calculation Model of the Deep Groove Ball Bearing Running at the High Speed

Under the high speed working conditions, in addition to the thermal deformation
as a result of the centrifugal force, the bearing will also produce a lot of heat and thermal
deformation resulting from the friction. According to Palmgren [36] test analysis, the
friction torque is mainly generated by the viscosity of lubricant and the effect of loading.
At the same time, the ball will produce the spinning motion in the outer raceway [33],
which will cause the friction torque and generate the heat. Therefore, the heat produced by
the friction torque, which is caused by the bearing load, lubrication viscosity, and spinning
motion, is mainly considered in the heat calculation.

The friction torque M1 generated by the bearing load can be obtained by:

M1 = f1P1Dm (20)

where, f 1 is the coefficient related to the bearing type and loads [36]. P1 is the force related
to the magnitude and the directions of axial and radial loads [36].

The viscous friction moment Mµ caused by the orbiting rolling elements as they plow
through the viscous lubricant can be expressed as [36]:

Mµ =

{
10−7 f0(µn)

2
3 D3

m µn ≥ 2000
1.6× 10−5 f0D3

m µn < 2000
(21)

where f o is a factor depending on the type of the bearing and the method of lubrication.
Since the lubrication method is oil bath or oil mist, so fo = 1−2 [37]. n is the bearing speed
and µ is the lubricant kinematic viscosity at the working temperature.
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The magnitude of the spinning moment of the jth ball can be obtained by [38]:{
Msij =

3
8 µsiQij AijΠi

Msoj =
3
8 µsoQoj AojΠo

(22)

where, µsi and µso are the coefficients of friction between the ball and inner and outer
raceway, respectively. Qij and Qoj are the ball loads between the jth ball and inner and
outer raceway, respectively. Aij and Aoj are the semimajor axis of projected contact ellipse
between the jth ball and the inner and outer raceway, respectively. Πi and Πo are the
complete elliptic integral of the second kind with the modulus.

Hence, the total heat generated by the total friction torque can be denoted as:

H =
πn
30
(

M1 + Mµ

)
+ ωsi Msi + ωso Mso (23)

where, ωsi and ωso are the spinning of the outer raceway relative to the ball, and they can
be calculated by: {

ωso = ωb(sin αo cos β− cos αo sin β)−ωo sin αo
ωsi = −ωb(cos αi sin β− sin αi cos β) + ωi sin αi

(24)

where, ωi and ωo are the relative angular speeds of the inner and outer raceway, respectively.
ωb is the spinning speed of ball, which is calculated by Equation (25), ωc is the rotational
speed referring to the orbital motion, and it can be calculated by Equation (26), ωn is the
absolute angular speed of the inner raceway, and β is the attitude angle of the ball, as
shown in Equation (19).

ωb = ωc
(Dm/Db + cos αo)

(cos β cos αi + sin β sin αo)
(25)

ωc = ωn

1 +

(
Dm
Db

+ cos αo

)
(cos β cos αi + sin β sin αi)(

Dm
Db

+ cos αi

)
(cos β cos αo + sin β sin αo)

−1

(26)

Combining the above equations and the specific parameters of bearing in Table 1,
the calorific values can be obtained under different rotating speeds and preload values
with no-load and load conditions, as shown in Figure 6a,b, respectively, ignoring the influence
of time-varying meshing force of gear on the bearing characteristics. The imposed load is
100 Nm, and the axial and radial forces are 2380.9 N and 1189.9 N, respectively, at this moment.

In Figure 6, it is found that the heat generation significantly improves with the increase
of rotating speed under the same axial preload. At the same speed, the heat generation
also increases with the increase of axial preload.

Table 1. Parameters of the deep groove ball bearing.

Parameters Deep Groove Ball Bearing

Number of balls 9
Bearing ball diameter (mm) 12
Bearing bore diameter (mm) 40

Bearing outside diameter (mm) 80
Radius of curvature of inner channel (mm) 6.24
Radius of curvature of outer channel (mm) 6.36

Coefficient of linear expansion 1.36 × 10−7

Initial contact angle (◦) 14.8351
The initial clearance (mm) 0.04

Bearing pitch diameter (mm) 60
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Figure 6. Calorific values of bearing under different loading conditions: (a) no load and (b) the load with the input torque
of 100 Nm.

The bearing frictional heat generation will radiate outwards in the form of heat
conduction and convection. According to the research conclusions of Burton and Staph [39],
after the heat generation of bearing, half of the heat enters the ball and the other half enters
the inner and outer rings. Therefore, the obtained heat of the inner ring (Hi), the obtained
heat of the outer ring (Ho), and the obtained heat of the ball (Hb) are calculated as follows:

Hi = 0.25(πn(M1 + Mν)/30) + 0.5(ωsi Msi)
Ho = 0.25(πn(M1 + Mν)/30)
Hb = 0.5(πn(M1 + Mν)/30) + 0.5(ωsi Msi)

(27)

2.4. Temperature Rise and Thermal Deformation of the Bearing Based on the Thermal Resistance
Network Method

After the generation of heat in the bearing, the heat will be transferred outwards,
which will improve the temperature of the inner and outer rings, and the bearing balls.
The axial and radial thermal deformation will occur between the inner and outer rings
of the bearing and change the contact angle of the inner and outer rings of the bearing.
Under the stable working condition, the temperature difference between bearing, gearbox,
and shaft system is small, and the heat radiation effect on the thermal behaviors of bearings
is little, so that the influence of heat radiation can be ignored [40]. Thermal nodes are
set at different points of the bearing and connected as a heat network in the form of heat
resistance, as shown in Figure 7.
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In Figure 7b, Rci-s is the heat conduction resistance of the shaft, which is transferred
from the contact point between the bearing inner ring and the transmission shaft to the
thermal node of transmission shaft. Ri-ci is the heat conduction resistance of the inner ring
of the bearing, which is transferred from the contact point between the bearing inner ring
and ball to the contact point between the bearing inner ring and the transmission shaft.
Rb-i is the heat conduction resistance of the ball, which is transferred from the ball to the
contact point between the inner ring and the ball. Rb-o is the heat conduction resistance
of the ball, which is transferred from the ball to the contact point between the outer ring
and the ball. Ro-co is the heat conduction resistance of the outer ring, which is transferred
from the contact point between the ball and the outer ring to the contact point between the
bearing seat and the outer ring. Rco-h is the heat conduction resistance of the bearing seat,
which is transferred from the contact point between the outer ring and the bearing seat
to the thermal node of the bearing seat. Rh-a is the convective heat resistance between the
bearing seat and the air, which is transferred from the bearing seat to the air. Rs-og is the
convective heat resistance which is used to depict the heat transfer between transmission
shaft and the oil–gas mixture. The heats are transmitted from the inner ring to oil–gas
mixture by the resistances Ri-og. The heat is transmitted from balls to oil–gas mixture by
the corresponding resistance Rb-og. Ro-og is the convective heat resistance which is used to
depict the heat transfer between balls and oil–gas [40,41]. The lubrication method of the
system is to force the lubrication through oil injection at the end cover of the bearing as
shown the oil nozzle (blue) in Figure 1. In the steady-state heat transfer process, according
to Kirchhof’s energy balance principle, the equations of heat balance at each node were
established. Therefore, the heat balance equations of the bearing model were established to
analyze and calculate the temperature between each part of the bearing. To simplify the
process, the following assumptions were made:

(1) The heat transfer process of the bearing is steady;
(2) The three-dimensional heat transfer model is simplified into a one-dimensional model

radial heat transfer [35,40,42], and the heat generation in the contact zone is caused
by friction losses and rolling resistance;

(3) The influence of temperature rise on the lubricating oil performance is ignored;
(4) The flow rate of the cooling fluid is large enough so that the fluctuating temperature

of the fluid is not considered, and the temperature of the oil–gas mixture is assumed
to be fixed at 28 ◦C;

(5) The material of all parts is assumed to be isotropic.

Then, the thermal balance equation of the system can be established as follows:

Ts−Tog
Rs−og

− Tci−Ts
Rci−s

= 0
Tci−Ts
Rci−s

− Ti−Tci
Ri−ci

= 0
Ti−Tci
Ri−ci

+ Ti−Tb
Rb−i

+
Ti−Tog
Ri−og

= 0.5Hi
Tb−Tog
Rb−og

+ Ti−Tb
Rb−i

+ To−Tb
Rb−o

= 0.5Hi + 0.5Ho
To−Tb
Rb−o

+ To−Tco
Ro−co

+
To−Tog
Ro−og

= 0.5Ho
Tco−Th
Rco−h

+ To−Tco
Ro−co

= 0
Th−Ta
Rh−a

+ Tco−Th
Rco−h

= 0

(28)

where, Ts is the temperature of the transmission shaft node, Tci is the temperature of
the node at the contact point between the inner ring of the bearing and the shaft, Tog is
the temperature of the gas–oil mixture, Ti is the temperature of the inner raceway node,
Tb is the temperature of the ball node, To is the temperature of the outer raceway node,
Tco is the temperature at the contact point between the outer ring and the bearing seat,
and Ta is the air temperature. The force oil cooling system, which is applied in Figure 1,
can help to contain the temperature of the system and reduce the error as described
in [40,43]. In addition, the fluctuating temperature of the fluid was neglected, as mentioned
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in assumption (4). Therefore, the temperature of the oil–gas mixture Tog which set fixed at
28 ◦C. The temperature difference between the two nodes is expressed as:

∆T =
kk · S
L · H (29)

where, T is the temperature difference between two nodes, H is the transfer of heat, kk is
the thermal conductivity of the material, S is the area perpendicular to the direction of heat
flow between two points, and L is the distance between two nodes. Therefore, the thermal
conductivity equation between bearing rings can be expressed as:

Hq =
2πkC

ln(Do/Di)
(To − Ti) (30)

The heat conduction is related to the thermal conductivity of the material, while the heat
convection is related to the heat transfer coefficient of the medium surface. Then, the heat
transfer coefficient of the air and the surface of lubricating oil can be denoted as, respectively: ha = 2.3× 10−5(T1 − T2)

0.25

hog = 0.332kvP1/3
γ

(
nv
2rx

)0.5 (31)

where, kv is the thermal conductivity of lubricating oil, Pγ is Prandtl number of lubricating
oil, nv is one third of the speed of the cage, µ is kinematic viscosity, and rx is the radius of
the raceway.

According to the definition of thermal resistance, the above equation can be converted
into:

R =
(To − Ti)

q
=

ln(Do/Di)

2πkC
(32)

where, q is the heat; C is the width of the outer ring. Do and Di are the diameters of the
inner and outer rings, respectively.
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Figure 7. (a) Thermal node distribution and (b) thermal network model of the deep groove ball bearing.

The thermal resistance of each structure in the process of heat transfer is shown in
Table 2. ki, ko, kb, ks, and kh are the thermal conductivity of the inner ring, the outer ring,
the ball, the shaft, and the bearing seat, respectively. hi, ho, hs, hb, hh are the coefficients of
free/force convection heat transfer [36,40]. Ds and Dh are the outer diameters of the shaft
and the distance of the bearing seat from the center line of the shaft, respectively. B, C, Ls,
and Lh are the width of bearing inner ring and outer ring, the distance between the node
Ts from the transmission shaft end, the height of bearing housing, respectively, as shown
in Figure 7.
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Table 2. Thermal resistance description table.

Name of the Node Equations of the
Thermal Resistance Name of the Node Equations of The

Thermal Resistance

Rci-s Rci−s =
1

ksπB + 4Ls
ksπD2

s
+ 1

hsπD2
s

Rh-a-ax Rh−a−ax = 4Lh
khπ(D2

h−D2
o)

+ 4Lh
khπD2

o
+ 4

hhπD2
h

Ri-ci Ri−ci =
ln(Di/Ds)

2kiπB
Rs-og Rs−og = Z

hsπD2
s

Rb-i Rb−i =
1

kbπDb
Ri-og Ri−og = 1

hiπDi B
Rb-o Rb−o = 1

kbπDb
Rb-og Rb−og = 1

hbπD2
b

Ro-co Ro−co =
ln(D/Do)

2koπC
Ro-og Ro−og = 1

hoπDoC
Rco-h Rco−h =

ln(Dh/Do)
2hhπC + 1

khπDh Lh
Rh-a Rh−a = Rh−a−ax Rh−a−r

Rh−a−ax+Rh−a−r

Rh-a-r Rh−a−r =
ln(Dh/Do)

2khπC + 1
hhπDh Lh

Combining the proposed heat balance equation of the bearing and the heat resistance
of each node, the Newton–Raphson iterative method was used to solve the heat balance
equation, assuming that the initial ambient temperature is 26 ◦C, and the temperature of
each node was obtained, satisfying the setting accuracy.

Under the condition of axial preload force of 300 N, the temperature of each node was
calculated under the conditions of no-load (with the range of rotating speed from 7250 to
22,500 r/min), and the different radial and axial loads. For example, when the rotating
speed is 6500 r/min, the constant radial load is 1189.9 N, and the range of axial load is
from 0 to 2380.9 N. On the contrary, the axial load is constant while the radial loads are
various (with the rotating speed of 6500 r/min, the axial load of 2380.9 N, and the range of
radial load from 0 to 1189.9 N), and the calculation results are shown in Figure 8.Sensors 2021, 19, x FOR PEER REVIEW  13 of 27 
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Figure 8. Temperature curve diagram of each node of the thermal network changing with the rotating speed and load:
(a) node temperature variation diagram with the rotating speed under no-load, (b) node temperature variation diagram
with axial load, and (c) node temperature variation diagram with radial load.

According to Figure 8a, when there is no load, the temperature of each node increases
almost linearly with the increase of rotating speed. Figure 8b,c indicate that, with the
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increase of the axial or radial load, the temperature of each node increases to a certain
extent, but the influence of axial load on the node temperature is much greater than that
of radial load. In the same working condition, the temperature rise of the bearing ball is
the maximum and that of the housing is the minimum in each node of the bearing. The
temperature at the contact point of the inner and outer raceway is similar with that of the
inner and outer rings of the bearing, and the temperatures at the contact point and the
thermal node of inner ring are higher than that of the outer ring.

According to the temperature rise of the bearing, the corresponding thermal deforma-
tion can be calculated by [40–42,44]:

uT = ax∆Td (33)

where, uT is the thermal deformation, and ax is the thermal expansion coefficient of the
material, where subscript x = s, i, o, and h, respectively, refer to the thermal expansion
coefficients of the transmission shaft, inner ring, outer ring, and transmission housing.
4T = T1 − T2 is the temperature gap of the part and d is the diameter of each part. Due
to the axisymmetric distribution of bearing temperature, depending on the stress–strain
relationship [45], uTs which stands for the thermal deformation of transmission shaft, uTi
which is the thermal deformation of bearing inner raceway, uTi

’ which is the radial thermal
deformation of inner ring, uTo which represents the deformation of the outer raceway,
uTo

’ which denotes the radial thermal deformation of outer ring, uTb which is the thermal
deformation of the ball, and uTh which stands for the radial thermal deformation of the
bearing seat, can be obtained by, respectively:

uTs = as∆Ts(1 + vs)Ds
uTi = ai∆Tidi
uTi
′ = ai∆TiDi

uTo = ao∆Todo
uTo
′ = ao∆ToDo

uTb = ao∆TbDb
uTh = ah∆Th(1 + vh)Dh

(34)

Based on Equation (34) and bearing temperature rise model, the radial thermal de-
formation equations of inner raceway and outer raceway can be obtained [32], where the
thermal deformation of the inner raceway is considering the effect of the thermal defor-
mation of the shaft, and the thermal deformation of the outer raceway is considering the
deformation effect of the bearing seat:{

uTri = uTi
(uTs−uTi

′)DTi
DTs

= ai∆TiDi + (as∆Ts(1 + νs)Ds − ai∆TiDi)
Di
Ds

= as∆Ts(1 + νs)Di

uTro = uTi +
(uTh−uTo

′)Do
D = ao∆ToDo +

(ah∆Th(1+νh)D−ao∆To D)Do
D = ah∆Th(1 + νh)Do

(35)

Considering the ball deformation, uTr which refers to the relative radial thermal
deformation between the inner and outer groove raceway can be expressed as:

uTr = uTri − uTro − 2uTb = as∆Ts(1 + vs)Ds + ah∆Th(1 + vh)Do − 2ab∆TbDm (36)

Considering the deformation of the transmission shaft and the bearing seat, uTa which
refers to the axial thermal deformation between the inner and outer ring raceway can be
expressed as:

uTa = (ah∆ThLh − as∆TsLs)/2 (37)
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When the thermal deformation is caused by the heat generation of the bearing, the
axial and radial distance between the loci of inner and outer raceway groove curvature
center changes, as shown in Figure 9. In this case, A1j and A2j can be expressed as:{

A1j = BDb sin α0 + δa + Rriθ cos ψj + uTa
A2j = BDb cos α0 + δr cos ψj + ur + uTr

(38)
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Figure 9. The contact angles, deformations, and displacements for the ball–raceway contacts at
azimuth ψj with the working load, centrifugal force, and thermal deformation.

In addition to the relative displacement and angle under loading, the thermal de-
formations of the bearing, shaft, and bearing seat can also change the axial projection of
distance between the ball center and the outer raceway groove curvature center.

With the preload of 300 N, the axial load of 2380.9 N, and the radial load of 1189.9 N,
the relationship between the rotating speed and the axial deformation or the radial defor-
mation of the bearing is shown in Figure 10. In Figure 10a, ua-all and ur-all represent the
combined axial and radial deformation of the bearing, respectively. It can be seen from
Figure 10 that the thermal and comprehensive deformations in axial and radial directions
both improve with the increase of rotating speed, where the deformation is under loading.
The axial thermal deformation of the bearing is far less than the axial deformation under
loading, and it can be ignored. The radial thermal deformation of the bearing is close to
that under loading, and it is greater than that of the centrifugal effect. The influence of the
radial thermal deformation on the bearing dynamic characteristics should be considered.
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Figure 10. (a) Axial deformation displacement graph and (b) radial deformation displacement graph
of the deep groove ball bearing under the centrifugal effect and thermal deformation.
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3. Analysis on the Influence of Bearing Stiffness on the Nonlinear Dynamic
Characteristics of the Gear Transmission System
3.1. Calculation of Bearing Stiffness under the Thermal Deformation Condition

The bearing stiffness affects the vibration characteristics and nonlinear behavior of the
gear transmission system [29]. The better bearing stiffness may make the drive system run
more smoothly. Based on the thermal deformation of the deep-groove ball bearing under
the conditions of high speed operation, the bearing stiffness under the thermal deformation
was calculated, and the nonlinear dynamic characteristics of the high speed electric drive
gear transmission system were analyzed under the thermal deformation.

Firstly, based on Equations (13) and (15), the Newton–Raphson method was used to
calculate the inner and outer ring loads (Qij and Qoj), and the contact angles (αij and αoj),
meeting the accuracy requirements before and after the thermal deformation of the bearing.
Then, the contact stiffness of the bearing under the condition of thermal deformation was
calculated, and the axial and radial stiffness values were solved. The contact stiffness
between the ball and inner or outer ring of the bearing is shown in Equation (1). The total
axial stiffness of the bearing is the parallel of the axial contact stiffness between the balls
and inner and outer rings, which can be expressed as:

Ka =
Zb

∑
j=1

Kaij × Kaoj

Kaij + Kaoj
(39)

where, Kaij and Kaoj are the axial contact stiffness values between the jth ball and inner and
outer rings, respectively, and they can be obtained by:{

Kaij = Kij sin2 αij
Kaoj = Koj sin2 αoj

(40)

Similarly, the total radial stiffness of a bearing can be expressed as:

Kr =
Zb

∑
j=1

Krij × Kroj

Krij + Kroj
cos2

(
2π(j− 1)

Z

)
(41)

where, Krij and Kroj are the radial contact stiffness values between the jth ball and inner and
outer rings, respectively, denoted as:{

Krij = Kij cos2 αij
Kroj = Koj cos2 αoj

(42)

Figure 11 shows the influence of the thermal deformation on the axial and radial
stiffness of the bearing under the accelerated input torque of 100 Nm, where the range of
acceleration speed is from 6500 to 16,500 r/min. The red ‘*’ shaped line and red dotted line
represent the relationship curves of axial stiffness and radial stiffness versus the rotating
speed, respectively, without considering the bearing temperature rise. The blue ‘+’ and
blue ‘4’ shaped lines are the curves of axial stiffness and radial stiffness versus the rotating
speed, respectively, considering the bearing temperature during the working conditions.
In Figure 11, regardless of the thermal deformation of the bearing, the radial stiffness of the
bearing slowly improves with the increase of the rotating speed, while the axial stiffness
slightly decreases. This reason is that the centrifugal force and contact load of the bearing
ball are improved, and the contact angle between the ball and the outer ring groove is
reduced with the increase of the rotating speed. In addition, the thermal deformation of the
bearing will reduce the radial clearance of the bearing and the contact angle of the outer
ring at the same rotating speed, thus further improving the radial stiffness and reducing the
axial stiffness of the bearing. However, the thermal deformation of the bearing results in
the increase of the ball radius with the increase of rotating speed, and the contact stiffness
and contact angle change under the deformation of the inner ring. The increase degree
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of the radial stiffness and the decrease degree of the axial stiffness may reduce with the
increase of the rotating speed. Therefore, the effect of high speed and the influence of
bearing temperature rise on the bearing stiffness should be considered when analyzing the
nonlinear dynamic characteristics of the high speed electric drive gear system.
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Figure 11. Axial and radial stiffness of the bearing with or without the thermal deformation.

3.2. Dynamic Modeling of the High Speed Electric Drive Gear Transmission System

Based on the above analysis and calculation of bearing stiffness, a dynamic model of
the helical gear system supported by the bearing was established, as shown in Figure 12.
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Due to the nonlinearity of the clearance, the dynamic meshing force can be expressed: 
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Figure 12. Dynamic model of the electric drive transmission system.

In Figure 12, Op and Og are the rotation centers of the driving and driven gears,
respectively, with the counterclockwise rotation around the central axis as the positive
direction, and the compression spring stiffness direction as the positive direction of the
meshing force. The stiffness/mass matrix of the shaft parts is extracted by the lumped-mass
method, and the dynamic equations including the movement direction of the driving and
driven gears along x, y, and z directions and the rotation direction around the axis of the
gear can be established, respectively, as shown in Equations (43) and (44), to study the
nonlinear dynamic characteristics of the gear system under different input torques and
rotating speeds. 

mp
..
xp + cbpx

.
xp + kbpxxp + Fn cos βg sin ϕ = 0

mp
..
yp + cbpy

.
yp + kbpyyp + Fn cos βg cos ϕ = 0

mp
..
zp + cbpz

.
zp + kbpzzp + Fn sin βg = 0

Ip
..
θp − tp + Fn cos βgRbp = 0

(43)
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
mg

..
xg + cbgx

.
xg + kbgxxg − Fn cos βg sin ϕ = 0

mg
..
yg + cbgy

.
yg + kbgyyg − Fn cos βg cos ϕ = 0

mg
..
zg + cbgz

.
zg + kbgzzg − Fn sin βg = 0

Ig
..
θg + tg − Fn cos βgRbg = 0

(44)

where, mp and mg are the mass values of driving and driven gears, respectively. kbpx, kbpy,
kbpz, kbgx, kbgy, and kbgz are the supporting stiffness values of the bearing mounted on the
driving and driven gear shafts in the x, y, and z directions, respectively. cbpx, cbpy, cbpz,
cbgx, cbgy, and cbgz are the damping coefficients of the bearing mounted on the driving and
driven gear shafts in the x, y, and z directions, respectively. Fn is the meshing force. Ip and
Ig are the moment values of inertia of the driving and driven gears, respectively; Rbp and
Rbg are the base circle radius values of the driving and driven gears, respectively. θp and
θg are the rotation angles of the driving and driven gears, respectively; tp and tg are input
and output torques, respectively. βg is the helix angle and ϕ is the angle between the action
surface and the vertical direction.

The meshing forces in the x, y, and z directions and the relative displacement in the
normal direction can be expressed as:

δx = xp + Rpθp sin ϕ− xg − Rgθg sin ϕ
δy = yp + Rpθp cos ϕ− yg − Rgθg cos ϕ
δz = zp − zg
δn = (δx sin ϕ + δycosϕ) cos βg + δz sin βg.
δn = (

.
δx sin ϕ +

.
δycosϕ) cos βg +

.
δz sin βg

(45)

Due to the nonlinearity of the clearance, the dynamic meshing force can be expressed:
Fn = km(δn − b− e) + cm(

.
δn −

.
e) (δn − e)/b > 1

0 −1 ≤ (δn − e)/b ≤ 1
Fn = km(δn + b− e) + cm(

.
δn −

.
e) (δn − e)/b < −1

(46)

where, b is the clearance and e is the comprehensive meshing error. Then the following non-
dimensional equations are conducted by the nonlinear dynamic Equations (43) and (44) [46]:

mpbω2
n

..
xp + cbpybωn

.
xp + kbpybxb + Fn cos βg sin ϕ = 0

mpbω2
n

..
yp + cbpybωn

.
yp + kbpybyb + Fn cos βg cos ϕ = 0

mpbω2
n

..
zp + cbpybωn

.
zp + kbpybzp + Fn sin βg = 0

Ipbω2
n

..
θpRbp − tpRbp + FnR2

bp cos βg = 0

(47)


mgbω2

n
..
xg + cbgybωn

.
xg + kbgybxg − Fn cos βg sin ϕ = 0

mgbω2
n

..
yg + cbgybωn

.
yg + kbgybyg − Fn cos βg cos ϕ = 0

mgbω2
n

..
zg + cbgybωn

.
zg + kbgybzg − Fn sin βg = 0

Igbω2
n

..
θgRbg + tgRbg − FnR2

bg cos βg = 0

(48)

The generalized coordinates of the system can be defined as:

x = [ xp yp zp xg yg zg θpRbp − θgRbg ] (49)

The variable x in the generalized coordinates of the system is substituted into Equation (46),
and the dynamic equation of the system can be denoted as:
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

..
x1 +

cbpx
mpωp

.
x1 +

kbpx

mpω2
n

x1 +
Fn cos βg sin ϕ

mpbω2
n

= 0
..
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..
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[( tpRbp
Ip

+
tgRbg

Ig

)
−
(

Fn cos βg cos ϕR2
bg

Ip
+

Fn cos βg cos ϕR2
bg

Ig

)]

(50)

3.3. Analysis of Nonlinear Dynamic Characteristics of the Helical Gear Transmission System

The parameters of a helical gear system are shown in Table 3. The time-varying mesh-
ing stiffness (TVMS) of the gear pair was calculated by the numerical analysis method [47],
and the results are shown in Figure 13. In this Figure, with the gear rotation, the teeth
approach and recess in turn as from Gear 1 to Gear 11. Additionally, there are multiple
curves that coincidence at the same time, this is because there is more than one tooth
engaged in meshing during the gear meshing process simultaneously. According to the
parallel relation between the simultaneous meshing teeth, the TVMS of the gear pair can
be obtained.

Table 3. First gear pair parameters of the high speed electric drive powertrain system.

Parameters Driving Gear Driven Gear

Number of teeth 29 78
Normal module (mm) 1.537

Pressure angle (◦) 16.5
Face width (mm) 33

Helix angle (◦) 31.2
Elastic modulus (MPa) 20,600

Material density (tonne.mm-3) 7.8×109

Mass (kg) 1.201 3.1
Poisson ratio 0.25

Rotational inertia
(tonne.mm2) 0.1152 1.6
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In actual working conditions, the bearing has six degrees of freedom to move and
rotate along x, y, and z directions. In this case, the bearing stiffness is calculated by:

Kb =



kxx kxy kxz kxθx kxθy kxθz

kyx kyy kyz kyθx kyθy kyθz

kzx kzy kzx kzθx kzθy kzθz

kθx x kθxy kθxz kθxθx kθxθy kθxθz

kθyx kθyy kθyz kθyθx kθyθy kθyθz

kθzx kθzy kθzz kθzθx kθzθy kθzθz


(51)

While, the gear dynamic model established in this paper only considers the movement
along x, y, and z directions and the rotation around z direction, according to the axial and
radial stiffness calculated by Equations (39) and (41), the bearing stiffness in the dynamic
model can be established as:

Kb =


kbpx 0 0 0

0 kbpy 0 0
0 0 kbpz 0
0 0 0 0

 =


kxx 0 0 0
0 kyy 0 0
0 0 kzx 0
0 0 0 0

 = 1000×


Kr 0 0 0
0 Kr 0 0
0 0 Ka 0
0 0 0 0

 (52)

Thus, the bearing stiffness and time varying meshing stiffness of gear pair were
substituted into Equation (48), and the Runge–Kutta method [46] was used to obtain the
approximate solution of the nonlinear equation of the gear-bearing system. The nonlin-
ear dynamic characteristics of the gear system under the conditions of acceleration and
deceleration were calculated, respectively, by using the gear parameters in Table 3. The
bifurcated diagrams of the dynamic transmission error under accelerating and decelerating
working conditions are shown in Figures 14 and 15, respectively.

Figure 14a–c shows the bifurcated diagrams of dynamic transfer error of gear pair
with the constant bearing stiffness, variable bearing stiffness values without the thermal de-
formation, and variable bearing stiffness values with the thermal deformation, respectively,
under the accelerating condition. The results show that the system moves in a periodic-one
motion at a low speed, and occurs the periodic motions in a range of 9644 r/min (with
the constant bearing stiffness), 9933−10,140 r/min (without considering the thermal de-
formation), and 10,040−10,440 r/min (considering the thermal deformation). Then, the
step phenomenon occurs at the rotating speed of 6978 r/min (with the constant bearing
stiffness), 10,140 r/min (without considering the thermal deformation), and 10,440 r/min
(considering the thermal deformation). After that, the system performs a periodic-one
motion, it exhibits a chaotic motion in the range of 11,750−12,460 r/min, and proceeds
the 2T-priodicic motion at 12,840 r/min (with the constant bearing stiffness), 11,550 r/min
(without considering the thermal deformation), and 12,960 r/min (considering the thermal
deformation), respectively. Moreover, the system undergoes a chaotic motion in the rotating
speed range of 14,950−16,040 r/min (with the constant stiffness), 12,960−13,270 r/min and
15,690−15,990 r/min (without considering the thermal deformation), 14,380−14,580 r/min
and 16,100−16,500 r/min (considering the thermal deformation), and it proceeds into a
chaotic motion during other speed ranges.

Under the decelerating condition with the rotating speed range of 16,500−6500 r/min,
the bifurcated diagrams of dynamic transfer error of gear pairs with the constant bearing
stiffness, variable bearing stiffness values without considering the influence of thermal
deformation, and variable bearing stiffness values considering the thermal deformation
are shown in Figure 15a−c, respectively. The results are similar to those in the accel-
erating condition that the nonlinear bifurcation phenomena, such as the 1T-priodicic
motion, the quasi-periodic motion and the chaos motion, also exist in the gear system with
the increase of rotating speed. The system exhibited a spike at the speed of 6978, 6702,
6600, and 7106 r/min, respectively, and it exhibits a 2T-priodicic motion at the speed of
12,840 r/min (with the constant bearing stiffness), 11,550 r/min (without considering the
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thermal deformation), and 12,960 r/min (considering the thermal deformation), respec-
tively. In addition, the system performs a periodic motion in the rotating speed range
of 14,270−14,620 r/min and 14,990−15,690 r/min (with the constant bearing stiffness),
12,960−13,270 r/min and 15,580−15,880 r/min (without considering the thermal defor-
mation), and 14,380−14,590 r/min (considering the thermal deformation), and the system
proceeds to chaotic behaviors during other speed ranges. Compared with the dynamic
response of the system during the accelerating condition, the difference is that the hopping
phenomenon of these three conditions occurs below 7500 r/min, and the dynamic transfer
error in the low speed range is less than that under the accelerating condition. When
considering the bearing thermal deformation, the dynamic response of the system in the
high speed range is a periodic motion under the accelerating condition, which is different
from the chaotic motion under the decelerating condition.
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constant bearing stiffness, (b) variable bearing stiffness values without considering the influence
of thermal deformation, and (c) variable bearing stiffness values under the influence of thermal
deformation.
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Figure 15. The bifurcated diagrams of gear system for the decelerating working condition: (a)
constant bearing stiffness, (b) variable bearing stiffness values without considering the influence of
thermal deformation, and (c) variable bearing stiffness values considering the influence of thermal
deformation.

Through the comparison of the bifurcated diagrams of the transmission error under
the accelerating and decelerating conditions, it can be seen that the bearing temperature
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rise has a great impact on the nonlinear dynamic characteristics of the system within the
range of medium and high speeds. When the considering the bearing temperature rise,
the system will have a chaotic motion around the speed of 12,000 r/min. By comparing
the nonlinear dynamic characteristics of the gear system under the decelerating and accel-
erating conditions, the nonlinear behaviors of the system in the medium speed range are
similar under three different bearing stiffness values. However, the bifurcation character-
istics of the system are different in the low or high speed range. The spike phenomenon
may easily occur in the low speed range under the decelerating condition, while the sys-
tem will change from the chaotic motion to the periodic motion in the high speed range
(16,100−16,500 r/min) under the accelerating condition, when considering the influence of
thermal deformation.

4. Conclusions

The thermal deformation calculation model of the deep groove ball bearing was
established through the statics and pseudo-statics analysis in this study. The heat generation
and temperature rise of the deep groove ball bearing were analyzed under the high
speed working condition. The deformation, radial and axial stiffness of bearing under
the temperature rise were also calculated based on the Newton–Raphson method. The
dynamic model of helical gear transmission system was established. Considering the
thermal deformation of the bearing, the influence of the various bearing stiffness values
on nonlinear dynamic characteristics of gear system was studied. The following specific
conclusions can be drawn:

(1) Under the condition of high speed working condition, the thermal deformation of
the bearing will occur in both the axial and radial directions. The axial thermal
deformation is far less than the axial deformation, but the radial thermal deformation
is close to the bearing radial deformation under loading. When considering the
thermal deformation of the bearing, the axial stiffness of the bearing is reduced, while
the radial stiffness increases.

(2) The gear system of high speed electric drive appears T-periodic and chaotic mo-
tions under both accelerating and decelerating conditions. Under the accelerating
condition, the system has a hopping point around 10,000 rpm, and it exhibits the
2T-periodic motion without considering the thermal deformation, while the rotational
speed range of the system with the 2T-periodic motion is large when considering the
thermal deformation. The system will have a spike step before the rotating speed of
7000 rpm under the decelerating condition, and there is one hopping point under
the bearing stiffness without considering the thermal deformation. On the contrary,
the system has two spikes under the bearing stiffness considering the influence of
thermal deformation.

(3) In accelerating and decelerating conditions, the bifurcation behavior of the system
with the constant bearing stiffness is better than that with variable bearing stiffness
values within the range of medium and high speed. The bifurcation characteristics
of the system without considering the thermal deformation are more complicated
than that considering the influences of the thermal deformation, but the extra chaotic
motions of the system will appear when considering the thermal deformation in the
medium speed range (about 11,150−11,250 r/min), which shows that the bearing
stiffness may change the nonlinear dynamic characteristics of the system. Therefore,
the influence of thermal deformation on bearing stiffness should be considered in the
dynamic analysis of the high speed electric drive helical gear system.
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Nomenclature

Γ Complete elliptic integral of the first kind
Π Complete elliptic integral of the second kind
κ Ellipticity parameter
α0 Free contact angle of bearing (rad)
α mounted contact angle (rad)

δ
Relative displacement or elastic deformation of
contact (mm)

δn Contact deformation between teeth (m)

θ
The angle of bearing under the action of
external force (rad)

ψ Position angle of ball (rad)
v Poisson’s ratio
Es Modulus of elasticity (Mpa)
ρb Density of ball (kg/mm3)
ρ Density of gear (kg/m3)

ωc
Rotational speed refers to orbital motion
(rad/s)

µ Lubricant kinematic viscosity (centistokes)
µs Friction coefficient between ball and raceway
ω The relative angular speed (rad/s)

ωsi
Spinning motion of ball relative to the outer
raceway (rad/s)

ωso
Spinning motion of ball relative to the outer
raceway (rad/s)

ωn
The absolute angular speed of the inner
raceway (rad/s)

ωb Spinning speed of ball (rad/s)
β Attitude angle (rad)
βg Gear helix angle (rad)

ϕ
The angle between the acting surface and
vertical direction (rad)

θp Rotation angle of driving gear (rad)
θg Rotation angle of driven gear (rad)

A1
The axial distance between the loci of inner and
outer raceway groove curvature center (mm)

A2

The radial distance between the loci of outer
and outer raceway groove curvature center
(mm)

A
Semimajor axis of projected contact ellipse
(mm)
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a Thermal coefficient of expansion (1/◦C)
B Width of the inner ring (mm)
Bf Total curvature
b Backlash (m)
C Width of the outer ring (mm)
cm Gear meshing damping (N.s/m)
cb Bearing damping coefficients (N.s/m)

Dh
The distance of the bearing seat from the center
line of the shaft (mm)

Dm Pitch diameter of bearing (mm)
D Diameter (mm)
d Raceway diameter (mm)
e Integrated meshing error of gear pair (mm)
fi Curvature coefficient

f 0
A factor depending on the type of bearing and
the method of lubrication

F Applied force on bearing (N)
Fc Centrifugal force (N)
Fn Meshing force of gear pair (N)
H Power (W)

h
Convective heat transfer coefficient
(W/mm2/◦C)

I Moment of inertia (kg.m2)
Jb Mass moment of inertia of ball (kg.mm2)
K Load-deflection constant (N/mm1.5)
k Thermal conductivity (W/mm/◦C)

kv
Thermal conductivity of lubrication oil
(W/mm/◦C)

Ka Axial stiffness of bearing (N/mm)
Kr Radial stiffness of bearing (N/mm)

kbpx
Bearing stiffness of bearing used to support
driving gear (N/m)

kbgx
Bearing stiffness of bearing used to support
driven gear (N/m)

km Meshing stiffness of gear pair (N.m)

Ls
Distance between the node Ts from the
transmission shaft end (mm)

Lh Height of bearing housing (mm)
Mg Gyroscopic moment (N.mm)

Mµ
Bearing friction torque due to lubrication
(N.mm)

M1 Bearing friction torque due to load (N.mm)
Ms Spinning friction moment (N.mm)
m Quality (kg)
n Rotation speed of bearing (r/min)
nv One third of the speed of the cage (m/s)
Pγ Prandtl number
Q Ball normal load (N)
Qr Radial direction load on ball (N)
Qa Axial direction load on ball (N)

Rr
Radius to locus of raceway groove curvature
centers (mm)

Rb Gear base radius (m)
R Thermal resistant between nodes (◦C/W)
r Radius of curvature (mm)
T Temperature of node (◦C)
Ta Temperature of air (◦C)
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t Torque applied on gear (Nm)
uT Radial thermal deformation (mm)
uTi’ Radial thermal deformation of inner ring (mm)
uTo’ Radial thermal deformation of outer ring (mm)

uTri
Radial thermal deformation of inner raceway
considering thermal deformation of shaft (mm)

uTro

Radial thermal deformation of outer raceway
considering thermal deformation of bearing
seat (mm)

uTr

The relative radial thermal deformation
between inner and outer raceway considering
thermal deformation of ball (mm)

ua
The relative axial thermal deformation
between the inner and outer raceway (mm)

uall Composite deformation (mm)

X1

Axial projection of distance between ball center
and outer raceway groove curvature center
(mm)

X2

Radial projection of distance between ball
center and outer raceway groove curvature
center (mm)

Zb Number of balls
Subscripts
a Axial direction
r Radial direction
b Ball
n Normal direction
i Inner ring or raceway
o Outer ring or raceway

ci
Contact point between inner ring and
transmission shaft

co
Contact point between outer ring and bearing
seat

j The jth
s Transmission shaft
h Bearing seat
p Driving gear
g Driven gear
x Refers to x direction
y Refers to y direction
z Refers to z direction
og gas–oil
Abbreviations
NVH noise: vibration, and harshness
TVMS The time-varying meshing stiffness
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