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Abstract 25 

Reference genomes are foundational to modern genomics. Our growing understanding of genome 26 

structure leads to continual improvements in reference genomes and new genome “builds” with 27 

incompatible coordinate systems. We quantified the impact of genome build on germline and somatic 28 

variant calling by analyzing tumour-normal whole-genome pairs against the two most widely used 29 

human genome builds. The average individual had a build-discordance of 3.8% for germline SNPs, 8.6% 30 

for germline SVs, 25.9% for somatic SNVs and 49.6% for somatic SVs. Build-discordant variants are not 31 

simply false-positives: 47% were verified by targeted resequencing. Build-discordant variants were 32 

associated with specific genomic and technical features in variant- and algorithm-specific patterns. We 33 

leveraged these patterns to create StableLift, an algorithm that predicts cross-build stability with 34 

AUROCs of 0.934 ± 0.029. These results call for significant caution in cross-build analyses and for use of 35 

StableLift as a computationally efficient solution to mitigate inter-build artifacts.  36 
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Main 37 

Since initial assembly of the human genome in 20011,2, thousands of errors have been corrected, 38 

polymorphic regions have been defined and the diversity of included individuals has expanded3–5. These 39 

advances have led to a series of updated human reference genome “builds”, each with incompatible 40 

coordinate numbering. While new builds are more accurate representations, their adoption can be slow 41 

in both research and clinical settings6. 42 

One key factor slowing adoption of new genome builds is computational cost: re-aligning sequencing 43 

data requires local storage of raw reads and investment of substantial compute time. To avoid these 44 

time and financial costs, tools have been created to convert or “liftover” genomic coordinates between 45 

builds7,8. Despite widespread use, coordinate conversion using these tools was designed for larger 46 

intervals and can introduce artifacts when applied to individual variant calls9–17. It remains unclear 47 

whether and what biases are introduced by coordinate conversion, especially in the context of 48 

structural and somatic variant detection. 49 

To fill this gap, we compared DNA whole genome sequencing (WGS) alignment and variant detection 50 

on the two most widely used reference genomes: GRCh37 and GRCh38 (Figure 1a). Fifty human tumour-51 

normal WGS pairs were analyzed on both builds using identical tools and software versions via 52 

standardized Nextflow pipelines (Supplementary Figure 1a; Supplementary Table 1)18–20. Variants 53 

detected from sequencing data aligned to GRCh37 were converted to GRCh38 coordinates using 54 

BCFtools/liftover21 with UCSC chain files22,23. Converted GRCh37 variants were compared to variants 55 

detected from sequencing data directly aligned to GRCh38. We evaluated four variant classes: germline 56 

single nucleotide polymorphisms (gSNPs, including indels), germline structural variants (gSVs), somatic 57 

single nucleotide variants (sSNVs, including indels) and somatic structural variants (sSVs). 58 

Most germline SNPs and structural variants identified were shared between the two builds (>93%; 59 

Figure 1b-c). Nevertheless, we detected 166,704 ± 14,829 build-specific gSNPs and 908 ± 73 build-60 

specific gSVs per individual (mean ± standard deviation; Figure 1d). Alignment to GRCh38 led to 61 

identification of more gSNPs and gSVs (Figure 1e). By contrast, somatic variant detection was 62 

dramatically more variable: only 82% of sSNVs and 53% of sSVs were identified in both builds (Figure 63 

1f-g). This led to 3,611 ± 2,025 build-specific sSNVs and 93 ± 61 build-specific sSVs (Figure 1h), with 64 

more somatic variants identified when aligning to GRCh38 (Figure 1i). 65 

To better characterize build-specific calls, we calculated three complementary metrics of genotype 66 

concordance. First, we assessed non-reference discordance (NRD), which is the fraction of all non-67 

reference genotypes that disagree between builds. Next, we considered direct variant calling on 68 

GRCh38 as ground truth and calculated false positive rate (FPR) and false negative rate (FNR). Consistent 69 

with variant detection numbers, all three metrics of genotype concordance were substantially better 70 

for germline than somatic variants: 3.8 ± 0.0% NRD for gSNPs and 8.6 ± 0.1% for gSVs vs. 25.9 ± 11.0% 71 

for sSNVs and 49.6 ± 11.2% for sSVs (per individual mean ± standard deviation; Figure 1j). The high FNR 72 

of somatic variant detection on GRCh37 (20.4 ± 9.5% sSNVs, 38.1 ± 11.0% sSVs; Figure 1j) suggests that 73 

the many published studies aligning to GRCh37 may systematically underestimate somatic mutation 74 

burden (or alternatively those aligning to GRCh38 may overestimate it). 75 

To understand whether these discordances are randomly distributed, we first evaluated different 76 

classes of gSVs. Deletions and insertions were less discordant between builds than duplications, 77 
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inversion and translocations (Figure 1k). The high FNR of duplications (35.2 ± 7.7%) suggested increased 78 

sensitivity in GRCh38 potentially due to improved resolution of duplicated or homologous regions. This 79 

led us to investigate whether discordance in germline SNPs also varied spatially across the genome. 80 

Consistent with the gSV results, we observed significant heterogeneity in build-specific differences 81 

within and across chromosomes (Figure 1l). For example, a one Mbp region of 6p21.3 in the HLA region 82 

contained 16,784 gSNPs with mean 8.5% NRD, while a neighboring one Mbp region had 8,626 gSNPs 83 

with mean 1.2% NRD. 84 

A wide range of other features are associated with discordance across builds (Figure 1m; 85 

Supplementary Figure 1-7). As an example, discordant sSNVs were more likely to have lower quality 86 

scores but higher GC content (Figure 1m; Supplementary Figure 2a,c). Discordant sSNVs also exhibited 87 

a non-monotonic association with coverage: both atypically-low and atypically-high coverage was 88 

associated with increased discordance, possibly due to erroneous mapping to homologous or repetitive 89 

regions (Supplementary Figure 2b). sSNVs with higher somatic allele frequencies tended to be less 90 

discordant, while variants seen at higher allele frequencies in TOPMed24 were more likely to be 91 

discordant (Figure 1m; Supplementary Figure 2d-e). Discordance rates varied significantly across 92 

chromosomes (mean NRD ranging from 6.3% on chromosome 13 to 47.8% on chromosome Y; 93 

Supplementary Figure 6a) and trinucleotide contexts (mean NRD ranging from 4.7% to 17.3%; 94 

Supplementary Figure 6d). sSNVs in satellite repeat regions were particularly discordant (mean 59.8% 95 

NRD; Supplementary Figure 6e), supportive of repetitive regions as a major source of discordance. 96 

One natural explanation of these results is that almost all build-discordant genetic variation results from 97 

false-positive predictions from variant-detection algorithms. To quantify this, we exploited targeted 98 

deep-sequencing validation (mean 653x coverage) on sSNV calls from five tumour-normal, whole 99 

genome pairs (Supplementary Table 2)25. Build-concordant variants had a validation rate of 93.3% 100 

(Figure 1n). Nevertheless, 34.6% of GRCh37-specific variants and 51.3% of GRCh38-specific variants 101 

were validated by targeted deep-sequencing. This is a clear enrichment of false-positives relative to 102 

build-concordant variants, but demonstrates that build-specific variants are a balance of false-positives 103 

and false-negative predictions. As a result, simply using the latest genome build is insufficient: one third 104 

of variants detected on GRCh37 but not in GRCh38 are false-negatives. 105 

To quantify the cross-build stability of any individual variant, we created a machine-learning approach 106 

called StableLift. By leveraging features associated with build-discordance (Supplementary Figures 1-107 

7), StableLift estimates the likelihood (“Stability Score”) that a given variant will be consistently 108 

represented across two genome builds (Figure 2a). We trained StableLift with variants detected from 109 

the same fifty tumour-normal WGS pairs using six variant callers spanning all four variant-types: 110 

HaplotypeCaller26, MuTect227, Strelka228, SomaticSniper29, MuSE230 and DELLY231. We validated 111 

StableLift in 10 tumour-normal whole genomes32 (Supplementary Table 3) and 60 tumour-normal 112 

exomes32 (Supplementary Table 4) for area under the receiver operating characteristic curve (AUROC) 113 

and selected a default operating point to maximize F1-score in the whole genome validation set. 114 

StableLift robustly identified build-discordant gSNP calls, with validation AUROCs of 0.958 for WGS and 115 

0.941 for exome sequencing (Figure 2b; Supplementary Figure 8a-c). At the F1-maximizing operating 116 

point, 49.7 ± 0.5% of discordant gSNPs in WGS validation were discarded, corresponding to 51,181 ± 117 

4,884 discordant variants removed per individual (Figure 2c). A variety of features contributed to the 118 

accuracy of these predictions, most notably TOPMed24 population allele frequency (Figure 2d) driven 119 
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by elevated discordance of variants with allele frequencies near zero (rare variants/singletons) or one 120 

(reference artifacts; Supplementary Figure 1e). 121 

StableLift similarly identified build-discordant sSNVs, with validation AUROCs of 0.890 for WGS and 122 

0.851 for exome sequencing (MuTect2; Figure 2e; Supplementary Figure 8d-f) and a 45.7 ± 11.7% 123 

reduction of discordant calls (-209 ± 56 discordant sSNVs; Figure 2f). sSNV stability prediction was driven 124 

by a wide range of predictor features (Figure 2g). Models fit to three other sSNV callers achieved similar 125 

performance: AUROCWGS = 0.932 for Strelka2, AUROCWGS = 0.964 for SomaticSniper and AUROCWGS = 126 

0.905 for MuSE2 (Supplementary Figure 9a-i, Supplementary Figure 10). Different sSNV calling 127 

algorithms had similar but not identical patterns of feature importance, highlighting the interaction 128 

between genomic features and variant detection algorithms (Supplementary Figure 9j). 129 

To understand how predicted variant stability relates to variant validation status, we ran StableLift on 130 

the previously described five whole genome pairs with targeted deep-sequencing validation 131 

(Supplementary Figure 11a). sSNVs predicted to be “Stable” were 1.3-9.6x more likely to validate than 132 

those predicted to be “Unstable” (Supplementary Figure 11b-c). Similarly, the Stability Score 133 

distribution was higher for validated vs. unvalidated variants (Supplementary Figure 11d-g). 134 

Finally, we applied StableLift to structural variant calls made by DELLY231. Despite only 28,350 135 

concordant cases and 734 discordant cases of gSV training data (Figure 1c), StableLift again accurately 136 

identified discordant calls, with a validation AUROC of 0.926 (Figure 2h) and a 56.2 ± 5.3% reduction of 137 

discordant calls (-63 ± 10 discordant gSVs; Figure 2i). Length of variant was the most important single 138 

feature, with a range of predictive features differing from those driving the accuracy of the gSNP and 139 

sSNV models (Figure 2j). Accuracy in DELLY2 sSVs was equally high, achieving a validation AUROC of 140 

0.961 (Figure 2k) and removing 81.7% of discordant sSVs (-171 ± 170 discordant sSVs; Figure 2l). Only 141 

4,907 concordant and 1,845 discordant training cases were needed for this model, and its accuracy was 142 

driven by read count and SV length (Figure 2m). 143 

This work calls for significant caution in cross-build analyses. GRCh37 remains in routine use and while 144 

re-alignment to GRCh38 is preferable, this is computationally expensive. In many cases realignment 145 

may not be possible: raw data or software pipelines may no longer be available, particularly for older 146 

technologies. Similarly, variant databases created with GRCh37 coordinates can introduce challenges in 147 

annotating newer GRCh38-derived results. StableLift can create models to convert between any two 148 

genome builds. While our results focused on converting GRCh37 results to GRCh38, we provide models 149 

of similar accuracy for the inverse conversion of GRCh38 to GRCh37 (Supplementary Figure 12-16). 150 

StableLift provides an attractive approach to mitigate bias in many cases, but the build-sensitivity of 151 

somatic and structural variant calling warrants increased attention from algorithm developers. Some 152 

biases appear to be systematic, and while GRCh38 calls are generally more accurate, we identified 153 

apparent false-negatives with both genome builds. As genetic analyses gradually transition from linear 154 

reference genomes to graph-based pangenomes33–38, quantifying build-specific variation and efficiently 155 

minimizing error rates in cross-build conversion will become increasingly important.  156 
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Online Methods 267 

Analysis cohort 268 
To assess LiftOver concordance in a representative cancer genomics workflow, we chose to evaluate a 269 

cohort of 50 patients spanning eight cancer types from the International Cancer Genome Consortium 270 

(ICGC PRAD-CA)18 and the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium25 271 

(Supplementary Table 1). All patients had paired tumour-normal whole-genome sequencing with 272 

germline and somatic coverage of 32±8x and 57±10x, respectively. 273 

Alignment and variant calling 274 
Sequencing reads were aligned to the GRCh37 (hs37d5) and GRCh38 (hg38) reference builds using BWA-275 

MEM2 (v2.2.1)39 in paired-end, alt-aware mode followed by GATK’s `MarkDuplicatesSpark` (v4.2.4.1)26 276 

(Supplementary Figure 1a). Indel realignment and base quality score recalibration were performed 277 

using GATK’s `IndelRealigner` (v3.7.0), `BaseRecalibrator` (v4.2.4.1), and `ApplyBQSR` (v4.2.4.1)26. 278 

Germline SNPs were called using GATK’s `HaplotypeCaller` (v4.2.4.1) in GVCF mode followed by variant 279 

quality score recalibration using `VariantRecalibrator` (v4.2.4.1) and ‘ApplyVQSR’ (v4.2.4.1) and joint 280 

genotyping across all normal samples using `GenotypeGVCFs` (v4.2.4.1)26. Somatic SNVs were called 281 

using MuTect2 (v4.2.4.1)27 in tumour-normal mode with default parameters. Germline and somatic SVs 282 

were called using DELLY2 (v1.2.6)31 with default parameters and a more stringent minimum paired-end 283 

mapping quality threshold of 20. Germline SVs were regenotyped using the output of `delly merge` and 284 

filtered with `delly filter -f germline` (v1.2.6)31. 285 

All alignment and variant calling operations were run on a Slurm high-performance computing cluster 286 

using Nextflow (v23.04.2) pipelines19,20,40 to ensure reproducibility and compatibility across computing 287 

environments. The GRCh37 and GRCh38 analysis pipelines used identical parameters except for the 288 

reference genome input and associated resource files. 289 

LiftOver coordinate conversion 290 
GRCh37 SNV calls were converted to GRCh38 coordinates using the BCFtools/liftover plugin (v1.20)21 291 

with UCSC chain files22,23. For SVs, a custom R script was used to convert variants by breakpoint 292 

(CHROM, POS, END for DEL, DUP, INS, INV variants; CHROM, POS, END, CHR2, POS2 for BND variants) 293 

using the UCSC chain files along with the rtracklayer (v1.62.0)41 and GenomicRanges (v1.54.1)42 R 294 

packages. 295 

Variant concordance 296 
SNV concordance was evaluated at the cohort level using `vcf-compare` from VCFtools (v0.1.16)43 and 297 

at the sample level using `SnpSift concordance` (v5.2.0)44. Per variant SNV concordance was quantified 298 

using `bcftools stats --verbose` (v1.20)45. SV concordance was evaluated using `SVConcordance` 299 

(v4.4.0.0) from GATK. 300 

To accurately assess the practical impacts of LiftOver operations on variant calling, performance metrics 301 

need to be carefully chosen46. Metrics including true negative counts should be used with caution. In 302 

the case of SNVs, the number of sites matching the reference far outnumber variant sites and can lead 303 

to inflated estimates of accuracy. Furthermore, standard SNV calling pipelines typically only report sites 304 

which differ from the reference sequence. Outside of targeted re-genotyping, the absence of a variant 305 

cannot be assumed to be a reference match as the missing call could be attributed to a lack of coverage 306 

or insufficient evidence. This issue is even more pronounced with structural variants. 307 
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We utilized the following three metrics to i) characterize the concordance and error profiles of LiftOver 308 

operations and ii) provide guidance for when and where these errors are the most relevant. True 309 

positive (TP), false positive (FP), true negative (TN) and false negative (FN) calls are computed for 310 

converted GRCh37 variant calls relative to GRCh38. 311 

Non-reference discordance (NRD) measures the overall disagreement between the two variant sets and 312 

is equivalent to overall accuracy with true negatives excluded from the denominator: 313 

𝑁𝑅𝐷 =
(𝐹𝑃 + 𝐹𝑁)

(𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃)
 314 

False positive rate (FPR) represents the fraction of variants identified in GRCh37, but not in GRCh38: 315 

𝐹𝑃𝑅 =
𝐹𝑃

(𝐹𝑃 + 𝑇𝑃)
 316 

False negative rate (FNR) represents the fraction of variants identified in GRCh38, but not in GRCh37: 317 

𝐹𝑁𝑅 =
𝐹𝑁

(𝐹𝑁 + 𝑇𝑃)
 318 

Variant annotation 319 
For SNVs, dbSNP (build 151)47, GENCODE (v34)48, and HGNC (Nov302017)49 annotations were added 320 

using GATK’s `Funcotator` (v4.6.0.0)26 with pre-packaged data source v1.7.20200521s. Trinucleotide 321 

context was determined using `bedtools getfasta` (v2.31.0)50. RepeatMasker (v3.0.1)51 intervals were 322 

obtained from the UCSC Table Browser22 and intersected with variant calls using `bedtools intersect` 323 

(v2.31.0)50. SVs were intersected with the gnomAD-SV (v4)52 database (FILTER == “PASS”) using a custom 324 

R script and annotated with population allele frequency. 325 

Targeted sequencing validation 326 
Additional targeted deep-sequencing data from five patients in the analysis cohort25,53 (653x mean 327 

coverage; Supplementary Table 2) was used to validate a subset of sSNV calls. sSNVs identified in the 328 

whole genome data within targeted validation regions were considered validated if they were also 329 

identified in the targeted deep-sequencing data (Supplementary Figure 11a). 330 

Random forest stability prediction 331 
Using the variant calls from our analysis cohort and their corresponding NRD labels, we trained a 332 

random forest model to predict variant concordance for each of six variant callers – HaplotypeCaller 333 

(v4.2.4.1)26, MuTect2 (v4.2.4.1)27, Strelka2 (v2.9.10)28, SomaticSniper (v1.0.5.0)29, MuSE2 (v2.0.4)30, 334 

DELLY2 (v1.2.6)31 – across four variant types (gSNP, sSNV, gSV, sSV; Supplementary Figure 1a). Variants 335 

were dichotomized based on a 20% NRD threshold and a probability forest (`num.trees` = 500 for gSNPs 336 

and 1,000 for sSNVs, gSVs, sSVs) was trained using the ranger (v0.16.0)54 R package to predict 337 

concordant vs. discordant variants. Variants failing LiftOver coordinate conversion were excluded. The 338 

model outputs a “Stability Score” for each variant indicating the fraction of trees predicting concordant 339 

status. 340 

Feature selection and hyperparameter optimization 341 
The set of features considered for each model included all variant fields provided by each variant caller, 342 

along with external annotations and site information. Feature inclusion and normalization were 343 
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determined by optimizing for AUROC in the validation sets for each respective model. Hyperparameters 344 

were tuned using a grid search over `mtry` and `min.node.size`. 345 

Model validation datasets 346 
For gSNPs and sSNVs, 10 sarcoma tumour-normal whole genome pairs (Supplementary Table 3) and 60 347 

sarcoma tumour-normal exome pairs (Supplementary Table 4) from The Cancer Genome Atlas (TCGA-348 

SARC)32 were used as validation sets to demonstrate generalizability across sequencing methods (whole 349 

genome vs. exome) and cancer types (sarcoma not represented in the training set). Raw sequencing 350 

data was downloaded and reprocessed with the same pipelines used for the comparative analysis. For 351 

gSVs and sSVs, only the 10 whole genome pairs were used for validation as exome data provides 352 

insufficient coverage for comprehensive SV calling. 353 

Five whole genomes from the targeted sequencing validation cohort25,53 were used to evaluate 354 

StableLift predictions against an independent truth set of validated vs. unvalidated sSNVs 355 

(Supplementary Table 2; Supplementary Figure 11a). 356 

StableLift 357 
We incorporated these pre-trained and validated models into a standardized workflow accepting either 358 

GRCh37 or GRCh38 input VCFs from six variant callers (HaplotypeCaller, MuTect2, Strelka2, 359 

SomaticSniper, MuSE2, DELLY2) spanning four variant types (gSNP, sSNV, gSV, sSV). Input variants are 360 

converted and annotated as described above and output with a predicted “Stability Score” for filtering 361 

based on user-specified thresholds. Performance in the TCGA-SARC whole genome validation set is 362 

included with each model to define the default F1-maximizing operating point and allow for custom 363 

filtering based on pre-calibrated sensitivity and specificity estimates. 364 

Data visualization 365 
Figures were generated in R (v4.3.3) using the lattice (v0.22-6), latticeExtra (v0.6-30), BPG (v7.1.0)55, 366 

VennDiagram (v1.7.3)56, and RIdeogram (v0.2.2)57 packages. 367 

  368 
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Data availability 406 

Somatic VCFs, resource files for variant annotation, and pre-trained random forest models for 407 

GRCh37→GRCh38 and GRCh38→GRCh37 conversions are available on GitHub as release attachments 408 

(https://github.com/uclahs-cds/pipeline-StableLift/releases). The tumour-normal whole genome pairs 409 

used for analysis and training StableLift can be accessed through the European Genome-Phenome 410 

Archive (https://ega-archive.org/studies/EGAS00001000900) and the Bionimbus Protected Data Cloud 411 

(https://icgc.bionimbus.org/). TCGA-SARC exome and whole genome datasets used for validation can 412 

be accessed from the GDC Data Portal (portal.gdc.cancer.gov/projects/TCGA-SARC). 413 

Code availability 414 

StableLift is available on GitHub (https://github.com/uclahs-cds/pipeline-StableLift) as a Nextflow 415 

pipeline featuring LiftOver coordinate conversion, variant annotation with external databases and 416 

prediction of cross-build variant stability. Nextflow pipelines for alignment and variant calling are on 417 

GitHub (https://github.com/uclahs-cds/metapipeline-DNA) and described elsewhere20. 418 
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Figure Legends 446 

Figure 1: Overview of differences between GRCh37 and GRCh38 variant calls. 447 
a) Experimental design for matched comparison of germline and somatic variants in a representative 448 

cancer genomics workflow. b-c) Cohort level overlap of converted GRCh37 vs. GRCh38 germline variants 449 

(gSNP, gSV). d) Number of build-specific germline variants per sample. e) Difference in per sample 450 

germline variant counts found in GRCh38 relative to GRCh37. f-g) Cohort level overlap of converted 451 

GRCh37 vs. GRCh38 somatic variants (sSNV, sSV). h) Number of build-specific somatic variants per 452 

sample. i) Difference in per sample somatic variant counts found in GRCh38 relative to GRCh37. j-k) 453 

Variant discordance per sample stratified by variant type and gSV subtype. (NRD = non-reference 454 

discordance, FPR = false positive rate, FNR = false negative rate; DEL = deletion, DUP = duplication, INS 455 

= insertion, INV = inversion, BND = breakend/translocation) l) Distribution of gSNP density and NRD 456 

across the genome. m) Correlation between continuous covariates and NRD per variant type. 457 

Spearman’s correlation indicated by dot size and color; statistical significance with false discovery rate 458 

correction indicated by background shading. n) Validation rate of build-concordant, GRCh37-specific, 459 

and GRCh38-specific sSNVs by targeted deep-sequencing. 460 

Figure 2: Machine-learning approach to predicting variant stability across genome builds. 461 
a) Overview of StableLift as a multi-purpose genomics utility performing LiftOver coordinate conversion, 462 

variant annotation, and cross-build stability prediction. b) Random forest model performance for gSNPs 463 

(HaplotypeCaller) shown as ROC curves and AUC measures for out-of-bag whole genome training (OOB, 464 

solid black), whole genome validation (WGS, solid red), and whole exome validation (WXS, dashed red) 465 

sets. Default operating point maximizing F1-score highlighted (blue diamond) with corresponding 466 

sensitivity and specificity in the whole genome validation set. c) Comparison of concordant (TP) and 467 

discordant (FP) gSNP counts before and after default StableLift filtering. d) Random forest feature 468 

importance colored by caller-specific metrics, variant annotations and site information. Normalized 469 

features indicated by *. e-g) Same as b-d for sSNVs (MuTect2). h-j) Same as b-d for gSVs (DELLY2). k-m) 470 

Same as b-d for sSVs (DELLY2). 471 
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