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Many financial portfolios are not mean-variance-skewness-kurtosis efficient. We recommend tilting these 
portfolios in a direction that increases their estimated mean and third central moment and decreases their 
variance and fourth central moment. The advantages of tilting come at the cost of deviation from the initial 
optimality criterion. In this paper, we show the usefulness of portfolio tilting applied to the equally-weighted, 
equal-risk-contribution and maximum diversification portfolios in a UCITS-compliant asset allocation setting.
0. Introduction

Many of the popular risk-based portfolios are optimized accord-

ing to an optimality criterion that does not take into account higher 
order portfolio return moments (see e.g. Lee (2011)). Typical exam-

ples from the literature on risk-based asset allocation include the 
equally-weighted and equal-risk-contribution portfolios (Maillard et al. 
(2010)). A further example is the maximum diversification portfolio of 
Choueifaty and Coignard (2008), which maximizes the ratio between 
the weighted average standard deviation of the portfolio components 
and the portfolio standard deviation. These portfolios may still be ef-

ficient for investors with mean-variance preferences, as discussed in 
Ardia and Boudt (2015). They are, however, likely to be inefficient for 
investors whose preferences depend on the higher order moments of the 
portfolio return distribution.

* Corresponding author at: Universiteit Gent, Sint-Pietersplein 5, 9000 Gent, Belgium.

E-mail address: kris.boudt@ugent.be (K. Boudt).
1 This approach of optimizing non-standardized moments is consistent with the results of Scott and Horvath (1980) which support preferences for third and fourth 

central moments instead of the standardized skewness and excess kurtosis. We use tilting in the sense of over- or underweighting assets compared to benchmark 
portfolios (see e.g. Darsinos and Satchell (2004)). We refer the reader to Stutzer (2000, 2003), Haley and McGee (2006), Haley and Whiteman (2008) and Haley and 
McGee (2011) for an alternative definition of tilting in a portfolio context, namely modifying the probability return distribution.

Several solutions have been proposed in terms of portfolio alloca-

tion methods that take the higher order moments into account (see 
e.g. Jondeau et al. (2007) and Boudt et al. (2012)). In this paper, we 
study the problem of improving portfolios that are inefficient from a 
mean-variance-skewness-kurtosis (MVSK) perspective, where skewness 
and kurtosis are defined as the non-standardized third and fourth cen-

tral portfolio moments. We do so by tilting such inefficient portfolios to 
an allocation that is more MVSK efficient, while keeping the good prop-

erties of the initial portfolio weights.1 The proposed methodology is 
inspired by the shortage minimization framework of Briec et al. (2007).

We expect MVSK portfolio tilting to be especially useful in asset 
allocation. We therefore illustrate the methodology by tilting three com-

mon risk-based asset allocation portfolios in a UCITS-compliant setting, 
where the investment universe consists of 12 broad asset class indices. 
We find that the tilted risk-based portfolios achieve superior out-of-
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Table 1

Impact of MVSK tilting on portfolio criteria.

Deterioration of reference objective ℎref(𝐰 | 𝝁,𝚺,𝚽,𝚿,𝜻) ≤ ℎref(𝐰0 | 𝝁,𝚺,𝚽,𝚿,𝜻) + 𝜅
Increase in mean return 𝐰′𝝁 ≥𝐰′

0𝝁+ 𝛿𝜇
Decrease in variance 𝐰′𝚺𝐰 ≤𝐰′

0𝚺𝐰0 − 𝛿Σ
Increase in skewness 𝐰′𝚽(𝐰⊗𝐰) ≥𝐰′

0𝚽(𝐰0 ⊗𝐰0) + 𝛿Φ
Decrease in kurtosis 𝐰′𝚿(𝐰⊗𝐰⊗𝒘) ≤𝐰′

0𝚿(𝐰0 ⊗𝐰0 ⊗𝐰0) − 𝛿Ψ

Note: The parameters 𝛿𝜇 , 𝛿Σ, 𝛿Φ, 𝛿Ψ are positive when the MVSK tilted portfolio has 
preferential moments compared to the benchmark, at the cost of an increase of 𝜅 in ℎref .
sample moments while still showing the characteristics of the initial 
allocation criterion.

The remainder of the article is organized as follows. Section 1 in-

troduces our notation. Section 2 presents the proposed methodology for 
portfolio tilting. Section 3 documents the usefulness of the method in 
a UCITS-compliant asset allocation framework. We end the paper with 
a conclusion. The supplementary appendix provides an example using 
the R package mvskPortfolios.

1. Notation

We consider the decision problem of optimizing a portfolio invested 
in 𝑁 assets with weight vector 𝐰 ≡ (𝑤1, … , 𝑤𝑁 )′. The optimality of the 
portfolio weights is evaluated with respect to a reference portfolio 𝐰0
and the first four portfolio return moments. For those portfolio return 
moments, accurate estimators for the corresponding comoment matri-

ces have been proposed by Martellini and Ziemann (2010) and Boudt 
et al. (2020a,b), among others. The interpretation and reliable estima-

tion of comoment matrices greater than four is a subject for further 
research. It is also an open research question whether the integration 
of portfolio moments greater than four in portfolio optimization im-

proves the out-of-sample welfare of the investor (see e.g. Jondeau and 
Rockinger (2006)). Investors interested in portfolio optimization using 
all moments can directly optimize the portfolio return distribution, as 
in Haley and McGee (2006). This requires to re-estimate the portfolio 
return distribution for every candidate portfolio vector 𝐰. The compu-

tational advantage of our MVSK tilting portfolio is that the optimization 
does not require such re-estimation.

1.1. Asset returns, their comoments and the portfolio moments

The asset return over the investment horizon is denoted by 𝐫 ≡

(𝑟1, … , 𝑟𝑁 )′. Its mean, covariance, coskewness and cokurtosis matrices 
are

𝝁 ≡ 𝔼 [𝐫] ,

𝚺 ≡ 𝔼
[
(𝐫 − 𝝁)(𝐫 − 𝝁)′

]
,

𝚽 ≡ 𝔼
[
(𝐫 − 𝝁)(𝐫 − 𝝁)′ ⊗ (𝐫 − 𝝁)′

]
,

𝚿 ≡ 𝔼
[
(𝐫 − 𝝁)(𝐫 − 𝝁)′ ⊗ (𝐫 − 𝝁)′ ⊗ (𝐫 − 𝝁)′

]
,

(1)

where ⊗ stands for the Kronecker product. These comoments determine 
the portfolio higher order moments. Define 𝑚𝑞 ≡ 𝔼 

[
(𝐰′𝐫 −𝐰′𝝁)𝑞

]
as the 

𝑞-th central portfolio moment, implicitly depending on the weights 𝐰. 
We have that 𝑚2 ≡ 𝐰′𝚺𝐰, 𝑚3 ≡ 𝐰′𝚽(𝐰 ⊗ 𝐰) and 𝑚4 ≡ 𝐰′𝚿(𝐰 ⊗ 𝐰 ⊗ 𝐰). 
We denote the portfolio tracking error volatility by the volatility of the 
difference in portfolio composition:

TEvol(𝐰) =
√
(𝐰−𝐰0)′𝚺(𝐰−𝐰0). (2)

1.2. Optimality of the reference portfolio

We are agnostic about the construction of the reference portfolio 
𝐰0. It can be expert-based, algorithmic or a combination of both. The 
proposed MVSK tilting requires that the investor elicit an optimality 
criterion ℎref(⋅) for which 𝐰0 is the optimal solution. This criterion is a 
2

function of the portfolio weights 𝐰, the asset return moments 𝝁, 𝚺, 𝚽
and 𝚿 and possibly other parameters stacked into the vector 𝜻 :

𝐰0 ≡ argmin𝐰∈ ℎref(𝐰 | 𝝁,𝚺,𝚽,𝚿,𝜻), (3)

where  is the feasible set. It is always possible to find a criterion for 
which this reference portfolio is optimal. The simplest criterion is the 
tracking error volatility in (2), which is obviously minimized when 𝐰 =
𝐰0.

In the application, we consider three examples of ℎref-functions. The 
first equals the Herfindahl index of the portfolio weights:

ℎEW(𝐰 | 𝝁,𝚺,𝚽,𝚿,𝜻) = 𝑁∑
𝑖=1

𝑤2
𝑖 , (4)

which is minimized by the equally-weighted portfolio. DeMiguel et al. 
(2009) refer to this portfolio as the 1∕𝑁 allocation. The portfolio uses 
a naive approach to diversification as it ignores the heterogeneity in 
the component return distributions when optimizing the weights. The 
second objective function is the sum of squared deviations of the 𝑁
percentage risk contributions with respect to 1∕𝑁 :

ℎERC(𝐰 | 𝝁,𝚺,𝚽,𝚿,𝜻) = 𝑁∑
𝑖=1

(
%𝑅𝐶𝑖 −

1
𝑁

)2
, (5)

with %𝑅𝐶𝑖 ≡
𝑤𝑖[𝚺𝐰]𝑖
𝐰′𝚺𝐰 the percentage volatility contribution of asset 𝑖. 

The solution to this optimization is the equal-risk contribution portfolio 
(Maillard et al. (2010)). The third objective that we consider is the 
negative of the diversification ratio (Choueifaty and Coignard (2008)):

ℎDR(𝐰 | 𝝁,𝚺,𝚽,𝚿,𝜻) = −
𝐰′

√
diag(𝚺)√
𝐰′𝚺𝐰

, (6)

where diag(𝚺) = (𝚺11, … , 𝚺𝑝𝑝)′ is the 𝑁 × 1 vector containing the diago-

nal elements of 𝚺.

Note that the framework has a large scope and also includes the 
mean-variance efficient portfolios of Markowitz (1952) and the mini-

mum modified Value-at-Risk and Expected Shortfall portfolios of Boudt 
et al. (2008, 2012), among others. Moreover, the function ℎref is not 
necessarily the one used to determine 𝐰0. For example, it is possible 
to construct the maximum diversification portfolio with weights 𝐰0 by 
minimizing ℎDR, but use ℎref = TEvol when tilting the portfolio.

2. MVSK portfolio tilting

We assume that the investor is willing to sacrifice a margin 𝜅 of the 
value of the reference objective function in order to improve the portfo-

lio performance in terms of an increase in the mean and skewness and 
a decrease in the variance and the kurtosis. We impose these improve-

ments through inequality constraints, as can be seen in Table 1, where 
the minimum levels of improvements in the mean, variance, skewness 
and kurtosis are 𝛿𝜇 , 𝛿Σ, 𝛿Φ, and 𝛿Ψ, respectively.

Our approach to simultaneously look for improvements in expected 
return, variance, skewness and kurtosis is compatible with the accepted 
direction of preferences for the first four moments (see e.g. Scott and 
Horvath (1980)) and is closely related to the utility-based framework 
(Jondeau and Rockinger (2006), Harvey et al. (2010)). In the utility-

based approach to non-Gaussian preferences, the expected utility is 
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often approximated by a Taylor expansion, or more generally, a func-

tion

𝜶(𝒘) = 𝛼1𝒘′𝝁− 𝛼2𝒘′𝚺𝒘+ 𝛼3𝒘′𝚽(𝒘⊗𝒘) − 𝛼4𝒘′𝚿(𝒘⊗𝒘⊗𝒘). (7)

The vector 𝜶 contains positive values and governs the relative impor-

tance of the higher moments with respect to the expected utility of 
the investor. Such an objective function is generally non-concave and 
hence it is impossible to guarantee a global maximum. In this regard, 
Briec et al. (2007) prove a primal-dual relationship between the primal, 
shortage-based approach followed in this paper and the dual approach 
of directly maximizing a non-concave expected utility approximation.

2.1. Choice of 𝛿 parameters

In the current formulation we have at least three unknowns: the 
tilted portfolio weights 𝐰, the minimum improvement levels 𝛿(⋅) and 
the sacrifice parameter 𝜅. In principle, we can assume that the investor 
will elicit these. In practice, however, this is not realistic and a data-

driven calibration is required. To achieve this, we simplify the problem 
by assuming that the value of 𝜅 is fixed and that the 𝛿(⋅)’s are functions 
of a single 𝛿.

The investor wishes to maximize this 𝛿, thereby achieving more 
preferable portfolio moments at a maximum cost of 𝜅 in the reference 
objective function. The general MVSK portfolio tilting problem is then:

maximize
𝛿∈ℝ,𝐰∈

𝛿

subject to ℎref(𝐰 | 𝝁,𝚺,𝚽,𝚿,𝜻) ≤ ℎref(𝐰0 | 𝝁,𝚺,𝚽,𝚿,𝜻) + 𝜅,
𝐰′𝝁 ≥𝐰′

0𝝁+ 𝛿𝜇,

𝐰′𝚺𝐰 ≤𝐰′
0𝚺𝐰0 − 𝛿Σ,

𝐰′𝚽(𝐰⊗𝐰) ≥𝐰′
0𝚽(𝐰0 ⊗𝐰0) + 𝛿Φ,

𝐰′𝚿(𝐰⊗𝐰⊗𝐰) ≤𝐰′
0𝚿(𝐰0 ⊗𝐰0 ⊗𝐰0) − 𝛿Ψ,

(8)

where 𝛿𝜇 , 𝛿Σ, 𝛿Φ, and 𝛿Ψ are all increasing functions of 𝛿. We denote 
this as (𝛿𝜇, 𝛿Σ, 𝛿Φ, 𝛿Ψ)′ = 𝑔(𝛿). The threshold 𝜅 determines the maximum 
deterioration in the reference function. In the extreme case of setting 
𝜅 =∞, we have the MVSK optimization setup of Briec et al. (2007).

2.2. Choice of 𝜅 parameter

The optimization in (8) yields the optimal value of 𝛿 for a given 
value of 𝜅, and increasing 𝜅 always increases the value of 𝛿. To gauge 
this trade-off between low values of 𝜅 being more in line with the initial 
portfolio objective and higher values of 𝛿 yielding preferable moments, 
we recommend visualizing 𝛿 on a grid of 𝜅 values that ranges from 
zero to a pre-set upper bound 𝜅. Based on this, an investor or portfolio 
manager can select a value of 𝜅 that limits the decrease in the reference 
objective for a significant gain in moments. This choice will depend on 
the level, slope and curvature of the curve.

In the context of portfolio tilting, it is also natural to set 𝜅 at the 
highest possible value that respects an upper bound on the portfolio 
tracking error volatility TEvol. This means that we look for the highest 
improvement in the MVSK objectives (as measured by 𝛿) for which the 
tilted portfolio is sufficiently close to the initial portfolio. The MVSK 
portfolio tiling problem is then:

maximize
𝛿∈ℝ,𝐰∈

𝛿

subject to TEvol(𝐰) ≤ 𝜏,

𝐰′𝝁 ≥𝐰′
0𝝁+ 𝛿𝜇,

𝐰′𝚺𝐰 ≤𝐰′
0𝚺𝐰0 − 𝛿Σ,

𝐰′𝚽(𝐰⊗𝐰) ≥𝐰′
0𝚽(𝐰0 ⊗𝐰0) + 𝛿Φ,

𝐰′𝚿(𝐰⊗𝐰⊗𝐰) ≤𝐰′𝚿(𝐰 ⊗𝐰 ⊗𝐰 ) − 𝛿 ,

(9)
0 0 0 0 Ψ

3

where (𝛿𝜇, 𝛿Σ, 𝛿Φ, 𝛿Ψ)′ = 𝑔(𝛿) and 𝜏 determines the maximum tracking 
error volatility of the tilted portfolio as compared to the reference port-

folio.

2.3. Shrinkage estimation of comoments

In order to implement the proposed framework, reliable estimates 
of the comoments 𝝁, 𝚺, 𝚽 and 𝚿 are required. One possibility is to 
use parametric conditions linking the mean estimated return to the es-

timated comoments, as in Ardia and Boudt (2015). Another possibility 
is to combine the sample estimator and a parametric structured ma-

trix using the approach of shrinkage estimation, as recommended by 
Ledoit and Wolf (2003), Martellini and Ziemann (2010) and Boudt et 
al. (2020a). In general, the shrinkage estimator for the central moments 
𝜽 is given by

𝜽̂ = (1 − 𝛼⋆)𝜽̂sample + 𝛼⋆𝜽̂structured, (10)

with 𝜽̂sample the sample moments and 𝜽̂structured the moments under a 
structured estimation approach. Several choices of targets are possible. 
In this paper, we use the structured moments under the assumption that 
the marginals are independent, which is a popular choice in practice.

The value of 𝛼⋆ is determined in a data-driven way by minimizing 
the mean squared estimation error:

𝛼⋆ = arg min
𝛼∈[0,1]

𝔼
[‖‖‖(1 − 𝛼)𝜽̂sample + 𝛼𝜽̂structured − 𝜽

‖‖‖2
]
, (11)

for which a consistent estimator is derived in Ledoit and Wolf (2003)

for the covariance matrix and in Boudt et al. (2020a) for the higher 
moments.

3. Illustration in asset allocation

In this application, we focus on variance-skewness-kurtosis (VSK) 
efficient portfolios, aiming to decrease the variance and fourth central 
moment while increasing the third central moment. We do not incorpo-

rate the estimated expected returns since their estimation precision is 
typically low compared to the precision in estimating the portfolio vari-

ance, skewness and kurtosis. We further use the following parameters 
for tilting the portfolio in order to improve the variance, skewness and 
kurtosis:

VSK ∶ (𝛿𝜇, 𝛿Σ, 𝛿Φ, 𝛿Ψ)

= 𝛿 × (−∞,𝐰′
0𝚺𝐰0, |𝐰′

0𝚽(𝐰0 ⊗𝐰0)|,𝐰′
0𝚿(𝐰0 ⊗𝐰0 ⊗𝐰0)). (12)

The VSK tilting above is equivalent to MVSK tilting in case of homoge-

neous expected asset returns (i.e., 𝝁 = 𝜇𝜄𝑁 , with 𝜄𝑁 the 𝑁 -dimensional 
vector of ones and 𝜇 the common expected return). Note that in (12) we 
let the function 𝑔(𝛿) depend in a specific way on the benchmark portfo-

lio 𝐰0. Alternative specifications may be more desirable depending on 
the application. In particular, when the minimum variance, maximum 
skewness or minimum kurtosis portfolio is used as benchmark portfo-

lio, the calibration needs to be modified such that a deterioration of the 
second, third or fourth moment portfolio performance is allowed. This 
is possible by setting 𝛿Σ, 𝛿Φ, or 𝛿Ψ to −∞, while setting ℎref(⋅) to the 
objective function corresponding to the minimum variance, maximum 
skewness or minimum kurtosis portfolio.

3.1. Data

The data consist of weekly returns of 12 broad scale investment in-

dices over the period January 26, 2001 until March 15, 2019. All series 
are expressed in EUR. Table 2 provides an overview of the indices along 
with their mean, volatility, skewness and kurtosis over the full period. 
The annual volatilities lie between 3% for iBoxx EUR Corporate and 21%
for MSCI Emerging Markets. The standardized skewness is generally 
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Table 2

Summary statistics of the weekly returns of the asset class indices.

geom. mean volatility skewness ex. kurt.

1 MSCI Europe 2.82 0.19 -0.71 7.46

2 MSCI USA 4.55 0.18 -0.34 3.05

3 MSCI Japan 1.63 0.19 -0.11 1.31

4 MSCI Emerging Markets 7.35 0.21 -0.15 4.97

5 EPRA Eurozone 5.16 0.19 -1.29 9.01

6 JPM EMU 4.64 0.04 -0.14 2.16

7 iBoxx EUR Corporate 4.50 0.03 -0.94 5.41

8 Bloomberg Barclays Global Aggregate Treasuries 3.17 0.06 0.57 4.01

9 JPM EMBI Global Diversified Composite 7.29 0.11 -0.12 4.87

10 Bloomberg Barclays Global High Yield 6.96 0.10 -0.21 4.70

11 Bloomberg Barclays US Corporates 4.37 0.10 0.29 1.46

12 Bloomberg Barclays World Govt Inflation Linked 4.34 0.07 0.11 1.39

Note: We report the annualized geometric mean (geom. mean, %), the annualized standard deviation 
(volatility), the standardized skewness and excess kurtosis (ex. kurt.) over the period January 26, 2001 
until March 15, 2019.
negative, except for Barclays Global Aggregate Treasuries, US Corpo-

rates and World Govt Inflation Linked, for which it is slightly positive. 
All assets show heavy-tailed behavior and have a positive excess kurto-

sis.

3.2. Illustration of portfolio tilting

Figs. 1 and 2 illustrate the concept of VSK portfolio tilting for the 
last day of our sample, namely March 15, 2019. The reference portfolio 
is the maximum diversification portfolio (DR), and the moments are 
estimated as outlined inbelow.

The dots in Fig. 1 represent different randomly generated feasible 
portfolios and provide an idea of the set in which we are optimiz-

ing. We highlight the DR portfolio and associated tilted portfolios with 
𝜅 = −(0.01, 0.025, 0.05)ℎDR(𝐰0). When the margin 𝜅 increases, the tilted 
portfolios attain a higher skewness while decreasing in variance and 
kurtosis.

Fig. 2a shows the joint improvements in the moments measured by 
the objective value 𝛿 in (8). It is remarkable how much improvement 
is possible while only marginally decreasing the diversification ratio. 
A 𝜅 of 1% results in a relative improvement of at least 15%, whereas 
increasing 𝜅 to 5% yields a relative improvement of around 23%. This 
is also seen in the bottom row of Fig. 1, where the largest difference 
between subsequent portfolios occurs when 𝜅 = 1%.

For the same portfolios, the effect on the weights is illustrated in 
Fig. 2b. The tilted portfolios lower the equity allocation (assets 1, 2, 
3, and 4) and increase the bond component through Global High Yield 
(asset 10). As mentioned by a referee, bootstrapping can be used to 
evaluate the estimation uncertainty of the optimized weights or to ro-

bustify the weights with respect to estimation uncertainty. We refer the 
interested reader to Scherer (2002) for a review.

3.3. Out-of-sample results

We now turn to analyzing the out-of-sample effects of portfolio 
tilting on portfolio performance when the reference portfolio is ob-

tained by minimizing ℎEW, ℎERC and ℎDR. For ℎEW and ℎERC, we con-

sider deviations of 𝜅 = 0.01, 0.05, 0.10. For ℎDR, we take 𝜅 proportional 
to the diversification ratio of the maximum diversification portfolio; 
𝜅 = −(0.01, 0.025, 0.05)ℎDR(𝐰0). In addition to these fixed 𝜅, we auto-

matically select the tilted portfolios with maximum annual tracking 
error volatilities of 0.5% and 1%. We adopt the industry-practice of 
rolling five-year estimation windows and estimate the moments using 
the shrinkage approach toward the target that assumes independent 
marginals. Before estimation, we winsorize the observations following 
the procedure in Boudt et al. (2008). The portfolios are long-only and 
fully invested with a maximum weight of 20% in a single asset, comply-

ing with UCITS regulations in a fund-of-funds setting. In practice, the 
indices can be replaced by funds covering different asset classes.
4

Fig. 3a illustrates that the covariance and cokurtosis shrinkage coef-

ficients are stable over time and put most of the weight on the sample 
covariance and cokurtosis estimators. The coskewness shrinkage coef-

ficient is more volatile and occasionally puts all weight on the target. 
This is in line with the findings of Martellini and Ziemann (2010) and 
Boudt et al. (2020a). The course of the diversification ratio over time is 
shown in Fig. 3b. Note the large decrease of the diversification ratio in 
the period 2014 to 2018 due to an increase in the average correlation 
between the indices from around 24% to 50%.

Table 3 reports summary statistics for the benchmark and tilted port-

folios. In all three settings, we observe a decrease in volatility and fourth 
central moment (𝜓) and an increase in third central moment (𝜙), which 
is exactly what VSK portfolio tilting aims to achieve. The effect is more 
pronounced when 𝜅 increases, but it comes at the cost of a slightly 
lower average return. As a measure for the trade-off, we follow the 
recommendation of Zakamouline and Koekebakker (2009) and use the 
skew-adjusted Sharpe ratio,

ASSR = SR

√
1 + skewness

3
SR, (13)

where the Sharpe ratio (SR) and skewness are computed on the annual 
out-of-sample returns. The last column of Table 3 shows that tilting 
improves the ASSR in all cases.

It is further important to notice in Table 3 that portfolio tilting also 
improves the downside risk, since the maximum drawdown decreases 
compared to the benchmark portfolio. In the case of the DR portfolio, 
the maximum drawdown even goes from -15.6% to -11.1% when allow-

ing a 5% lower diversification ratio. The effect on turnover is highly 
dependent on the benchmark portfolio. Due to the VSK portfolio be-

ing slightly more concentrated, the turnover generally increases with 𝜅. 
However, turnover can be dealt with in practice by imposing an addi-

tional constraint in the portfolio optimization step.

Fig. 4a illustrates the minimum improvement in the variance, skew-

ness and kurtosis as measured by 𝛿 in (8) when tilting the portfolios. 
It is clear that most of the improvement happens for low values of 𝜅, 
such as 𝜅 = 1%. Increasing 𝜅 is still beneficial, but its effect is damp-

ened. For 𝜅 = 1%, Fig. 4b shows the difference in drawdown over time 
between the maximum diversification portfolio and the tilted portfolio. 
The cause of the difference is found in the weights given in Fig. 4c and 
4d. The clearest difference is that the tilted portfolio reduced the over-

all allocation to equities (assets 1, 2, 3 and 4) while increasing the bond 
component. Moreover, the tilted portfolio re-allocates part of the bond 
exposure. The main differences here are the weights of Global High 
Yield (asset 10) and US Corporates (asset 11). The DR portfolio does 
not invest in Global High Yield, while the tilted portfolio is invested in 
the periods 2006-2009 and 2016-2019. Since both are highly correlated 
and have about the same volatility, this is due to a difference in higher 
order comoments in relation to the other components of the portfolio.
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Fig. 1. Effect of VSK tilting when the reference portfolio is the maximum diversification portfolio.
We verified that the choice of window length, shrinkage target and 
pre-processing does not alter the conclusion presented in this section. 
Robustness checks are available from the authors upon request.

4. Conclusion

This paper presents a mean-variance-skewness kurtosis (MVSK) 
portfolio tilting framework designed to modify portfolio weights in a 
direction that improves the first four moments of the portfolio return 
distribution. Under the MVSK portfolio tilting framework, the initial 
5

portfolio is assumed to be optimal with respect to an initial objec-

tive function. However, it is possible to jointly improve the moments 
at the cost of only a slight deterioration in this initial objective func-

tion. Hence, portfolio tilting is a trade-off between the deterioration in 
portfolio construction objective on the one hand, and the improvements 
in the portfolio return moments on the other. The empirical application 
shows the improvements in out-of-sample performance when tilting the 
equally-weighted, equal-risk-contribution and maximum diversification 
portfolios in a UCITS-compliant asset allocation setting. These perfor-

mance gains are low-hanging-fruit for all investors. A practical policy 
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Fig. 2. Effect of portfolio tilting on portfolio moments and weights.

Fig. 3. Portfolio statistics over time.

Table 3

Portfolio summary: variance-skewness-kurtosis tilting.

geom. mean volatility 𝜙 𝜓 MD Turn. ASSR

DR 4.506 0.052 -0.222 0.228 -15.605 86.713 0.671

𝜅 = 0.01 4.318 0.049 -0.197 0.190 -13.603 85.650 0.694

𝜅 = 0.025 4.326 0.048 -0.171 0.166 -12.392 92.869 0.718

𝜅 = 0.05 4.473 0.047 -0.147 0.145 -11.053 99.652 0.761

𝜏 = 0.005 4.462 0.049 -0.200 0.195 -13.834 81.661 0.694

𝜏 = 0.01 4.547 0.047 -0.157 0.153 -11.627 90.682 0.755

ERC 4.838 0.053 -0.248 0.264 -14.106 42.527 0.691

𝜅 = 0.01 4.666 0.050 -0.161 0.176 -11.846 63.846 0.738

𝜅 = 0.025 4.611 0.049 -0.130 0.148 -10.795 89.080 0.755

𝜅 = 0.05 4.563 0.048 -0.119 0.134 -10.045 125.653 0.762

𝜏 = 0.005 4.706 0.050 -0.186 0.194 -12.401 82.228 0.711

𝜏 = 0.01 4.688 0.048 -0.144 0.153 -10.768 119.563 0.749

EW 5.447 0.084 -1.305 2.007 -26.562 55.653 0.509

𝜅 = 0.01 5.175 0.066 -0.559 0.713 -19.264 50.015 0.590

𝜅 = 0.025 4.824 0.059 -0.333 0.402 -16.088 95.241 0.617

𝜅 = 0.05 4.670 0.050 -0.197 0.211 -12.570 73.487 0.705

𝜏 = 0.005 5.335 0.079 -1.092 1.566 -25.251 59.247 0.520

𝜏 = 0.01 5.226 0.074 -0.902 1.203 -23.890 68.179 0.532

Note: We report the annualized geometric mean (geom. mean, %), the annualized standard de-

viation (volatility), the skewness (𝜙, 10−6) and kurtosis (𝜓 , 10−7), maximum drawdown (%), 
annual turnover (Turn.) and skew-adjusted Sharpe ratio (ASSR) based on annual returns. The 
DR, ERC and EW portfolios are reported, along with the performance of their tilted versions for 
𝜅 = 0.01, 0.05, 0.10 and tilting with a maximum annual tracking error volatility 𝜏 of 0.5% and 1%.
6
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Fig. 4. Portfolio statistics over time.
recommendation is therefore that regulators in the field of investor pro-

tection should promote knowledge of how higher order moments affect 
financial portfolio outcomes and how they can be optimized. In order to 
facilitate this process, we have released an open source implementation 
in the R package mvskPortfolios.
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