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ABSTRACT

Cell types in cell populations change as the con-
dition changes: some cell types die out, new cell
types may emerge and surviving cell types evolve
to adapt to the new condition. Using single-cell RNA-
sequencing data that measure the gene expression
of cells before and after the condition change, we pro-
pose an algorithm, SparseDC, which identifies cell
types, traces their changes across conditions and
identifies genes which are marker genes for these
changes. By solving a unified optimization prob-
lem, SparseDC completes all three tasks simultane-
ously. SparseDC is highly computationally efficient
and demonstrates its accuracy on both simulated
and real data.

INTRODUCTION

Multicellular organisms function through cohesive and dy-
namic interactions among billions of highly heterogeneous
cells. Precisely identifying diverse cell types and delineat-
ing how cells evolve over the course of tissue development
and disease progression are fundamental quests in modern
biology (1–4). Single-cell RNA-sequencing (scRNA-seq),
which measures the transcriptome of hundreds to thou-
sands of individual cells in a single run, provides a highly
efficient tool to reveal cellular identity from the transcrip-
tome perspective which has led to unprecedented biological
insights (5–11).

With transcriptome measurements from many cells, cell
types may be discovered computationally by clustering cells
with similar transcriptome profiles together. For cancer cells
and some other cells, it is more accurate to call these cell
types ‘cell clones’ or ‘cell subpopulations’, but for simplic-
ity we will use ‘cell types’ for all of them for the remain-
der of the text. The single-cell transcriptome profile reflects
both cellular identity (lineage or cell type) and intracellu-
lar response to given extrinsic micro-environmental stimuli.
As tissue develops or disease progresses, or after drug treat-

ment (we call these ‘condition changes’ herein), the micro-
environment changes and the cell types also change. An ex-
ample of what happens when the condition changes is illus-
trated in Figure 1. We call the condition before and after
the change ‘condition A’ and ‘condition B’, respectively. In
condition A, there are three types of cells (denoted by dif-
ferent colors, red, blue and green). As the condition changes
to B, the green type dies out, while a new cell type, purple,
emerges. The red type and the blue type survive under the
condition change, although their relative proportions in the
whole cell population change. The red type decreases from
50 to 25% in the cell population, and the blue type increases
from 25 to 50%. Moreover, the red and the blue types are
not exactly the same cell types as those in condition A, as
their expression profiles have changed to adapt to the micro-
environmental change. In the figure, we added white stars to
the red and blue cells to highlight this difference.

In this paper, we focus on solving the problem of, based
on scRNA-seq data under two biological conditions, dis-
covering cell types in both conditions and describing how
the transcriptome profile of the cell types change as the
condition changes. We call this problem ‘differential clus-
tering analysis’ or DC analysis for short. It is worth noting
that DC analysis considers the cells in the two biological
conditions as being sampled from independent populations
(that is, not longitudinal); this is the case for the majority of
real scRNA-seq data, since current scRNA-seq protocols
cannot generate multiple expression measurements for the
same cell (12). In DC analysis, the discovery of cell types is
‘unbiased’/unsupervised: it is not assumed that cells come
from known cell types in either condition; all cell types are
discovered and defined computationally based on the data.
Besides cell type discovery, DC analysis emphasizes compu-
tationally linking the cell types discovered in the two con-
ditions to determine, in response to the condition change,
which cell types die out, emerge or survive. An obvious diffi-
culty in linking the inferred cell types is that no cell types re-
main the same across the conditions. Even cells of the ‘same’
cell type may display differences in their transcriptomic pro-
file, as genes which are sensitive to or responding to the
condition changes may have altered their expression signif-
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Figure 1. A toy example of cell type changes and different categories of marker genes. (A and B) The composition of the cell population changes as the
condition changes. Different colors denote different cell types. The blue and red cells are preserved in condition B but have changed as indicated by the
stars. On the other hand, the green cells have died out and a new purple cell type has emerged. The proportion of cell types present in the population has
also changed. (C and D) different categories of marker genes for the red cell type. A marker gene for a cell type is a gene whose expression is consistent
in cells of this type and also different from the background. In the plot, the background expression is shown in dark red, and expression higher than the
background is shown in yellow. The brighter the yellow is, the higher the expression is. Gene 1 is a housekeeping marker gene. Gene 2 is a condition-
dependent marker gene, since although it is a marker gene in both conditions, its expression is lower (less bright yellow) in condition B. Gene 3 is not a
marker gene in condition B anymore as its expression in condition B is the same as the background; it is thus a condition-A-specific marker gene. Gene 4
is a condition-B-specific marker gene. Gene 5 is a null gene.

icantly. To overcome this difficulty, it is preferable to use a
one-step approach which discovers and links cell types si-
multaneously, instead of a two-step approach that attempts
to link the cell types across the conditions after they have
been discovered.

With the increasing popularity of scRNA-seq in recent
years, several clustering algorithms have been developed for
cell type discovery in a single biological condition (11,13–
20), supplementing and improving upon classical cluster-
ing methods such as K-means and hierarchical clustering.
However, the area of DC analysis has been much less ex-
plored. A relevant problem is inferring the developmental
trajectories of single cells by estimating the pseudo tempo-
ral ordering (pseudotime). The differences between these
pseudotime-estimation methods (see e.g. (16,17,21–25)) and
DC analysis are distinct, including the type of data they
take as input, the scientific question they seek to answer
and the approach they use. Pseudotime-estimation methods

often take as input expression measurements for a single
cell type (23), while DC analysis requires two cell popula-
tions under different conditions that contain multiple cell
types. Pseudotime-estimation methods seek to describe the
developmental path of one cell type, while DC analysis aims
to discover multiple cell types in each condition and char-
acterize the differences of each cell type across conditions.
Pseudotime-estimation methods find a position for each cell
along a continuous trajectory, DC analysis instead clusters
cells into a small number of disjoint clusters. (See Supple-
mentary Materials for a more detailed discussion of their
differences and ideas on how they may be used in tandem).
The first, and still the only, algorithm for DC analysis was
proposed by Huang et al. (26) to model time variant clus-
ters. It is based on a Bayesian parametric model using a bi-
nary branching process, which is designed for DC analysis
for cells coming from multiple time points. For data with
only two conditions, this model is too constrained for de-
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scribing various scenarios of cell type changes across con-
ditions. Moreover, the method is computationally expensive
and unstable and its applicability on data with more than 45
genes is unexplored (26).

In this paper, we have proposed the first algorithm for
DC analysis that is suitable for data with thousands or tens
of thousands of genes. Our algorithm, called SparseDC (a
sparse algorithm for differential clustering analysis), is a
variation of the classic K-means clustering algorithm that
inherits many of its advantages: it is a non-parametric
method, has an interpretable target function and is compu-
tationally very fast. Furthermore, by including �1 penalties
in the target function, SparseDC generates a sparse solu-
tion, allowing it to largely overcome the ‘curse of dimen-
sionality’ and making it suitable for very high-dimensional
data.

SparseDC has a crucial additional feature: it not only dis-
covers cell types and traces their changes, but also identifies
marker genes for each cell type and for the changes of each
cell type across conditions. Identifying marker genes can be
of great biological interest as it gives insight on the biologi-
cal functions of the cell type and provides targets for further
investigation. Generally, a marker gene for a cell type can be
defined as a gene whose expression is consistent in cells of
this type and also different from cells of other types. When
considering cell types present in both condition A and con-
dition B, we propose that a marker gene can be classified
to one of the following three categories: (i) ‘housekeeping
marker gene’: a gene that is a marker in both conditions
and its expression is the same in both conditions. The clas-
sic T-cell lineage markers CD4 and CD8 are examples of
housekeeping marker genes (27); (ii) ‘condition-dependent
marker gene’: a gene that is a marker in both conditions,
but its expression is different in the two conditions, such as
stem cell markers NES (28) and SOX2 (29) where expres-
sion of the stem cell marker genes decreases once cells un-
dergo differentiation; (iii) ‘condition-specific marker gene’:
a gene that is a marker in only one condition but not the
other, such as cytokine expression in response to inflamma-
tion. We call a gene a ‘condition-A-specific marker gene’ if it
is a marker only in condition A, and a ‘condition-B-specific
marker gene’ if it is a marker only in condition B. Figure
1(C and D) shows an example of each type of marker gene,
as well as a ‘null gene’, a gene that is not a marker gene for
any cell type. SparseDC is able to identify marker genes for
each cell type, and for cell types that are present in both
conditions it identifies all three types of marker gene and
distinguishes between them.

In summary, we have developed SparseDC, a computa-
tional algorithm which completes the following three tasks:
(i) clustering cells in each condition into cell types in an
unsupervised manner, (ii) identifying the correspondence
between cell types in the two conditions and (iii) detect-
ing marker genes for each cell type. SparseDC completes
all three tasks by solving a single optimization problem
and is computationally highly efficient. The performance of
SparseDC is studied on simulated data representing a range
of potential cell type and population changes in scRNA-
seq data. SparseDC is also applied to four real scRNA-
seq datasets to demonstrate its ability to describe cell type
changes and identify biologically meaningful marker genes.

MATERIALS AND METHODS

SparseDC is designed to minimize the within-cluster sum
of squared errors of gene expression, while penalizing the
differences across clusters and across conditions. This pe-
nalization is done by adding several different �1 penalties,
which overall form a fused-lasso type of penalty (30). The
penalization drives similar clusters from the two condi-
tions together, revealing the correspondence between clus-
ters present in both conditions. The �1 penalties, due to their
nature (31), also generate a ‘sparse’ solution, that is, only
a small fraction of genes are involved in determining the
cell-type identities. This sparsity not only makes SparseDC
highly applicable to high-dimensional problems, but also
automatically identifies marker genes for each cell type. Be-
low, we give details about the algorithm.

Notations and settings

Suppose, we have scRNA-seq data from two conditions, A
and B, and the expression of p genes is measured in N cells
in condition A, and the same set of p genes is measured in
N′ cells in condition B. For condition A, we have data ma-
trix X of dimension p × N, with Xi j being the expression
of gene i in cell j. Similarly, we can define X′ and X′

i j for
data from condition B. Generally, we use notations without
superscripts for quantities from condition A, and use nota-
tions with superscript ‘prime’ for quantities from condition
B.

We assume that the gene expression has been prop-
erly normalized for the sequencing depth, which is often
estimated by pooled deconvolution (32), methods based
on spike-ins (33,34) or methods developed for bulk-based
RNA-seq data (35–37). We also recommend taking proper
transformations such as log(x + 1) or

√
x to stabilize vari-

ances.
For clustering, we let Ck indicate the indices of the cells in

condition A that are contained in cluster k. That is, j ∈ Ck
means cell j in condition A is in cluster k, j = 1, . . . , N, k =
1, . . . , K . Let nk be the size of Ck; surely we have

∑K
k=1 nk =

N. Let μik be the (regularized) cluster mean, or cluster cen-
ter, for cluster k and gene i in condition A. We define C′

k, n′
k

and μ′
ik correspondingly, for condition B. Note that cells

in Ck and C′
k are considered to be the same ‘type’ of cells,

and thus this notation not only defines the individual clus-
tering of the two conditions, but also defines the correspon-
dence between the cell types from the two conditions. When
nk �= 0 and n′

k �= 0, cell type k survives the condition change.
When nk �= 0 and n′

k = 0, cell type k dies out as the condi-
tion changes. When nk = 0 and n′

k �= 0, cell type k is a new
cell type that emerges in condition B.

The optimization problem that SparseDC proposes

Prior to clustering, the expression of each gene is central-
ized, that is, the mean expression of each gene is subtracted
such that

∑N
j=1 Xi j + ∑N′

j=1 X′
i j = 0, i = 1, . . . , p.

SparseDC proposes solving the following optimiza-
tion problem: find C = {Ck}k=1,...,K , C′ = {C′

k}k=1,...,K , μ =
{μik}i=1,...,p;k=1,...,K and μ′ = {μ′

ik}i=1,...,p;k=1,...,K that mini-
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mize

T(C, C′, μ, μ′) =
p∑

i=1

K∑
k=1

{
1
2

∑
j∈Ck

(Xi j − μik)2 + 1
2

∑
j∈C′

k

(X′
i j − μ′

ik)2

+√
nkλ1 |μik| + √

n′
kλ1

∣∣μ′
ik

∣∣ + (
√

nk + √
n′

k)λ2
∣∣μik − μ′

ik

∣∣} ,

where λ1 and λ2 are pre-specified positive constants.
The first two terms in the target function minimize the

within-cell-type variance, the last three terms are �1 penal-
ties on μik, μ′

ik, and the difference between μik and μ′
ik, re-

spectively. Without these three terms, the solution will be
the same as doing K-means clustering for condition A and
condition B independently. These three terms add a ‘fused-
lasso’ (30) type of penalty, which affects the solution in two
ways: (i) penalizing |μik − μ′

ik| pushes similar cells across
conditions together and thus gives the correspondence be-
tween cell types in the two conditions; and (ii) penalizing
|μik| and |μ′

ik| makes most genes null genes (having the
same expression as the background) and lets the marker
genes stand out.

With properly chosen λ1 and λ2 values, the solution will
be very ‘sparse’ because of the nature of �1 penalties (31):
most μik, μ′

ik and μik − μ′
ik will be exactly zero. Therefore,

marker genes can be identified based on the solution:

i) Null genes: genes with μik = μ′
ik = 0 for all k =

1, . . . , K . These genes have uniform expression in both
conditions and all clusters. These genes do not con-
tribute to the clustering, and they are not marker genes
of any kind. The majority of the genes will be null genes
when λ1 and λ2 are properly chosen.

ii) Housekeeping marker genes: genes with μik = μ′
ik �= 0

are housekeeping marker genes for cell type k. These
genes are expressed differently in cluster k compared to
the ‘background’ expression, and their expression stays
the same across conditions.

iii) Condition-dependent marker genes: genes with
μik �= 0, μ′

ik �= 0 but μik �= μ′
ik are condition-

dependent marker genes for cell type k. These genes
are marker genes for cluster k in both conditions, but
their expression changes when the condition changes.

iv) Condition-specific marker genes: genes with μik �= 0
and μ′

ik = 0, or μik = 0 and μ′
ik �= 0 are condition-

specific marker genes for cell type k in condition A or B,
respectively. These genes are marker genes for cell type
k in one condition but not the other.

Based on the values of μik and μ′
ik, the upregulation

or downregulation of a gene can be defined. If μik > 0 or
μ′

ik > 0, then gene i is ‘upregulated in cell type k’ compared
to other cell types, since the overall expression of all cells
has been centralized to 0. Similarly, if μik < 0 or μ′

ik < 0,
then gene i is ‘downregulated in cell type k’. Upregulation
or downregulation can also be defined across conditions.
If μik > μ′

ik, then gene i is ‘upregulated in condition A’ or
‘downregulated in condition B’. Similarly, if μik < μ′

ik, then
gene i is ‘downregulated in condition A’ or ‘upregulated in
condition B’.

The target function of SparseDC contains two tuning pa-
rameters (λ1 and λ2), which control the number of marker
genes in the solution and which in turn can influence the ac-
curacy of the clustering. Selecting tuning parameters for un-

supervised clustering settings is known to be a notoriously
difficult problem and methods such as the gap statistic of-
ten exhibit mixed results (38,39). Notably, we have found
that the performance of the gap statistic is highly unstable
for this problem and thus we have instead devised a new
ad hoc approach (See Supplementary Materials). Simula-
tion has also shown that the results of SparseDC appear to
be robust to minor departures of λ1 and λ2 from the val-
ues given by our approach (See Supplementary Materials
for details).

Notice that we also add weights (
√

nk,
√

n′
k and

√
nk +√

n′
k) to make the �1 penalties adaptive to the cluster sizes.

The choice of these weights was inspired by the group lasso
(40). We have also tried other sets of weights, such as nk, n′

k
and nk + n′

k, or no weights at all, and found that they lead
to inferior performance.

The algorithm that SparseDC uses to solve the optimization
problem

Given λ1 and λ2, SparseDC relies on the following observa-
tions to find {C, C′,μ,μ′} that minimize T(C, C′,μ,μ′):

i) When μ and μ′ are given, arg minC,C′ T is equivalent to

arg minC,C′
p∑

i=1

K∑
k=1

{ ∑
j∈Ck

(Xi j − μik)2 + ∑
j∈C′

k

(X′
i j − μ′

ik)2},
whose solution is given by assigning each cell to its
nearest centroid.

ii) When C and C′ are given, T is separable on i and k, and
thus arg minμ,μ′ T can be calculated by solving

arg minμik,μ′
ik

{
1
2

∑
j∈Ck

(Xi j − μik)2 + 1
2

∑
j∈C′

k

(X′
i j − μ′

ik)2

+√
nkλ1 |μik| + √

n′
kλ1

∣∣μ′
ik

∣∣ + (
√

nk + √
n′

k)λ2
∣∣μik − μ′

ik

∣∣} .

This problem is quite like the fused lasso (30) or the to-
tal variance minimization (41) problem, although they are
not the same because of the different forms of the weights
and existing algorithms do not directly apply. However, the
solution can be computed as follows (See Supplementary
Materials for full derivations), where soft(x, λ) = sign(x) ·
(|x| − λ)+ is the soft thresholding operator.

i) If nkn′
k = 0, the solution is given by μik = μ′

ik = Ink �=0 ·
soft(X̄ik,

λ1√
nk

) + In′
k �=0 · soft(X̄′

ik,
λ1√
n′

k
), where Ix is the

indicator function that equals 1 if condition x is satis-
fied and 0 otherwise.

ii) Else if soft(X̄ik −
√

nk+
√

n′
k

nk
λ2,

λ1√
nk

) >

soft(X̄′
ik +

√
nk+

√
n′

k

n′
k

λ2,
λ1√
n′

k
), the solution is

given by μik = soft(X̄ik −
√

nk+
√

n′
k

nk
λ2,

λ1√
nk

) and

μ′
ik = soft(X̄′

ik +
√

nk+
√

n′
k

n′
k

λ2,
λ1√
n′

k
).

iii) Else if soft(X̄ik +
√

nk+
√

n′
k

nk
λ2,

λ1√
nk

) <

soft(X̄′
ik −

√
nk+

√
n′

k

n′
k

λ2,
λ1√
n′

k
), the solution is

given by μik = soft(X̄ik +
√

nk+
√

n′
k

nk
λ2,

λ1√
nk

) and

μ′
ik = soft(X̄′

ik −
√

nk+
√

n′
k

n′
k

λ2,
λ1√
n′

k
).
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iv) Else, the solution is given by μik = μ′
ik =

soft( nk X̄ik+n′
k X̄′

ik
nk+n′

k
,

√
nk+

√
n′

k

nk+n′
k

λ1).

Given these observations, SparseDC initializes C and C′
by randomly assigning cells to clusters, and then iteratively
updates {C, C′} and {μ,μ′} until the clustering solution
does not change. We have found that convergence is usually
achieved within 20 iterations. This alternative optimization
strategy is quite similar to that of regular K-means clus-
tering. And just like regular K-means, SparseDC is guar-
anteed to converge, but only to a local optimum. In regu-
lar K-means, multiple initial values are used to increase the
chances of achieving the global optimum. We have found
that a similar strategy also works for SparseDC: we assign
multiple sets of random initial values to C and C′, iterate
to get the solution for each set of initial values, and the fi-
nal solution is chosen as the one that gives the smallest T
among all solutions. Our simulation and real data results
were obtained by using 50 sets of initial values.

The computational load of our algorithm is generally at
a similar level to regular K-means. Given {μ,μ′}, updating
{C, C′} is the same as K-means. Given {C, C′}, updating
{μ,μ′} is not done by calculating the centroids, but they still
have a closed-form solution and thus the update is still very
fast, making the optimization of SparseDC highly efficient
and scalable to high-dimensional datasets.

Simulated data

To study the performance of SparseDC under different
compositional changes of cell populations between differ-
ent biological conditions, data were simulated under a range
of scenarios, listed in Table 1. For example, in scenario 6, cell
types 1 and 2 are present in condition A, while cell types 2,
3 and 4 are present in condition B. Thus, in this scenario,
there is one cell type (type 1) dying out and two cell types
(type 3 and 4) emerging. The seven scenarios can be classi-
fied into three categories, from least to most challenging: (i)
Scenario 1: there are no cell types dying out/emerging. (ii)
Scenarios 2 and 3: there are cell types dying out. Since the
target function of SparseDC is symmetric for the two con-
ditions, these scenarios are equivalent to cell types emerging
if the condition labels of A and B are exchanged. (iii) Sce-
narios 4–7: there are both cell types dying out and cell types
emerging.

For each scenario, a proportion (10, 3 or 1%) of genes
were assigned as marker genes. This proportion denotes the
‘sparsity’ of marker genes among all genes and thus here-
after we refer the proportions as ‘abundant’, ‘sparse’ or
‘very sparse’ marker genes. The sparser the marker genes
are, the more challenging the clustering problem is likely to
be.

For each of the simulation scenarios and levels of sparsity
we first generated datasets where all of the marker genes are
housekeeping marker genes. We then generated data, where
half of the marker genes are condition-specific marker genes
and half are housekeeping marker genes. Compared with
setting all marker genes as housekeeping marker genes, this
provides an additional challenge for SparseDC to correctly
identify the condition-specific genes as well as increasing the
difficulty of linking the clusters across conditions.

In summary, we simulated seven scenarios of cell popu-
lation changes as shown in Table 1; for each scenario, we
simulated data with three levels of sparsity; and for each
level of sparsity, we simulated data with two different con-
figurations of marker genes. For each of these 42 combina-
tions of scenario, sparsity and marker-gene configuration,
we simulated 100 datasets, each containing expression lev-
els for 1000 genes and 100 cells in each biological condition.
Details about how the expression levels were simulated are
provided in Supplementary Materials.

Overview of four real datasets

ScRNA-seq data with cells from two biological conditions
are quite common in the literature and two of them were
used to evaluate the performance of SparseDC. They are
‘Real dataset 3: Llorens–Bobadilla data’ and ‘Real dataset
4: Shalek data’; detailed descriptions are given in the fol-
lowing sections.

A shortcoming of real datasets with cells from two con-
ditions, such as the Llorens–Bobadilla data and the Shalek
data, is that the biological truth of cell type changes is usu-
ally unknown, and thus the ability of SparseDC to link clus-
ters of cells of the same type across conditions and iden-
tify cell types that have emerged or died out cannot be ac-
curately tested on them. To overcome this, two other real
datasets, ‘Real dataset 1: Pollen data’ and ‘Real dataset 2:
Biase data’ (details given in the following sections), were
also used. Each of these two datasets contains cells from a
single condition, but we have proposed a process to modify
them to create datasets that contain cells from two condi-
tions with known changes of cell types. These known cell
type changes will then be used as the gold standard to test
SparseDC’s clustering accuracy. Below brief descriptions
are given about the four real datasets we have used, and
then the process of modifying the Pollen data and the Bi-
ase data is described in the section ‘Modifying real datasets
for known cluster changes’.

Real dataset 1: Pollen data

This real scRNA-seq dataset was created by Pollen et al.
(42), who captured single cells from a range of tissues com-
posed of an assortment of cell types. Ten of the cell types
were selected to be used in the analysis (See Supplementary
Materials) giving a dataset with 286 cells. The cells con-
tained in the data for analysis were 37 BJ (dermal, from
human foreskin), 22 CRL-2338 (epithelial), 17 CRL-2339
(lymphoblastoid), 26 fetal cortex GW16 (neural, gestational
week 16), 16 fetal cortex GW21 (neural, gestational week
21), 8 fetal cortex GW21 + 3 (neural, gestational week 21
+ cultured for 3 weeks), 24 hiPSC (pluripotent), 54 HL-
60 (myeloid, acute leukemia), 42 K562 (myeloid, chronic
leukemia) and 40 Kera (epidermal, foreskin keratinocyte)
cells. After filtering out lowly expressed genes, total Tran-
scripts Per Kilobase Million (TPM) <10 and genes ex-
pressed in three or fewer cells, there were 18 206 genes re-
maining. The data were transformed as log(x + 1) prior to
analysis.
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Table 1. The cell type composition of the simulation scenarios

Cluster scenario Cell types in condition A Cell types in condition B

1 (1,2,3) (1,2,3)
2 (1,2,3) (2,3)
3 (1,2,3,4) (2,3,4)
4 (1,2) (2,3)
5 (1,2,3) (2,3,4)
6 (1,2) (2,3,4)
7 (1,2,3,4) (3,4,5)

Real dataset 2: Biase data

This scRNA-seq dataset was created by Biase et al. (43) and
contains 49 cells from nine one-cell, ten two-cell and five
four-cell mouse embryos. This gives 9 one-cell cells, 20 two-
cell cells and 20 four-cell cells. The data were collected to
study cell fate inclination in mouse embryos. The dataset
contains Fragments Per Kilobase Million (FPKM) mea-
surements for 25 737 genes, of which 16 514 remained af-
ter filtering out genes which were expressed in <3 cells or
whose total FPKM expression across all the cells was <10.
The data were transformed as log(x + 1) prior to analysis.

Real dataset 3: Llorens–Bobadilla data

This real scRNA-seq dataset was created by Llorens–
Bobadilla et al. (44) to study the progression and activation
of neural stem cells (NSCs) under both normal conditions
and after ischemic injury. They created scRNA-seq libraries
for 130 naı̈ve cells and 57 cells taken after ischemic injury.
A total of 104 of the naı̈ve cells were GLAST+/Prom1+,
while the other 26 were PSA-NCAM+, a marker for neu-
roblast cells. For each cell, there were trimmed mean of M
values (TMM) normalized FPKM measurements for 43 309
genes. Genes with a total TMM-FPKM expression <10 or
expressed in <3 cells were filtered out, leaving 16 630 genes
for analysis. Cells which expressed <15% of these genes
were removed from the analysis, leaving 128 naı̈ve cells and
56 ischemic injured cells. The data were transformed as
log(x + 1) prior to analysis.

Real dataset 4: Shalek data

Shalek et al. (45) created scRNA-seq expression measure-
ments for mouse bone-marrow-derived dendritic cells ex-
posed to one of three pathogenic components, lipopolysac-
charide (LPS), a synthetic mimic of bacterial lipopeptides
(PAM) or viral-like double-stranded RNA (PIC). For each
group of stimulated cells, samples were taken at 1, 2, 4 and 6
h. The two largest groups of cells exposed to stimulus, LPS
and PAM, were selected for analysis by SparseDC. Prior
to analysis, non-viable cells and cluster disrupted dendritic
cells were removed, using the same process as the origi-
nal authors, leaving 258 LPS cells and 159 PAM cells. The
dataset contains TPM expression measurements for 27723
genes for each cell. Prior to analysis, any genes with total
TPM expression <10 or expressed in <3 cells were filtered
out of the analysis leaving 14 343 genes. The data were trans-
formed as log(x + 1) prior to analysis.

Modifying real datasets for known cluster changes

To create gold standard datasets where the true cell type
changes are known, we took datasets that contain cells from
one condition and assigned the cells into two conditions.
For example, the original Biase data contain three types of
cells: zygote, two-cell embryo and four-cell embryo. We as-
signed the cells into two groups by putting all zygote cells
and half of the two-cell embryo cells into condition A and
putting the rest of the two-cell embryo cells and all four-cell
embryo cells into condition B. This created a two-condition
dataset with known cell types and known changes in the
composition of cell types: as the condition changes from
A to B, one cell type (zygote) dies out, one cell type (four-
cell embryo) emerges and one cell type (two-cell embryo) is
present in both conditions. This corresponds to simulation
scenario 4 in Table 1.

RESULTS

SparseDC was applied to each simulated and real dataset,
with all of its parameters automatically determined by the
algorithm (See Supplementary Materials) with the excep-
tion of the number of clusters, K, for which the true value
is used. As in many clustering algorithms, this K is practi-
cally important, although its value is often given by ideas
and algorithms that are not directly related to the proposed
clustering algorithm (39,46), or in many cases set accord-
ing to researchers’ experience or their understanding of the
problem.

Measurement of performance

The performance of SparseDC is summarized using three
statistics: classification rate, sensitivity and specificity. The
classification rate is the proportion of samples (cells) that
have been correctly classified. While it is usually used for
classification, a supervised problem, it is well defined in our
unsupervised clustering problem since in our simulations
the true cluster labels are known. The classification rate
ranges from 0 to 100%, and a high value means that the
algorithm accurately discovers cell types in both conditions
and also links the clusters correctly across conditions.

Sensitivity and specificity are used to describe the accu-
racy of detecting marker genes. Sensitivity is the proportion
of marker genes that are successfully detected as marker
genes, and specificity is the proportion of non-marker genes
that are correctly identified as non-markers. They also range
from 0 to 100%, and higher values indicate superior perfor-
mance.
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Figure 2. The average classification rates from the simulation tests. The
cluster scenario refers to the cell composition in each condition as dis-
played in Table 1. Different levels of marker gene sparsity are represented
by the different shades. The error bars represent the standard error of the
results from the 100 simulations. (A) All marker genes are housekeeping
marker genes. (B) Half of the marker genes are condition-specific marker
genes.

Performance on simulation data

The detailed results of the performance of SparseDC on
simulation data are given in Supplementary Table S1.
SparseDC was able to cluster the cells with an average clas-
sification rate of >99% and track them across conditions
for all of the 42 simulation settings (Figure 2A and B; Sup-
plementary Table S1). The classification rate of SparseDC
is almost unchanged when half of the marker genes are
condition-specific marker genes and the marker genes are
abundant or sparse in the data, only scenario 3 sees a
0.205% decrease. When the marker genes are very sparse
the classification rate of SparseDC declines by an average
of 0.253% across the different scenarios, but is still above
99%.

When all of the marker genes are housekeeping marker
genes, SparseDC had an average sensitivity and specificity
of over 97 and 98%, respectively (Figure 3A and B; Sup-
plementary Table S1). When half of the marker genes are
condition-specific marker genes, the sensitivity declines by
an average of 8%, while the specificity of SparseDC is al-
most unchanged (Figure 3C and D; Supplementary Table
S1).

Comparison with Huang et al. Method

We tried to compare the performance of SparseDC to
the time-variant clustering (TVC) algorithm presented by
Huang et al. (26), which is the only other algorithm cur-
rently available for DC analysis. The algorithm was de-

veloped for single-cell quantitative reverse transcriptase-
polymerase chain reaction (qRT-PCR) data, which often
contains no more than a few dozen genes. It is based on
a Bayesian model and relies on a computationally expen-
sive recursive jump Markov chain Monte Carlo that re-
quires from 100 000 (default setting of the software) up to 1
000 000 iterations (suggested setting). In the original paper,
the TVC algorithm was applied to datasets with 21 and 23
genes, and encountered convergence problems in a signifi-
cant proportion of the realizations of Monte Carlo (26).

We applied the TVC algorithm to a single dataset simu-
lated under scenario 1 of Table 1, which contains 1000 genes
and 100 cells in each condition, and it would take more
than a month to complete the suggested 1 000 000 itera-
tions. When using a smaller number of iterations (100 000
iterations), it took >3 days to complete but did not give any
meaningful clustering results (all cells were clustered into a
single cluster). We also tried to apply the TVC algorithm on
a much smaller simulated dataset that contained only 100
genes. With 1 000 000 iterations, the TVC algorithm took
7.85 h to run and still did not generate any meaningful clus-
tering of the cells. See Supplementary Materials for details.

Through simulation, it is clear to us that the TVC algo-
rithm is not suitable for DC analysis via scRNA-seq data,
either in the sense of computational speed or performance.
Comparatively, on both of the above datasets (1000 and 100
genes), SparseDC finished within 15 s and achieved a clas-
sification rate no less than 98%.

Performance on Pollen data

The first real dataset to which SparseDC was applied is the
Pollen Data. The 10 cell types which we use in this analy-
sis are drawn from four different tissue types, blood (CRL-
2339, HL-60, K562), dermal or epidermal (BJ, CRL-2338,
Kera), neural (GW16, GW21, GW21 + 3) and pluripo-
tent (hiPSC). The three neural cell types are all taken from
the fetal cortex and differ only in gestational week, either
16, 21 or 21 and then cultured for 3 weeks. The differ-
ence between these three neural cell types is smaller than
the difference between GW and other cell types. We split
the data such that the GW16 cells are in condition A and
the GW21 and GW21 + 3 cells are in condition B. Ide-
ally, SparseDC should be able to detect that the GW16,
GW21 and GW21 + 3 cells should be in the same clus-
ter, GW; at the same time, it should recognize the dif-
ferences between them by identifying meaningful sets of
condition-dependent and condition-specific marker genes.
In this sense, this dataset provides an ideal situation to com-
prehensively evaluate SparseDC’s ability.

Using the idea described in the section titled ‘Modify-
ing real datasets for known cluster changes’, three (HL-
60, K562, Kera) of the remaining seven cell types were
split amongst the conditions so that overall seven cell types
are present in condition A (CRL-2338, CRL-2339, GW,
hiPSC, HL-60, K562 and Kera) and five are present in
condition B (BJ, GW, HL-60, K562 and Kera). Moreover,
there are different marker gene types present in the split
data: (i) All the marker genes for the HL-60, K562 and
Kera cell types should be housekeeping marker genes, as
cells from these types were randomly assigned to the two
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Figure 3. The average sensitivity and specificity from the simulation tests. The cluster scenario refers to the cell composition in each condition as displayed
in Table 1. Different levels of marker gene sparsity are represented by the different shades. The error bars represent the standard error of the results from
the 100 simulations. (A and B) Sensitivity and specificity for simulations with all housekeeping marker genes. (C and D) Sensitivity and Specificity for
simulations with half condition-specific marker genes.

conditions. (ii) Marker genes for the GW cell type should
include both housekeeping marker genes and condition-
specific/condition-dependent marker genes, as the three
subtypes of GW (GW16, GW21 and GW21 + 3) were non-
randomly assigned to the two conditions.

SparseDC was applied to the divided data and achieved
a 100% classification rate. This means that SparseDC cor-
rectly identified all cell types in both conditions, connected
the cell types across conditions, and assigned all cells to
their respective cell types, without an error. Notably, it was
able to link the four cell types present in both conditions
(GW, HL-60, K562 and Kera) across the conditions, includ-
ing the neural cluster which has a different set of marker
genes in each condition.

For the HL-60, K562 and Kera clusters, the marker gene
selection and mean values were the same in each condi-
tion, indicating SparseDC correctly specified all the marker
genes as housekeeping marker genes. For the neural clus-
ter, SparseDC instead identified several condition-specific
and condition-dependent marker genes (Figure 4). These
genes indicate differences that have arisen from the addi-
tional gestational weeks and allow us to track the changes
in gene expression in the fetal cortex over time. Of the five
condition-specific marker genes for the GW16 cells, three
are known to be related to neuronal development, CSRP2
(47), GAP43 (48) and PLXNA4 (49–51). Upon examining
the condition-dependent marker genes, there were several
genes which were upregulated for the neural cluster in con-
dition A, made up of the GW16 cells, compared to the
neural cluster in condition B, made up of the GW21 and
GW21 + 3 cells. Among these genes CXADR has previ-
ously been shown to be highly expressed in the mouse brain
during synapse formation with declining expression dur-
ing maturation (52,53). Several other condition-dependent
genes are also known to be related to neuronal develop-

ment, including GNG3 (54), MIR100HG (55), MLLT11
(56) and TSPAN7 (57). Thus, we have seen that for this
dataset SparseDC successfully detected that there were in-
tracellular transcriptome changes for the neural cells across
the conditions but that all the other cell types retained the
same transcriptome profile across the conditions.

The marker genes identified by SparseDC show clear dif-
ferences in expression for the cell types for which they are
marker genes compared to the other cell types, as is clear
from the block pattern of expression seen in the heatmaps
(Figure 5A and B), indicating that the marker genes iden-
tified by SparseDC are capable of characterizing the cell
types in this dataset. To determine if the marker genes are
also biologically relevant to the cell type, we examined the
top 10 upregulated marker genes for each of the clusters
(genes with the 10 largest positive μik or μ′

ik values for each
k = 1, . . . , K ; the names of these genes are given in Table
2, and the total numbers of marker genes identified in real
datasets are given in Supplementary Tables S2–5) by ex-
amining their expression levels in different tissues as deter-
mined by the Genotype-Tissue Expression Project (GTEx)
(58) (Table 2). The GTEx measured RNA expression in 53
different human tissues, and we considered a gene known
to be upregulated in a tissue if it was among the top three
tissues that express that gene. For the CRL-2339, HL-60
and K563 cells, the majority of the top 10 marker genes
have all been shown to be upregulated in blood tissue types
(Table 2). Many of the top marker genes for the dermal or
epidermal cell types were also shown to be upregulated for
those tissues (Table 2). While there are differences between
the center vectors of the GW cluster in each condition, the
top 10 marker genes are the same and again many of these
marker genes have previously been shown to be upregulated
in neural tissues (Table 2). For the pluripotent cell type,
hiPSC, literature survey revealed that many of the top 10
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(AD) NREP (AD) NREP

(AD) GRIA2 (AD) GRIA2 
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Figure 4. Heatmaps of the gene expression of condition-specific and condition-dependent marker genes for the neural cluster (GW), detected by SparseDC
in the Pollen data. (A) Condition A and (B) condition B correspond to how the data was split into two conditions as described in the text. For the plot
labels, 2338 and 2339 represent the cell types CRL-2338 and CRL-2339, respectively. The color bars at the top of the plots represents the cell type of each
of the cells. The top five genes are condition-specific marker genes for the neural cluster in condition A (‘AS’ was added to the gene names to denote this
type of marker gene). The next nine genes are condition-dependent marker genes for the neural cluster which are upregulated in condition A (‘AD’ was
added to the gene names to denote this type of marker gene). The last gene is a condition-dependent marker gene for the neural cluster in condition B
(‘BD’ was added to the gene name to denote this type of marker gene).
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Figure 5. The heatmaps display the expression measurements for the top 10 upregulated marker genes detected by SparseDC in the Pollen data for each
of the cell types in each condition. For a cell type k, the top 10 upregulated marker genes are the genes with the ten largest positive μik or μ′

ik values. (A)
Condition A and (B) condition B correspond to how the data was split into two conditions as described in the text. The color bars above the heatmaps
indicate the cell type of each of the cells, while the color bars along the left side of the heatmaps indicate which of the cell types each of the genes was
detected as a marker for. For the plot labels, 2338 and 2339 represent the cell types CRL-2338 and CRL-2339, respectively. In the heatmap for condition A,
there are clear blocks of similar expression for the marker genes of all the present cell types. Similar blocks can be seen in the heatmap for condition B for
the cell types which are present. For example, there are clear blocks of high expression for the Kera marker genes in both heatmaps as this type is present
in both conditions, while there is only a block for the BJ marker genes in the heatmap for condition B since the BJ cells are only present in condition B.

marker genes have previously been shown to be related to
the function of stem cells (59–65) (Table 2). Overall, we have
seen that for this dataset the housekeeping marker genes for
each of the cell types, as well as the condition-specific and
condition-dependent marker genes for the GW cells (de-
scribed in the last paragraph), agree well with existing gene
annotations.

Performance on Biase data

When applied to the Biase data, SparseDC clustered the
cells and linked them across conditions with a classification
rate of 100%. See Supplementary Materials for a detailed
description of the results.

Performance on Llorens–Bobadilla data

The third real dataset analyzed by SparseDC is the Llorens–
Bobadilla data. During their analysis of the data, the origi-
nal authors used successive rounds of principal component
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Table 2. Top 10 upregulated marker genes for each of the cell types in the Pollen data

Cell type Tissue type Top 10 marker genes

CRL-2339 Blood CD48(58), CD52(58), CD74(58), ELK2AP, HLA-DPA1(58), HLA-DRA(58),
HLA-DRB1(58), HLA-DRB5(58), IGJ, MS4A1(58)

HL-60 Blood AIF1(58), ARHGDIB(58), CST7(58), CTSG(58), LAT2(58), MPO(58), MS4A3(58),
PRG2(58), PRTN3(58), SRGN(58)

K562 Blood GAGE4(58), GATA1(58), HBA2(58), HBG1(58), HBG2(58), PRAME, RHAG(58),
RHOXF2, SNAR-A10, SNAR-A5, SNAR-A6, SNAR-A9

BJ Dermal or epidermal COL1A2(58), CRYAB, DCN(58), DKK1(58), GREM1(58), LUM, PSG5(58),
SERPINE1(58), TAGLN, TNFRSF11B

CRL-2338 Dermal or epidermal IFI27, KRT15(58), KRT81, LCN2, RARRES1, S100A8, S100A9, S100P, SLPI,
STEAP4(58)

Kera Dermal or epidermal AREG, C19orf33(58), FGFBP1(58), KRT14(58), KRT17(58), KRT5(58), KRT6A(58),
S100A14(58), S100A2(58), SERPINB5(58)

GW Neural C1orf61(58), DCX(58), FXYD6(58), GPM6A(58), MAP1B(58), NNAT(58),
RTN1(58), SOX11(58), STMN2(58), TUBA1A(58)

hiPSC Pluripotent CRABP1, DPPA4(59), ESRG(60), PHC1(61), SFRP2(62), SHISA2, SLC7A3(63),
TDGF1(64), VSNL1, ZIC2(65)

Underlined genes have been previously shown to be upregulated in the tissue of interest or in the case of the stem cell cluster, related to the functioning of
stem cells.

analysis (PCA) and hierarchical clustering and manually
incorporated knowledge of known gene markers to detect
subpopulations in the data. They finally inferred the exis-
tence of four likely subpopulations in the data, correspond-
ing to oligodendrocytes, quiescent NSCs (qNSCs), acti-
vated NSCs (aNSCs) and neuroblasts. As such, SparseDC
was applied to the dataset with the number of clusters set to
four.

Most of the clusters detected by SparseDC contain a
mixture of ischemic injured and naı̈ve cells (Table 3). All
of the cells in cluster 4 are naı̈ve PSA-NCAM+ cells. This
mirrors the result of the original authors who found that
the PSA-NCAM+ and GLAST+/Prom1+ cells had distinct
transcriptomes, with the PSA-NCAM+ cells corresponding
to neuroblasts (44). The authors of the original paper clus-
tered genes highly correlated with the first four principal
components of the data into seven modules using hierar-
chical clustering. They then associated each of the modules
with subpopulations of cells using their expression levels;
module 1 was associated with oligodendrocyte cells, mod-
ules 2 and 3 were associated with both qNSCs and aNSCs,
modules 4, 5 and 6 were associated with aNSCs, and mod-
ule 7 was associated with neuroblast cells. These modules
can be used to validate the results of SparseDC by exam-
ining the housekeeping up- and downregulated genes and
calculating the proportion of the detected marker genes in
each module for each cluster.

For cluster 1, 62% of the upregulated housekeeping
marker genes are from module 3 and 10% are from module
2, both of which are associated with qNSCs and aNSCs,
while the downregulated housekeeping genes are mainly
found in module 4 (38%) and module 5 (30%), both of which
are expressed for aNSCs (Table 4). As cluster 1 expresses up-
regulated genes for qNSCs and aNSCs and downregulated
genes for aNSCs, the cluster likely contains the qNSC cells.

For cluster 2, the module containing oligodendrocyte
markers, module 1, contains 65% of the upregulated genes.
The downregulated genes are mainly contained in module 3
(57%), which is expressed in both qNSCs and aNSCs. This
indicates that cells in cluster 2 are likely to be oligodendro-
cyte cells.

For cluster 3, the majority (71%) of the upregulated
markers are contained in modules 4, 5 and 6, which are ex-
pressed in aNSCs. While the majority, 79%, of the down-
regulated markers for cluster 3 are from modules 2 and 3,
which are expressed in qNSCs and aNSCs. This provides an
indication that the cells contained in cluster 3 are the aN-
SCs. While the downregulated genes for this cluster are from
modules that are expressed in both qNSCs and aNSCs, it
is important to note there are only a few genes detected as
downregulated for cluster 3 (Table 4) and the high expres-
sion of modules 2 and 3 by cluster 1 has led to them being
detected as downregulated for almost all other clusters.

Module 7, which is associated with neuroblast markers,
contains 55% of the upregulated housekeeping genes for
cluster 4. As previously discussed, all of the cells in clus-
ter 4 are naı̈ve PSA-NCAM+ cells, and thus it is likely that
the cells in cluster 4 are neuroblast cells.

On this dataset, SparseDC detected subpopulations of
cells in the data and identified relevant marker genes which
provide an indication as to the cell type of each cluster. A
heatmap of the top 10 upregulated marker genes for each
condition is displayed in Figure 6. The top 10 upregulated
genes are those genes with the 10 largest positive center
values for each cluster. It is clear from the plot that these
marker genes do a good job of separating this dataset, with
clear blocks of expression visible relating to each cluster and
its marker genes.

SparseDC detected several genes as either condition-
specific or condition-dependent for cluster 1 and cluster
3 (Table 5), and some of them are known to be biologi-
cally relevant from the literature. Gfap, which is a condition-
specific gene for the injured cells in cluster 1, has previously
been shown to be important in repair after a brain injury,
particularly in the formation of glial scars (66) and has been
found to have increased expression after an ischemic stroke
(67). Stmn1 was a condition-dependent gene with higher
expression in the injured cells and is known to be upregu-
lated following ischemic injury (68,69). Fos was detected as
a downregulated condition-specific gene for the naı̈ve cells
in cluster 1 and an upregulated condition-dependent gene
for the injured cells in cluster 3, and its expression has pre-
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Table 3. The clustering solution from the application of SparseDC to the Llorens–Bobadilla data

Condition 1 2 3 4

Ischemic injured 20 11 25 0
Naive 63 12 28 25

The ischemic injured cells are in the first condition, while the naı̈ve cells are in the second. For example, cluster 1 contains 20 cells in the first condition,
ischemic injured cells and 63 naı̈ve cells from the second condition.

Table 4. The percentage of housekeeping up and downregulated genes detected by SparseDC on the Llorens–Bobadilla data contained in each of the
modules from the original paper

1-Up 1-Down 2-Up 2-Down 3-Up 3-Down 4-Up 4-Down

# of Genes 208 158 350 124 726 39 194 703
Module 1 0% 4% 65% 0% 0% 8% 4% 2%
Module 2 10% 0% 2% 0% 0% 28% 0% 15%
Module 3 62% 0% 0% 57% 0.50% 51% 0% 25%
Module 4 0% 38% 3% 1% 48% 0% 0% 3%
Module 5 0% 30% 0% 3% 10% 0% 7% 0%
Module 6 0% 3% 0% 0% 13% 0% 0% 0%
Module 7 0% 9% 0% 4% 1% 0% 55% 0%

‘1-Up’/‘1-Down’ stands for up/downregulated in cluster 1 and so forth. Housekeeping genes are defined as those which have the same center value in
the SparseDC solution for a cluster in both conditions. upregulated genes are those which have a positive center value in the SparseDC solution while
downregulated genes have a negative center value.
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Figure 6. Heatmaps of the expression of the top 10 upregulated housekeeping marker genes detected by SparseDC for the Llorens–Bobadilla data. The top
10 housekeeping marker genes are identified as the 10 genes which have the largest positive center value, μik, in both conditions, ischemic injured (A) and
naive (B). The color bars at the top represent the clusters of the cells, while the color bars at the side represent the marker genes for each cluster. The numbers
on the plot correspond to the clusters found in the data, where cluster 1 contains the likely qNSC cells, cluster 2 contains the likely oligodendrocyte cells,
cluster 3 contains the likely aNSC cells and cluster 4 contains the likely neuroblast cells. For all of the cell clusters there are clear blocks relating to the
marker genes for the cluster.

viously been shown to be upregulated after injury (70). Fos
may not have been detected as an upregulated gene for the
injured cells in cluster 1, as it also plays a role in the nor-
mal development of NSCs (71). Fxyd6 was also detected as
a downregulated condition-specific gene for the naı̈ve cells
in cluster 1 and has previously been shown to respond to
hypoxia (72). Condition-specific genes for the naı̈ve cells
in cluster 1 include genes involved in differentiation, Cntfr
(73), targets of Notch signaling, Fjx1 (74) and genes in-
volved in warding off neuronal disorders, Tpp1 (75,76).
Some condition-dependent genes for the naı̈ve cells in clus-
ter 1 have also been shown to play a role in the functioning
and differentiation of NSCs such as Fgfr3 (77), Sparcl1 (78–

80) and Aqp4 (81), while Gpc5 has been shown to activate
Hedgehog signaling (82), which plays a role in determin-
ing stem cell positional identity (83). For cluster 3 there was
also one condition-specific upregulated gene, Junb, which
has been shown to be related to ischemic injury (84,85). No
condition-specific or condition-dependent markers were de-
tected for cluster 2. Cluster 4 only contains cells from a sin-
gle condition and so all of its marker genes are housekeep-
ing marker genes.

SparseDC also tracks changes in the proportion of cell
types present in each condition, and for this dataset it agrees
with the findings of the original authors. Leaving out clus-
ter 4, which contains the PSA-NCAM+ cells, there is a
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Table 5. Condition-specific and condition-dependent genes identified by SparseDC for the clusters in the Llorens–Bobadilla data

Cluster Naı̈ve CS Naı̈ve CD Injured CS Injured CD

1-Up Tril, Cntfr, Tlcd1, Fjx1, Tpp1,
AI464131

Fgfr3, Grm3, Gpc5, Slc39a12, Ephx2,
Aqp4, Dhrs7, Sparcl1

Gfap Stmn1

1-Down Fos, Fxyd6
3-Up Junb Fos

Definitions of the different types of marker genes can be found in the section ‘The optimization problem that SparseDC proposes’. There were no condition-
specific or condition-dependent genes detected for cluster 2 and cluster 4 contains cells from only a single condition. In the table CS stands for condition-
specific genes while CD stands for condition-dependent genes, so for example, naı̈ve CS means condition-specific genes for the naı̈ve cells.

larger proportion of the naı̈ve cells in cluster 1 (61.2%),
which expresses qNSC markers, compared to the injured
cells (35.7%). Conversely, cluster 3, which expresses aNSC
markers, contains 27.2% of the naı̈ve cells and 44.6% of the
injured cells. Llorens–Bobadilla et al. found that injury led
to the activation of a larger proportion of the NSCs.

Performance on Shalek data

The fourth real dataset analyzed by SparseDC is the Shalek
data, which contains scRNA-seq measurements for mouse
bone-marrow-derived dendritic cells exposed to different
pathogenic components and taken at different time points
(45). In their analysis, Shalek et al. clustered the genes into
12 modules, four of which were significantly correlated with
the first three principal components of the single cell gene
expression profiles. These four modules are the core anti-
viral module, the maturity module, the peaked inflamma-
tory module and the sustained inflammatory module. See
the original paper for additional details on the modules
and the genes contained in each. Their analysis showed
that there was significant variation within each stimulus and
time point, with some cells responding to the stimulus faster
than the others.

The 258 LPS cells used for analysis in SparseDC con-
sist of 75, 65, 60 and 58 cells from 1, 2, 4 and 6 h times
points, respectively, and the 159 PAM cells used for analy-
sis in SparseDC consist of 48, 41, 35 and 35 cells from the
four time points, respectively. Shalek et al. empirically de-
termined the number of clusters present in the data to be
four, which was used as the cluster number for SparseDC.

SparseDC detected two common subpopulations present
in both datasets and a subpopulation unique to each of the
groups (Table 6). Using the time each cell was captured to
analyze the clustering result, it can be seen that cluster 1 cor-
responds to an early state containing all of the 1 h cells for
both conditions, with additional 2 h cells from both condi-
tions and some 4 h PAM cells (Table 6). On the other hand,
cluster 3 corresponds to a later state containing all the LPS
cells from the 4 and 6 h time points and the majority of the
6 h PAM cells. Cluster 2 is unique to the PAM cells and con-
tains mostly 2 and 4 h cells, while cluster 4, which is unique
to the LPS cells, contains samples solely from 2 h.

One way of investigating the biological relevance of each
of the clusters is to compare the marker genes detected by
SparseDC to the gene modules found by the original au-
thors. This is done by looking at the proportion of house-
keeping up- and downregulated genes contained in each
module for each cluster.

For cluster 1, many of the downregulated marker genes
come from either the core anti-viral module (43.4%), or
the sustained inflammatory module (35.2%), both of which
showed limited expression at early time points in the orig-
inal paper (Table 7). This cluster appears to be composed
of cells which are not yet responding to or just beginning to
respond to the stimulus.

Cluster 2 contains only cells stimulated by PAM from ei-
ther 2, 4 or 6 h and many of the upregulated housekeeping
genes are from the peaked inflammatory module (20.3%),
or the sustained inflammatory module (31.9%), while 47%
of the downregulated marker genes are from the core anti-
viral module. This cluster is then most likely composed of
PAM cells responding to the stimulus. The upregulation of
inflammatory related modules and the downregulation of
the core anti-viral module make sense since there are only
PAM cells in this cluster and Shalek et al. found that the
PAM cells did not begin to express the core anti-viral mod-
ule until late after stimulation.

The largest cluster detected by SparseDC, cluster 3, con-
tains 125 LPS cells and 40 PAM cells all from 2 h onward.
This cluster contains all of the LPS cells from the 4 and
6 h time points. Upregulated housekeeping marker genes
for this cluster come from either the core anti-viral mod-
ule (52.3%) or the sustained inflammatory module (22.2%).
This mirrors the findings of Shalek et al. (45), who found
that the core anti-viral response genes were detectable in
only some LPS cells early on but turned on in most cells
between 2 and 4 h.

The LPS specific cluster, cluster 4, contains only LPS cells
from the 2 h time point. The module with the most upreg-
ulated genes for cluster 4 is the peaked inflammatory mod-
ule. Again, this is similar to the findings of Shalek et al.,
who identified a rapid rise in expression of the peaked in-
flammatory module for the LPS cells and then a decrease in
expression as time progressed.

The heatmap of the top 10 upregulated housekeeping
marker genes, reveals blocks of similar expression present
in each condition for each of the clusters (Supplementary
Figure S1). The top 10 upregulated housekeeping marker
genes are the genes which have the largest common positive
center value. The blocks in the heatmap for this dataset are
less distinct than for other datasets, which is most likely due
to the cells being of the same type at different time points,
with many of the cells transitioning from state to state and
as such may be expressing the marker genes of the state they
are transitioning into.

There were several marker genes detected as condition-
specific and condition-dependent for cluster 1 and cluster 3.
For cluster 1, there were six condition-specific genes for the
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Table 6. Breakdown of the SparseDC clustering result for the Shalek data by time point

Cluster 1 h 2 h 4 h 6 h

1 75, 48 15, 23 0, 3 0, 0
2 0, 0 0, 17 0, 23 0, 5
3 0, 0 7, 1 60, 9 58, 30
4 0, 0 43, 0 0, 0 0, 0

The first value in each entry is the number of samples from the LPS data in each cluster, while the second value is the number of samples from the PAM
data. For example, in cluster 1, there are 75 LPS cells and 48 PAM cells from the 1 h time point, 15 LPS and 23 PAM cells from the 2 h time point and 3
PAM cells from the 4 h time point

Table 7. Percentage of SparseDC detected housekeeping up/downregulated genes present in each module for each cluster in the Shalek data

Module 1-Up 1-Down 2-Up 2-Down 3-Up 3-Down 4-Up 4-Down

Core anti-viral 0% 43.41% 0% 47.27% 52.27% 0% 5.26% 18.75%
Maturity 0% 6.04% 2.90% 1.81% 2.84% 0% 5.26% 0%
Peaked inflammatory 0% 1.10% 20.29% 0% 0% 0% 17.54% 6.25%
Sustained inflammatory 0% 35.16% 31.88% 1.81% 22.16% 0% 7.02% 25%

‘1-Up’/‘1-Down’ stands for up/downregulated in cluster 1 and so forth. Up/downregulated housekeeping marker genes are defined as those which have a
positive/negative center value in the SparseDC solution and the same value in both conditions.

LPS cells and 10 for the PAM cells, along with 15 condition-
dependent genes. There were five condition-specific genes
for the LPS cells in cluster 3, 34 condition-specific genes for
the PAM cells and 32 condition-dependent genes. Among
these, TNF, which has previously been shown to be induced
by both LPS and PAM (86), was detected as a condition-
specific downregulated gene for the PAM cells in cluster 1
and the LPS cells in cluster 3, possibly indicating differ-
ences in the reaction times to the stimulus as previously
LPS was shown to induce a greater increase in TNF expres-
sion. CXCL10, which has previously been shown to be pro-
moted by LPS (87), was detected as a condition-dependent
upregulated gene for the LPS cells in both cluster 1 and
cluster 3. Several genes that have previously been identi-
fied as sensitive to LPS were detected as upregulated for the
LPS cells (88), such as IFIT2, IFIT3, IFIH1, IFI44, NT5C3,
RSAD2 and ISG15, which are condition-dependent upreg-
ulated genes for the LPS cells in cluster 3, and OAS2, which
is a condition-specific upregulated gene for the LPS cells in
cluster 3.

DISCUSSION

We have proposed the concept of differential clustering
analysis, and we have presented SparseDC, a powerful tool
which effectively clusters cells from two conditions, links
the clusters between conditions, identifies a set of marker
genes for each cluster and determines which of the marker
genes change between the two conditions. We have also pro-
posed classifying marker genes in DC analysis into three
categories.

SparseDC has demonstrated its applicability and effi-
ciency across a range of simulated data, as well as four
real datasets. In simulation data, SparseDC was able to
achieve high accuracy in both discovering cell types and
identifying marker genes. In real datasets where the cell
types are known, we developed a strategy to create two-
condition data where the true changes of cell types are
known. On both modified datasets, SparseDC achieved
high accuracy in discovering cell types and linking them

across conditions, and for the Pollen data it identified
marker genes for each cell type that are highly consistent
with known gene annotations and was able to differentiate
between the three different types of marker genes. On the
real two-condition datasets, SparseDC was able to identify
clusters with biologically relevant marker genes including
condition-dependent and condition-specific marker genes
that are relevant to the condition change.

SparseDC is highly computationally efficient. As shown
in Supplementary Materials, the computing time increases
roughly linearly as the number of cells increases. The mem-
ory requirement is also linear with respect to the size of the
data matrix. This makes SparseDC especially suitable for
scRNA-seq datasets with large numbers of cells.

SparseDC is the first algorithm that is suitable for DC
analysis of scRNA-seq data. It may be useful for re-
searchers working on a vast array of problems, such as
examining the differences in diseased versus healthy cells,
determining the effect of a treatment on cancer cells or
studying the effects of experimental stress on healthy cells.
While we have focused on scRNA-seq data in this paper,
SparseDC is applicable to many other forms of single-cell
data such as single-cell qRT-PCR data, and applicable to
bulk-based RNA-seq/microarray data. For example, if in
two hospitals/countries, two groups of patients with a par-
ticular disease have their transcriptome profile measured
by bulk-based RNA-seq or microarrays, SparseDC can be
used to discover the composition of patients with different
(unknown) subtypes of the disease. Some of these subtypes
may be present in the two hospitals/countries, while some
others may not. Additionally, as a general algorithm that
detects shared/distinct clusters for two groups of samples,
SparseDC may also be applied to problems outside the field
of biology.

At present, there are several limitations to SparseDC.
First, the current version of SparseDC relies on the user to
set the value of K, the total number of clusters. In the Sup-
plementary Materials, we have shown how SparseDC per-
forms when the value of K is set incorrectly for the Pollen
data. In the immediate future, we will work on develop-
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ing a method to computationally determine the value of K.
We have tried to adapt the popular ‘gap statistic’ approach
for selecting K automatically, and it seemed to work prop-
erly on a simulated dataset (See Supplementary Materials
for details). We have included this implementation in our R
package to serve as a rudimentary option for choosing K.

Second, SparseDC takes normalized gene expression
data as input, and does not explicitly take into considera-
tion the count nature of sequencing data or the excess ze-
ros partly due to ‘dropouts’ (89,90) in the data. Additional
analysis was performed on simulated data with excess zeros
or generated from the negative binomial distribution (See
Supplementary Materials for details), and we found that
SparseDC shows some deterioration in its performance, al-
though this deterioration seems quite affordable. While the
current model of SparseDC is largely nonparametric and
has displayed satisfactory performance on both simulation
data and real data, we will explore possible ways to specif-
ically deal with excess zeros and determine if this increases
the power of SparseDC, as some current literature shows
that modeling these dropouts explicitly may improve the
power of statistical inference (14,91–93).

Finally, the current version of the SparseDC algorithm
can only be applied to data with cells from two biological
conditions. In the future, we will extend it to data from more
than two conditions, which can be done by modifying the
target function. However, work will be needed to derive the
closed-form solution for each iteration of the multiple con-
dition model.

DATA AVAILABILITY

SparseDC has been implemented in R and is available as
an R package from CRAN (‘https://cran.r-project.org/web/
packages/SparseDC/index.html’). A vignette is also avail-
able at ‘https://cran.r-project.org/web/packages/SparseDC/
vignettes/SparseDC.html’. The scRNA-Seq data from
Pollen et al. (42) are available from the NCBI Sequence
Read Archive under accession number SRP041736. The
scRNA-seq data from Llorens–Bobadilla et al. (44) are
available under GEO accession number GSE67833. The
scRNA-seq data from Biase et al. (43) are available from
the additional files for the article. The scRNA-seq data from
Shalek et al. (45) are available under GEO accession num-
ber GSE48968.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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