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Abstract: Licorice is known as “Gan-Cao” in traditional Chinese Medicine (TCM), belonging to the
genus Glycyrrhiza (Family: Fabaceae/Leguminosae). It has a long medicinal history and wide appli-
cations in China. Polysaccharides of licorice (LPs) are one of the key bioactive components. As herbal
polysaccharides attracted increasing interest in the past several decades, their extraction, isolation,
structural characterization, pharmacological activities, and medicinal application have been explored
extensively. It is worth heeding that the method of extraction and purification effects LPs, apart from
specie and origin specificity. This review evaluates the method of extraction and purification and
demonstrates its performance in gaining specific composition and its structure-activity relationship,
which might lead the readers to a fresh horizon for developing advanced treatment strategies. It is
recently reported that the conformation of LPs plays a vital role as biopolymers, such as selenized
modification, microencapsulation, nanocomposite, liposome formulation, drug/hydrogel combi-
nations, biosensor device, and synergistic effect with a vaccine. In addition, LPs showed a good
thermodynamics profile, as these properties enable them to interact with additional supramolecular
interaction by chemical modifications or copolymerization. Functional polymers that are responsive
to various external stimuli, such as physical, chemical, and biological signals, are a promising study
topic. Thus, LPs are emerging as a new biomaterial that can enhance intended formulation along ex-
erting its inherent medicinal effects. It is hoped that this review will provide a basis for the utilization
and further developments of licorice polysaccharides in the vast medium.

Keywords: Glycyrrhiza; licorice; polysaccharides; extraction method; structure; bio-activity; modern
formulation; biomaterial

1. Introduction

Licorice, known as Gan-Cao in Chinese and Liquiritiae radix in Latin, is one of the
most widely used herbs around the world. Root and rhizome from dried licorice are one
of the world’s oldest and most widely used herbal remedies. It is said that 9/10 TCM
formulations contain licorice according to classical TCM theory. Due to its sweet taste (up
to 150 times sweeter than sugar [1]), it is used as candy, a flavoring agent in cooking, and
in tobacco. Licorice belongs to the genus Glycyrrhiza, family “Leguminosae/Fabaceae”,
containing 29 species and 6 variations worldwide. Three of them are legitimately verified
TCM plants, namely Glycyrrhiza uralensis Fisch, G. glabra Licorice, and G. inflata Batalin, and
they are prescribed as licorice (Hereinafter referred to as ural licorice, glabra licorice, and
inflata licorice) [2–4].

Licorice is a small shrub with oval leaflets, white or purplish flower clusters, flat
pods, a main taproot, and several runners, and it is mostly growing in arid and semi-arid
desert grassland, desert edge, and loess hilly areas. Ethnopharmacological studies have
demonstrated that licorice can stimulate energy, clear heat, detoxify the body, lubricate
the lungs and relieve congestion, ease spasm, and discomfort, and minimize drug adverse
effects [4–8]. Over 300 distinct chemicals are found in licorice, some of which have antibac-
terial, antiviral activities, antitumor, anti-inflammatory, anti-diabetic, and hepatoprotective,
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etc. [9–15]. The main chemical constituents are triterpenoid saponins, flavonoids, alkaloids,
coumarins, polysaccharides, and proteins [4,15,16]. The small molecules in licorice have
been reviewed previously [17–21].

Polysaccharides have also caught researchers’ interest due to their unique properties,
such as non-toxicity and non-specific immune system stimulants [22–24]. Its extraction,
isolation, structural characterization, pharmacological activities, and medicinal applications
have been explored extensively. Data obtained from “China National Knowledge Infrastruc-
ture” https://oversea.cnki.net/index/ (accessed on 20 February 2022) and “PubMed.gov”
https://pubmed.ncbi.nlm.nih.gov/ (accessed on 23 February 2022) with the search term
“Glycyrrhiza polysaccharides” are shown in Figure 1.
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Per our findings, for the first time in 1986, Shi and Yang reported mitogenic activities
of LPs on murine spleen cells proliferation, later in 1989, Chang reported that LPs have
anti-viral properties [25,26] as a result, it has piqued the interest of academicians to investi-
gate more about its extraction, composition, and effectiveness. In terms of pursuing LPs
functions in numerous biochemical processes, structural features and orientation are also
critical aspects. Nevertheless, since 2017, LPs potentials are being investigating in pharma-
ceutical formulations as nanocarrier, formulation modifiers, and biosensor development
due to their good thermodynamic profile.

It is the purpose of this paper to review the LPs extraction processes, their composi-
tions, and related potential activities, which can give an insight into developing advanced
treatments and strategies for product development.

2. Extraction and Purification of Licorice Polysaccharides
2.1. Extraction

The plant cell wall matrix is composed of two major chemicals, i.e., hemicellulose
and pectin, incorporated with a minor number of structural proteins. The matrix polysac-
charides are made up of several polymers that differ depending on the cell type and
plant species. Common methods reported for extracting LPs include solvent extraction,
ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), enzymatic ex-
traction, and supercritical carbon dioxide (SC-CO2). Before starting the extraction process,
4–8 h pretreatment with an organic solvent such as ethylacetate, ethanol, petroleum ether,
or a combination of ethanol and petroleum is used to remove the surface lipids.

The solvent extraction method is the most popular method. LPs are either neutral or
acidic, so they can be extracted by using solvents such as water, ethyl (methyl) alcohol,

https://oversea.cnki.net/index/
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or dilute alkali. Herbal plants are crushed into small pieces and subjected to the solvent
for hours under a certain temperature. This method has the advantages of simplicity and
affordability in cost, but it has drawbacks such as long extraction time, low yields, and high
working temperature.

On the other hand, a comparatively efficient method is the UAE, which is based on the
combination of ultrasonic cavitation, thermal, and mechanical effects. Ultrasonic cavitation
produces a strong physical effect inside the plant cell that breaks the plant cell wall, and
the thermal effect makes the material dispersion. The temperature rises to promote the
dissolution of the active ingredients, and the mechanical effect makes the medium particles
vibrate to strengthen and enhance the diffusion and mass transfer. The UAE method has
the advantages of high efficiency, saving energy, and quick operation. Ultrasonic power,
liquid to material ratio, time, and temperature are common optimization indexes of this
method, as shown in Table 1.

Apart from solvent extraction methods for LPs extraction, MAE is a simple procedure.
It breaks the cell wall, allowing polysaccharides to be extracted quickly. The extraction rate
is high, the operation is straightforward, and the process moves quickly. To achieve good
selectivity, a small amount of solvent is required. Hai used 400 W microwave for 4 min,
and achieved a yield of 3.327%, with material to liquid ratio of 1:30 g/mL. The orthogonal
test based on the single factor test revealed that the order of the components’ effects was
extraction time > microwave power > solid: liquid [27].

Enzymatic extraction has also attracted more attention. It uses enzymes as the catalyst
to destroy plant cell walls and release the active components from the cell under mild
conditions. This method effectively maintains the biological stability and potential of active
substances. The use of enzymes improves the extraction of water-soluble polysaccharides in
a simple and predictable way, but it needs an accurate pH and temperature with a specific
enzyme concentration, otherwise, inactivation of enzymes occurs, and yield reduces. Li
et al., used 2% of cellulase and pectinase for LPs extraction with a material to liquid ratio of
1:20 g/mL and time of 2 h, achieving yields 10.71% and 8.43%, respectively [28].

A newly developed “green separation technology” is SC-CO2 extraction technology. It
has the advantages of non-toxicity, no solvent residue, low-temperature treatment, strong
selectivity, non-flammability, and safety. The main limitation of this technology is high-cost
machinery and operation at >15000 psi. [29,30]. Inflata licorice root under treatment of
37.7 Mpa at temp. 62.6 °C for 1.38 h gave LPs yield of 7.34% [31].

Recently, Yue reported an ultrasonic-assisted deep eutectic solvent method for ex-
tracting LPs and optimized the method using a design of response surface experiment.
The extraction rate was 8.31% with a choline chloride-isopropanol system with 40% water,
material to liquid ratio of 1:50 g/mL, and the applied ultrasonic power was 250 W for 0.5 h
at 39 ◦C [32].

Considering any method from Table 1, the LPs content in extracted solution varies
depending on the extraction time, temperature, and liquid to material ratio, which in turn
depends upon the part of the plant used.

2.2. Removal of Impurities

The veracity of biological activity depends upon components’ purity, which in turn
ensures the quality and safety of the product. After extraction, crude polysaccharides need
to be isolated from impurities such as pigments, protein traces, and or inorganic molecules.
The method to remove impurities includes alcohol precipitation, macroporous adsorption,
sevag method to remove proteins, and preparative chromatography.

Since LPs are insoluble in organic solvents, precipitation with alcohol helps to eliminate
impurities. The optimized conditions for LPs were reported as ethanol concentration of
80%, flocculation time of 12 h, and room temperature [33]. The larger in molecular weight,
the lower alcohol concentration is needed to precipitate the polysaccharide. Therefore,
fractional precipitation with alcohol would produce LPs fractions with different molecular
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weights. This process can reduce the burden in the later gel permeation chromatography
(GPC) step.

Macroporous resins are used to separate and enhance biologically active chemicals
from a variety of natural products. The crude polysaccharide from the leaf often has more
pigments. In the de-pigmentation process, macroporous resins are often reported. The
polysaccharide will not retain on a very hydrophobic frame of macroporous resin. Yijun
has used HPD-722 resin with 50% alcohol to increase the purity of extracted crude LPs
polysaccharides up to 44.01% [34].

The content of protein in crude polysaccharide depends on the part of the plant and
varied with the planting location. Crude LPs have protein in the range of 7~10%, but
Wittschier reported the presence of protein content up to 18% in raw LPs [35]. The sevag
technique (reagent CHCl3/BuOH = 4:1 v/v) is often used to remove protein impurities.
Wei used the sevag method following purification with AB-8 macroporous resin, and
then finally with preparative chromatography, the inflata LPs with a purity of 91% were
achieved [36].

2.3. Purification of LPs

Crude LPs contain polysaccharides of different molecular weights, monosaccharide
compositions, and linkage types. Therefore, a refining procedure is needed. The methods
of purifications and separation for LPs included anion exchange, GPC, microporous resin,
and affinity chromatography. Anion exchange chromatography, especially with diethy-
laminoethyl (DEAE), is the prior choice for purifying LPs. GPC is used next to the DEAE
procedure, to refine and/or desalt the fractions.

LPs from the root of ural licorice were purified with DEAE-52 and followed by
Sephadex G-100 column chromatography, which gave three distinct polysaccharides. Zhang
analyzed the ural licorice from Ningxia (China) has the Mw of 1.0160 × 104, 1.1680 × 104,

and 1.3360 × 104 Da, and the ratios of glucose (Glc) were 23.4%, 14%, and 1.13%, re-
spectively [37]. Wang has analyzed ural licorice from Gansu (China), using ultrasonic-
assisted extraction, and found three polysaccharides of Mw 4.513 × 103, 1.378 × 105, and
2.084 × 105 Da, respectively, with glucose and galactose (Gal) as the main components [38].

To sum up, the methods of extraction and purification of polysaccharides plays a vital
role in end product achievement [39], and some examples are summarized in ta-ble 1 to un-
derstand the gain of monosaccharides proportions in given licorice polysaccharides fraction.

Table 1. Examples of extraction and purification methods.

Method of
Extraction and
Solvent Used

Extraction
Conditions Liquid:

Material (mL/g),
Temp., and Yield

Purification via LPs Purity % Mw Fraction
Name Comments Ref.

Ural licorice
Location

Extracted part

Ningxia,
China, Root Water 9, 1 h, 80 ◦C

DEAE-52 and
Sephadex G-100

column
chromatography

85.23 10160 Da GUPs-1
Highest proportions

of *Glc 23.4, *Gal
25.18 and *Ara 8.32.

[37]
84.16 11680 Da GUPs-2

Protein 6.12%, *Glc
14, *Gal 25.67 and

*Ara17.54

83.24 13360 Da GUPs-3

High protein
association 28.01%,

*Gal 22.04 and *Ara
31.44. this fraction is

arabinogalactan
protein.

Gansu, China
Root

Water
Ultrasound

power 600 W
13, 1.42 h, 70 ◦C,

4.32%

DEAE-52 and
Sephadex G-100

column
chromatography

4.513 × 103 Da GPs1 Mainly consist of
*Glc 56.08, *Gal 23.97

[38]1.378 × 105 Da GPs2 *Glc 66.42, *Gal 19.12
and *Ara 16.6

2.084 × 105 Da GPs3 Mainly consist of *Glc
48.88 and *Gal 19.89
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Table 1. Cont.

Method of
Extraction and
Solvent Used

Extraction
Conditions Liquid:

Material (mL/g),
Temp., and Yield

Purification via LPs Purity % Mw Fraction
Name Comments Ref.

Gansu, China
Root Water 11, 2.33 h, 80 ◦C,

22.31% GP

Surface Response
Method applied

optimized extraction
process. Gives

high yield.

[40]

Xinjiang,
China
Root

Water 15, 2 h, 99 ◦C,
16.41%

DEAE cellulose-32
column

chromatography
and sephadex
G-100 column

GUPII *Glc 5.85, *Gal 3.01 [41]

Xinjiang,
China
Seed

Water 30, 2 h, 90 ◦C, 8.1% GUP
Protein 10.07%, *Man
1.02, *Glc 0.22, *Gal

1.0, *Xyl 0.22,
TH structure.

[42]

Zhenjiang,
China.
Root

Water 20, 3.5 h, 90 ◦C,
5.67%

DEAE-52 column
chromatography

and
SephadexG-200 gel

column
chromatography

98.58 294373 Da GUP1

High proportion of
*Ara 37.83, *Gal 18.96,

*Man 3.32, uronic
acid 12.2%, *GlcUA
17.03, TH structure [43]

98.39 17416 Da GUP2

Highest proportion of
*Glc 213.54, *Ara
15.51, uronic acid

1.66%, no TH
structure

Glabra licorice
Location

Extracted part

Karakalpakstan,
Uzbekistan

Root Water 30, 3 h, 90 90 ◦C

DEAE-Cellulose-52
column and

Sephadex G-100
column

98.49 3.87 × 105 Da GPN *Glc 98.03, protein
1.32%, TH structure [44]

Xinjiang,
China,
Leaf

Water 15, 2 h, 120 ◦C
DEAE-Sepharose
fast flow column
chromatography

87.46 GP1
*Ara 38.7, *Gal 31.7,
*Glc 13.7, *Man 8.1,

and *Rha 7.8 [45]
74.47 GP2
52.59 GP3

Xinjiang,
China,
Seed

Water 30, 2 h, 90 ◦C,
8.45% GGP

Protein 8.73%, *Man
1.22, *Gal 1.0, *Glc
0.24, *Rha 0.22, TH

structure
[42]

Hilden,
Germany

Root
Water 5, [20 h, 8 ◦C] ×3,

2.5%
DEAE Sephacel

column 81 RPS

Protein 18.5%,
*GlcUA 18.8, *Glc
16.2, Gal 14.9, *Ara

11.5, *Man 6.92,
*Rha 6.9

[35]

Inflata licorice
Loca tion

Extracted part

Aksu, Xinjiang
China.
Root

Alkaline
5% NaOH n.m, 2 h, 50 ◦C

DEAE-cellulose
and Sephadex

G-150
93.29 2.89 × 106 Da AGP

Highest proportion of
*Glc 3.05, *Xyl 2.85,

and *Ara 2.33,
TH structure.

[46]

Aksu, Xinjiang Water 3, 2 h, 80 ◦C, 4.315 HPLC and
Sephadex G-200 n.m 1.96 × 106 Da GIBP

This fraction
contained protein

8.14%, *Glc 4.048, TH
structure.

[47]

n.m,
Root Water 10, 6 h, 100 ◦C, 0.21

DEAE Sepharose
Fast Flow and

Sepharose CL-6B
gel filtration

chromatography

94.05 3.3 × 105 Da GIP1 Highest proportion of
*Glc 8.10. [48]

Aksu, Xinjiang
China.
Root

Water 3 h, 100 ◦C

DEAE-52 ion
exchange

chromatographic
column, Sepharose
Cl -6B Agarose gel

column

2 × 106 Da GiP2

Highest proportion of
*Glc 11.7,

homogenous
polysaccharide

[49]

2.1 × 107 Da GiP3 Highest proportion of
*Gal 18, [50]

n.m,
Root Water 21, 1.38 h, 93 ◦C,

10.48

DEAE-52 and
Sephadex G-75

column
chromatography

GPS Optimized method
for extraction [51]
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Table 1. Cont.

Method of
Extraction and
Solvent Used

Extraction
Conditions Liquid:

Material (mL/g),
Temp., and Yield

Purification via LPs Purity % Mw Fraction
Name Comments Ref.

n.m,
Cotyledon

Water,
Ultrasonic

power 80 W
70, 0.5 h, 90 ◦C,

7.72% DEAE-52 and
Sephadex G-75

column
chromatography

92.685

GPS
Each part needs

specific conditions [52]
n.m,

Hypocotyl
Water,

Ultrasonic
power 80 W

40, 0.3 h, 80 ◦C,
7.49% 86.424

Xinjiang
China, seed Water 30, 2 h, 90 ◦C, 7.83 GIP Protein 7.4%, *Man

0.97, TH structure. [42]

n.m: not mentioned. TH: triple helix. * is Highest Proportion of Monosaccharides in Molar Ratio.

It was found that LPs content in the root of inflata licorice was the highest, glabra licorice
was second, and uralensis licorice was the lowest, even after the same cultivation environ-
ment was provided. While the proportion of Man:GalUA:Glc:Gal:Ara was 1.0:6.7:8.0:1.5:2.5,
1.0:0.4:7.7:2.3:1.0, 1.0:6.3:2.2:0.9:1.7, respectively [53–55].

Rozi determined the LPs content in seeds of licorice (Xinjiang, China). All the
three species have xylose, mannose, glucose, galactose in ratio of 0.22:1.20:0.22:1(ural),
0.27:0.97:0.31:1(inflata), 0.22:1.22:0.24:1(glabra) [42].

The effect of season on the accumulation of polysaccharides in ural licorice was also
studied. The polysaccharide content of spring collected was much greater than that of
autumn collected from the two-year-old plant [54].

The bioactive ingredients content of cultured licorice has been found significantly lower
than that of wild licorice [56,57] which can also be speculated for polysaccharides content.

In general, it is challenging to obtain pure polysaccharides by using a single approach;
hence, a combination of procedures is required to accomplish effective LPs separation.
The scope and order of application of each method should be considered. Even after
purification, the LPs are still a group of molecules, like polymers. The purified fractions
may have similar composition, but a different degree of polymerization. It is the reality
for all polysaccharides. The elucidation of the molecular features of polysaccharides
necessitates the development of new methodologies and resources, but unfortunately, there
is no breakthrough in purification technologies in the past 40 years.

3. Characterization of LPs

Natural polysaccharide functions and behaviors are frequently impacted by their
molecular features, which include monosaccharide content, glycosidic bond, configuration,
sequence, molecular weight (Mw), and chain conformation. The structural analysis of car-
bohydrates is generally regarded as one of the most difficult undertakings in glycosciences.

Due to the structural diversity and variability of natural polysaccharides, accessing the
fine structure in all hierarchies is extremely difficult [58]. Glycosidic bonds can form in a
variety of places, resulting in varied connectivities. Additionally, each glycosidic connection
creates a new stereocentre, which can be α- or β-configured [59]. Moreover, in solution
form, glucopyranose exists in the so-called mutarotation equilibrium of both α-anomeric
form (34%) and β–anomeric form (66%), and they are capable of interconversion between
these forms. Nuclear magnetic resonance spectroscopy (NMR) technology has been used
to characterize polysaccharides, including anomeric topologies, sequences, and patterns of
glycosidic connections.

3.1. Primary Structure Analysis with NMR

Anomeric configuration and glycosidic linkage define the biological activities and
predictable interactions of polysaccharides with other molecules. NMR analysis gives a
plethora of information on an entity. However, due to the large molecular structure of
polysaccharides, substantial overlapping of the peaks makes the analysis challenging, par-
ticularly for heteropolysaccharides. Generally, in the 1H-NMR spectra of polysaccharides,
the end-substrate signal appears between 4.5 and 5.6 ppm. The end-matrix is placed com-



Materials 2022, 15, 3654 7 of 23

paratively downfield compared to protons at other places. The accompanying signal peaks
(two couplings) are well separated, corresponding to a single hydrogen doublet. In addi-
tion, the α-anomeric proton resonates further downfield (5.1 ppm) from the β–anomeric
proton (4.5 ppm) making these two anomers distinguishable by 1H-NMR even at low field,
and all other protons in the polysaccharide have peaks at 3.5–4.6 ppm.

13C signals are not generally dependent on the number of atoms that generate each
one, comparable to 1H spectroscopy. As a result, the most essential pieces of evidence
supplied by a carbon spectrum are the number of distinct signals and their chemical
changes. The majority of polysaccharide peaks in the 13C-NMR spectra appear between 50
and 120 ppm. However, substitutions can greatly move the signals downfield, for instance,
7–10 ppm downfield signals appear due to O-alkylation and <3 ppm due to O-acylation.
Anomeric carbons can be found at 90–110 pmm. In contrast to the 1H-NMR spectrum,
the 13C-NMR spectrum has a much wider range of displacement values and few signals
overlap. Figure 2 summarizes the general distribution of carbon and hydrogen chemical
shifts in polysaccharide analysis, based on our experience and reported in the literature.
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Using 13C NMR, Tomoda identified the presence of acidic polysaccharides consisting
of six residues in ural licorice. Signals at δ 178.26 ppm and δ 21.75 ppm indicated the
presence of O-acetyl group and O-methyl at δ 57.04 ppm as carboxylic acid methyl ester [63].
Glycosidic bond in AGP was identified by Zhang, and the resonances of seven anomeric
hydrogens were found in the region of δ 4.5–5.9 ppm confirms the α-type glycoside and
β-type glycoside, and an additional peak at δ 1.20 ppm, using 1H NMR. While 13C NMR
spectra showed seven anomeric carbons resonances in 90–110 ppm, and an additional peak
at 16.68 ppm, the additional peak in both spectra shows the presence of methyl group
of rhamnose [46]. However, the methyl group resonances were found at 1.03 ppm and
1.05 ppm of rhamnose residue. These chemical shift difference in the methyl group is due
to the presence of protein (chemical shifts at 1.1–3.3 ppm) providing a “shielding effect” (σ)
to the protons of methyl groups. The protons of aromatic amino acids were assigned to the
broad peaks at δ 6.8–7.7 ppm. The chemical shifts showed that glabra licorice contained a
large number of arabinogalactans [64]. While spectra of GUPIII showed chemical shifts
at δ 1.12–1.19 ppm, indicated the presence of methyl groups of rhamnose residues, and
δ 2.02 ppm and δ 1.99 ppm were associated with acetyl groups binding at O-2 and O-3
of GalpA, respectively, in 13C NMR spectrum, the chemical shift at 175 ppm showed that
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the α-D-GalpA was partly methyl esterified [65]. Table 2 summarizes LP analysis through
NMR, which would be helpful in future LP NMR analysis.

Table 2. 1H and 13C NMR chemical shift assignments of LPs.

Polysaccharide Conditions Mentioned
in the Literature Anomeric H (ppm) Anomeric C (ppm) Residue Ref.

UA

Ref. standard:
2,2-dimethyl-2-

silapentan-5-sulfonat,
temp. 303 K

100.26 α-D-galactopyranosyluronic acid

[63]
101.21 α-L-rhamnopyranose
105.31 β-D-glucopyranosyluronic acid
105.87 β-D-galactopyranose
110.16 α-L-arabinofuranose
111.94 α-L-arabinofuranose

Gi-A1 60~70 mg + 0.5 mL D2O,
temp.301.1 K

108.25 α-L-Araf-(1→

[66]

107. 5 →5)-α-L-Araf-(1→
100.4 α-D-Glcp-(1→

100.34 →4)-α-D-Glcp-(1→
100.49 →6)-α-D-Glcp-1→, and

→4,6)-α-D-Glcp-(1→
99.37 α-D-Galp- (1→, and→4)

-α-D-Galp-(1→

Gi-A3

5.09 107.1 α-L-Araf-(1→
5.25 108.2 →5)-α-L-Araf-(1→
5.36 100.6 α-D-Galp-(1→

5.4 100.5
→3)-α-D-Galp-(1→,
→6)-α-D-Galp-(1→, and
→3,6)-α-D-Galp-(1→

4.97 99.32 →2,4)-α-L-Rhap-(1→

Gi-B1

5.17 101.1 α-D-GalpA-(1→, and→4)
α-D-GalpA (1→4) α-D-GalpA

5.15 100.2 →4) α-D-GalpA-(1→2)
α-L-Rhap

5.24 99.7 →2-α-L-Rhap-(1→
5.22 99.7 →2,4-α-L-Rhap-(1→
5.11 107.6 α-L-Araf (1→
5.08 108.2 →5)-α-LAraf (1→
4.98 96.7 α-D-Galp-(1→
4.96 96.8 →3) α-D-Galp-(1→

GUPII 40 mg + 0.5 mL D2O,
temp. 333 K, 600 MHz

4.98 107.43 α-L-Araf-(1→

[65]

4.92 107.32 3)-α-L-Rha-(1→
5.21 99.82 3)-α-D-Galp-(1→
5.92 99.62 α-D-Xylp-(1→
4.51 95.62 →4)-α-D-Glcp-(1→

GUPIII 4.98 107.37 α-L-Araf-(1→
4.96 107.31 3)-α-L-Rha-(1→

AGP
30 mg AGP + 0.5 mL

D2O, temp. 298 K,
400 MHz

5.05 107.63 →6)- β-D-Glcp-(1→

[46]

4.59 106.53 →1)- β-D-Glcp
5.11 107.03 →5)-α-L-Araf-(1→
5.36 101.77 →4)-α-D-Xylp-(1→
5.21 98.72 →6)-α-D-Galp(1→
4.94 97.70 →3,6)-α-D-Manp-(1→
5.14 99.76 →3)-α-L-Rhap(1→

GIBP 40 mg + 0.6 mL, 298 K,
400 MHz

5.35 99.82 →4)-α-D-Glc-(1→

[47]

4.91 99.85 →3,6)-α-D-Glc-(1→
5.06 99.14 →2,3,6)-α-D-Glc-(1→
5.20 109.43 →2)-β-L-Ara-(1→
4.59 104.06 α-D-Gal-(1→
4.44 103.09 →3)-α-D-Gal-(1→
5.11 107.04 β-D-Gal-(1→
5.04 107.54 →3)-β-D-Gal-(1→
5.17 92.05 →3)-β-D-Man-(1→
4.58 95.93 →3)-α-D-Man-(1→

GPN 40 mg + 0.6 mL, 298 K,
400 MHz

5.39 100.76 →4)-α-Glcp-(1→

[44]
5.40 100.89 →4)-α-Glcp-(1→
4.97 99.74 → 6, 4)-α-Glcp-(1→
4.80 100.81 →1, 3)-α-Glcp(6→
4.65 96.92 β-Glcp-(1→

Gu-1
5% sample in

deuterated
dimethylsulfoxide,

125.7 MHz

99.29 α-D-galactopyranosyl

[67]
101.74 4-O-β-D-mannopyranosyl
100.98 4,6-Di-O-β-D-mannopyranosyl
93.50 α -D-galactopyranoses
94.90 β-D-mannopyranosyl

NMR resonances may be broad due to the polysaccharide’s high Mw. High tem-
perature and high magnetic fields help to obtain more resolved spectra. Partial hydrol-
ysis or ultrasonication can be used to reduce its weight for better structure elucidation.
Curve deconvolution is frequently used to resolve overlapping signals during the data
manipulation stage.

Apart from NMR, some chemical technologies, such as monosaccharide analysis with
liquid chromatography after hydrolysis and linkage pattern analysis with GC –MS after
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methylation, hydrolysis, acylation, etc., are required for the complete elucidation of LP’s
structure [68,69].

3.2. Secondary Structure Analysis

Secondary structure means that how a polymer looks, the term “conformation” is
used to define this property. Biological molecules’ specific conformation is crucial because
it affects biochemical activities. A biopolymer may be a spherical, coil, rod, single helix,
double helix, or triple helix. Basically, the glycosidic bond, both inter- and intramolecular
H-bonding, is responsible for achieving and maintaining the specific shape of a polysac-
charide. The three-dimensional shape can be achieved in liquid or as a solid, which can
be analyzed by differential scanning calorimetry (DSC), atomic force microscopy (AFM),
x-ray diffraction (XRD), circular dichroism (CD), and Congo red test. Currently, the most
popular analysis technique to identify polysaccharide conformation is Congo red test.

Polysaccharides form complexes with Congo red in the dilute alkaline solution, but
when the concentration of NaOH increases, the maximum absorption wavelength increases
(from λmax 486 nm to longer λmax). Due to the high density of charges supplied along the
strands, the triple helix dissociates, resulting in electrostatic charge repulsion between the
strands that make up the helix, and causing changes in the triple helix structure to double
helix and then random coil or single-chain conformation [70]. The λmax also decreases
then, because Congo dye cannot bind to a random coil, resulting in a graph. Mutaillifu
identified the triple helix (TH) structure of GPN in glabra licorice by the variations in the
λmax of Congo red and GPN complexes with varying NaOH concentrations (0–0.50 mol/L).
The highest UV–Vis absorption wavelength of the sample increased from 486 nm in water
to 493 nm in 0.1 M NaOH solution, indicating the presence of a triple-helical structure in
GPN. Similarly, several research groups also confirmed the presence of the TH structure
of LPs [42,44,46,47]. The significance of the TH structure of LPs will be discussed as a
reference in Section 5 of this paper.

4. Pharmacological Activities

LPs have multiple biological activities, such as immunoregulatory, anticancer, antiox-
idant, antiviral properties, anti-apoptotic, and antidiabetic. LPs are investigated in vivo,
animal feed additives, vaccinations, and veterinary medications at certain doses. The
bioactivities of LPs are discussed in a well-organized paper with details [71]. This review
summarized the data in Table 3 and discussed more details on dose and structure-activity
to understand the mechanism of action on given LPs.

Studies on LPs with low molecular weights have proven that they could be im-
munomodulatory and anticancer compounds. They are non-cytotoxic, suppress tumor
growth, increase immune organ weight and index, activate immune cells and stimulate
secretion of anti-inflammatory cytokines, and inhibit secretion of pro-inflammatory cy-
tokines [71]. These polysaccharides, therefore, have potential use in cancer immunotherapy.

Li et al. have found that in vitro, at a concentration of 2 mg/mL of ural LPs alle-
viated the myotube atrophy induced by the co-culture system of C26 colon cancer cells
and RAW264.7 macrophages via inhibiting the STAT3 signaling pathway [72]. Similarly,
an in vivo study on mice has confirmed ural LP immunomodulatory effect at a dose of
100 mg/mL by increasing the body weight, serum IL-2, CD4+/CD8+, and the activity of
natural killer cells [73].

A study on human hepatocellular carcinoma cells and their mechanism via apoptosis
assay, real-time PCR, and Western blot analysis on imprinting control region mice showed
that at a dose of 1250 µg/mL glabra LPs can suppress tumor growth by influencing the
P53/PI3K/AKT pathway [74].

Acidic homogenous LPs extracted from Inflata, having a higher concentration of
galactose, the backbone consist of 1,4-linked-α-GalpA and 1,2-linked-α-Rhap while side
chains 1,5-linked-α-Araf and α-Galp, which are mainly liked at O-4 of α-Rhaf, showed
immune-enhancing properties [75].
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LPs also show antioxidant activity. It was observed through an increase in glutathione
peroxidase, lactate dehydrogenase, and a decrease in malondialdehyde in lactating pigs by
adding 2.5% ural LPs in their diet [76]. Cheng investigated ural LPs for anti-viral adjuvant
properties and found that 100 mg/kg of Mw 1–2 × 105 Da LPs have a significant effect on
foot and mouth disease (FMD) immunized mice, splenic lymphocytes, the serum IL-2, and
IL-6 levels had significantly improved [77].

Different monosaccharide composition and orientation produce variances in structure
and thus account for the considerable differences in bioactivity. Both α- and β-glycosidic
linkages were found in ural licorice, structural analysis showed that GUP-1 and GUP-2 from
ural licorice have different structural information, but both contained traces of nitrogen, and
Mw 2.94373 × 105 Da and 1.7416 × 104 Da, respectively. The content of glucuronic acid in
GUP-1 and GUP-2 was 12.2% and 1.66%, respectively. GUP-1 has a triple helix structure and
mainly consisted of glucuronic acid, while GUP-2 is composed of glucose, and has a higher
ratio of 1→3 glycosidic bonds. Only GUP-2 had the strongest ability to reduce the blood uric
acid in the acute hyperuricemic rat model [43]. GPs1 from ural licorice (Mw 4.513 × 103 Da)
has a flaky pore structure and a large number of dispersions. It presents as a small amount
of smaller globular aggregates. It has a powerful scavenging effect on DPPH• and •O2

−

radical, compared to GPs2 (1.378 × 105 Da) and GPs3 (2.084 × 105 Da) [38]. Ural licorice
obtained from Gansu contains a higher proportion of glucose which showed antioxidant
activity, and antibacterial against Escherichia coli and Klebsiella resistant strains [78].

It was concluded that glabra LPs have more antioxidant capabilities than ural LPs [44].
Moreover, high Mw glabra LPs were found to inhibit proliferation of human oral cancer
cells by inducing apoptosis via mitochondrial pathway [48].

Neutral LPs obtained from Inflata having 1,3-linked-α-Galp as a backbone and a higher
ratio of galactose also showed immune activities [50]. GCI from glabra leaf contains a
higher ratio of arabinose having linkage position as →2)Araf -(1→, →6)-Galp-(1→ and
6)-Glap-(1→ showed antioxidant properties [45].

Inflata LPs, of Mw 1.96 × 106 Da can inhibit 64.77% α-glucosidase at 6 mg/mL, and
an antioxidant effect at 3 mg/mL was observed by Pan et al., conducting α-glucosidase
(1 U/mL), DPPH•, •OH, •O2

−, ABTS+• scavenging activity [47].
LPs are biologically active compounds that can be used as antibiotics or as a pre-

ventative medication in the promotion of growth and regulation of human health and
in animal husbandry. It can boost the immune system, inhibit tumor growth, and boost
antioxidant capabilities.

However, the toxicological and antagonistic effects of LPs are lacking. Comparative
studies with other TCM plant polysaccharides need to be evaluated to obtain a firmer
foundation for LPs pharmacological applications in clinical settings.

Table 3. Medicinal properties of licorice polysaccharides and mechanism of action.

Species Experimental Model Mechanism Concentration Ref.

Ural licorice

Acute hyperuricemia was
induced by oral administration of
hypoxanthine and intraperitoneal

injection of potassium oxonate.

In vivo Inhibition of XO. 300 mg/kg [43]

Scavenging •OH, •O2
−, 1,1-

DPPH• on oil.
In vitro Antioxidant. [79]

Mononuclear cells isolated from
cord blood collected under

axenic condition.
In vitro

Immunomodulator effect on
differentiation, maturation,
and immune activity of DC.

400 µg/mL [80]

Growth performance, immune
organ indexes,

immunologic functions.
In vivo

↑Body weight, serum IL-2,
CD4+/CD8+ and the activity

of NK cells.
100 mg/mL [73]

Myotube atrophy model of C2C12
cells based on co-culture system

of C26 colon cancer cellsand
RAW264. 7 macrophages.

In vitro

Down-reg. of
p-STAT3/STAT3 via

inhibiting RAW264. 7
macrophages.

2 mg/mL [72]
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Table 3. Cont.

Species Experimental Model Mechanism Concentration Ref.

Ural licorice

36 COPD cases of
phlegm dampness. In vivo Immune regulation. [81]

Suckling piglets’ diet. In vivo ↑ GPx, ↑ LDH, ↓MDA. 2.5% LPs in diet [76]
Production of TNF-α and the
expression of TNF-α mRNA

using BALB/C mice.
In vivo ↑ TNF-α, ↑ TNF-α mRNA

(antitumor). 200 µg/mL [82]

Rat liver tumor. In vivo ↑ TNF-α. 30 mg/kg [83]

Pentylenetetrazol kindled
epileptic rats. In vivo

Down-reg. of P2 × 7 receptor
and NF-кB protein expression

in hippocampus, ↑MDA,
IL-18, TNF-α.

50 mg/kg [84]

Fresh human blood. In vitro Promote γδ T cells,
↑cytokines secretion. 100 mg/L [85]

Colon microorganism of broilers. In vivo
Proliferation of bifidobacteria
and lactobacillus, inhibition

of Escherichia coli and
Salmonella.

1000 mg/kg [86]

Mouse peritoneal macrophages. In vivo
Expression of iNOS mRNA
and Generation of NO and
iNOS→ ↑Synthesis of NO.

400 µg/mL [87]

Immunized FMD Mouse spleen. In vivo
Indirect activate DNA

polymerase, ↑DNA synthesis,
↑Lymphocytes, IL-2, IL-6.

100 mg/kg
(1–2 × 105 Da)

[77]

In feed, broilers body weight. In vivo ↑IGF-1 gene expression. 900 mg/kg [88]
CT 26 tumor-bearing mice

immune organ indices, immune
cell population, and serum

cytokine levels.

In vivo

Immunomodulator activity
via activation of CD4+ and

CD8+ immune cells,
increasing IL 2, IL 6, IL

7 levels.

500 mg/kg
(under 1 × 104 Da)

[89]

TCDD-induced hepatotoxicity in
Jian carp fish. In vivo

↓ ALT, AST, LDH, and AKP; ↑
Alb, CAT, GPx, T-AOC and

SOD; inhibit MDA; enhanced
expression of cytochrome

P4501A (CYP1A), AHR2 and
ARNT2 mRNA.

1 g/kg [90]

Glabra licorice

DPPH•, ABTS+•, and •OH,
scavenging essay. In vitro Antioxidant. 0.186 mg/mL [44]

Citric acid-induced cough efforts
in guinea pigs. In vivo Antitussive action

(immunomodulator). 50 mg/kg [64]

Kunming mice fed high-fat diet. In vivo

↑spleen lymphocytes, ↓serum
IgA, IgG and IgM, ↑SOD,
CAT, GSH-Px, and TAOC,

↓MDA.

100 mg/kg [91]

Human hepatocellular carcinoma
cells and its mechanism via

apoptosis assay, real-time PCR,
and Western blot analysis on

imprinting control region mice.

In vivo
Tumor suppressor through
influencing P53/PI3K/AKT

pathway.
1250 µg/mL [74]

Inflata licorice

DPPH•, •OH, and mouse
splenocyte. In vitro Antioxidant, ↑ proliferation

of splenocytes. 100 µg/mL [92]

Apoptosis of human oral cancer
SCC-25 cell line. In vitro

Down-reg. of Blc-2, up-reg. of
Bax, release of cytochrome c,

activate the initiator caspase-9
and effector caspases-3,

cleaves PARP.

200 µg/mL [48]

α-glucosidase (1 U/mL), DPPH•,
•OH, •O2

−, ABTS•+.
In vitro Inhibition of α-glucosidase

and antioxidant.

64.77% α-glucosidase
inhibits at 6 mg/mL,

antioxidant at
3 mg/mL

[47]

Note: Up-reg.: Up-regulation; Down-reg.: Down-regulation; ↑: increase; ↓: decrease;→: leads to. Abbreviations:
ABTS: 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); AHR2: Aryl hydrocarbon receptor 2; AKP: Alkaline
phosphatase; Alb: Albumin; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ARNT2: Aryl hy-
drocarbon receptor nuclear translocator 2; Blc-2: B-cell lymphoma 2; Bax: Blc-2 Associated X-protein; CD4+/CD8+:
Cluster of differentiation; CAT: Catalase; COPD: Chronic Obstructive Pulmonary Disease; DC: Dentritic cells;
•DPPH: 1,1-diphenyl-2-picrylhydrazyl; FMD: Foot and Mouth Disease; GPx or GSH-Px: Glutathione Peroxidase;
IGF-1: Insulin like Growth Factor-1; Ig A/G/M: Immunoglobulin A/G/M; iNOS: induced Nitric Oxide synthase;
IL: Interleukins; LDH: Lactate dehydrogenase; MDA: Malondialdehyde; NF-кB: Nuclear Factor-kappa-B cell; NK:
Natural killer; PI3K/AKT: Phosphatidylinositol 3-kinase; PARP: poly(ADP-ribose) polymerase; p-STAT3/STAT3:
phosphorylated-Signal Transducer and Activator of Transcription 3; SOD: Superoxide dismutase; TNF-α: Tumor
Necrosis Factor-alpha; γδ T: Gamma delta T cells; TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin; T-AOC: Total
antioxidant capacity; XO: Xanthine oxidase.
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5. Uses of LPs as Biopolymer

Polysaccharides are abundantly found in nature. From the perspectives of structure,
thermodynamics, and postulated biological values, the molecular genesis of polysaccharide
functions are examined. Their low-cost manufacturing, bioactivity, non-toxicity, biocompat-
ibility, biodegradability, and water-solubility properties make them the most appealing and
prospective biomaterials and nanocarriers. Nevertheless, polysaccharides feature a large
number of reactive functional groups on their backbone, i.e., -OH, -COOH, NH2, which
can be easily derivable and contribute to their structural and functional diversity. This is
evidenced by their widespread use as excipients in traditional pharmaceutical formulations
as well as in other clinical settings.

5.1. Triple Helix Structure and Thermodynamics of LPs

LPs from roots and seeds are found to have a triple-helical (TH) structure (as shown
in Figure 3), which is particularly intriguing because of its proclivity for forming higher
complex structures. The helical configuration allows for the effective packing of molecules
and consequently significant energy storage capacities. In addition to this, the TH struc-
ture polysaccharides proved far more strength and stability apart from their role as anti-
cancerous and anti-tumorous effect and these activities still depend on the ratio between
mass and the number of branches in the triple helix polysaccharides.

The presence of protein in crude polysaccharides enhances the properties through
“associative interaction” because they interact both via physical (hydrogen bonding, elec-
trostatic or van der Waals) bonding as well as chemical bonding (polar, non-polar, ionic) in
a system. Such entities have a wide application in pharmaceutical-based formulations and
food product development. Additionally, they are considered, “Generally Recognized as
Safe” (GRAS) [42,44,47,93–95].

The thermodynamic properties of a polymer are an important factor for its incorpo-
ration with other materials as these properties enable them to interact with additional
supramolecular interaction by chemical modification or copolymerization. In the context
of the solvent media, one must additionally consider enthalpic and entropic modifications.
Functional polymers that are responsive to various external stimuli, such as physical,
chemical, and biological signals, are a promising study topic [96].

Wang extracted acidic polysaccharides from ural licorice and examine their thermo-
dynamic properties. They found that ultrasonic-assisted, water extracted LPs have 3.68%
protein, 2.94% sulfated radicals, and a uronic acid content of 35.71%. LPs were branched,
without starch and non-reducing sugars. The LPs could dissolve in both hot and cold
water but were unable in organic solvents. Their thermodynamic data shows that LPs are
non-Newtonian fluids, which means that the viscosity varies with shear stress. At a power
of 4.585 mW/mg, the melting point of GP was raised from 501.2 to 509.9 ◦C, followed by
heat release, and the enthalpy change of the exothermic reaction was 11.989 kJ/g, such
properties are presented by complex polymers, and they have good thermal stability [97].
However, no uronic acid was detected in purified GPN from the glabra licorice but had a
starch content of 4.56%, protein of 1.32%, and total sugar of 98.49% [44].

Pectic polysaccharides are widely used in food processing, ural and inflata licorice
have active pieces of pectic polysaccharides, having neutral glycosyl side chains, uronic
acid unit, and rhamnogalacturonan core were all implicated in the expression of biological
activity as well [66,98].

Galactomannans are well-known biopolymers, and high Mw galactomannans are
desirable as emulsifiers, stabilizers, thickeners, and sorbents for heavy metal ions in a
variety of industries [99]. The results of a study showed that the seeds of ural licorice contain
galactomannan, whose major backbone is comprised of (1→4) bound β-D-mannopyranose
residues substituted at C-6 with single α-D-galactopyranose residues. Freshly matured
seeds have a polymer with a fine structure having high viscosity [η] 1193.1 mg/g and
higher Mw 1.379 × 106 Da, higher (55.9%) proportion of disubstituted (Gal) Man–Man
(Gal) unit, and a significantly smaller fraction of monosubstituted (Gal)Man–Man and



Materials 2022, 15, 3654 13 of 23

Man–Man (Gal) units (18.4%). Overwintered seed galactomannan has a relatively lower
viscosity, lower Mw 8.77 × 105 Da, and a larger proportion (32.5%) of monosubstituted
units [67].

Below are some of the recent advancements in the use of LPs, which can be attributed
to their TH structure, associated thermal stability, and inherent bioactivity. Their methods
of preparations are illustrated in Figure 4 and corresponding results are shown in Figure 5.
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5.2. Selenium Modification

Selenium (Se) is a trace mineral that is vital to human health. It modulates the expres-
sion of at least 30 seleno-proteins in the human body, such as iodothyronine deiodinases,
glutathione peroxidases, and thioredoxin reductases. These selenoenzymes can regulate
physiological functions in the human body by serving as preventing cancer, antioxidants,
enhancement of sperm production and quality, regulating thyroid hormone metabolism,
and immune system function.

Natural selenium polysaccharides from plants, mushrooms, and bacteria have already
been isolated. However, they are not commonly found in nature and the Se content is
also insufficient. Synthetic selenium polysaccharides and selenium nanoparticles coated
with polysaccharides have been made using several methods in recent research [100]. Lian
formulated selenized ural licorice polysaccharide (Se-GUP) using the nitric acid-sodium
selenite method. The analysis through FT-IR showed that it exists in O-Se-O form. The
resulted Se-GUP has reduced Mw but having 1.33 mg/g selenium, particle size reduced by
49.5% and zeta potential value was −33.8 mV. These properties contribute to formulation
dispersion and intestinal absorption, but they might cause thermal instability. Se-GUP has
been shown in studies to offer a number of great biological features for usage as medicine
or adjuvant [101].

Zhu formulated Se-GUP and studied its anti-inflammatory activity and immunoreg-
ulatory effects. Inflammation-induced mice were treated with low, medium, and high
doses of Se-GUP and GUP for 10 days. The results showed that each dose of Se-GUP
could significantly inhibit the auricle swelling induced by xylene, at 300 mg/kg dose it
significantly reduced the increase in capillary permeability induced by acetic acid and
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inhibited the inflammatory cytokine TNF-α and IL-1 β at 200 mg/kg dose, relative to
GUP alone. However, in vitro and in vivo, the formulated Se-GUP comparatively showed
greater antioxidant activity [102].

Teng investigated the activity of Se-GUP for acute liver injury, induced by CCl4 in
Kunming mice, the results showed that it has a hepatoprotective effect via scavenging free
radicals [103].

The enhanced bacteriostatic effect was observed in vitro on resistant strains of S.aureus
and E.coli, providing a certain additive effect of Ceftiofur sodium or Kanamycin in combi-
nation with Se-GUP. The immunization test in vivo, after 7 days of treatment with Se-GUP
showed an increase in the content of IgG, IL-1, and IL-2 in the serum of mice to varying
degrees, the medium (200 mg/kg) and high (300 mg/kg) dose groups of Se-GUP have a
significant immune regulation effect [104].

5.3. Microencapsulation

Microencapsulation is the process of isolating an active substance from its surround-
ings by encapsulating it in a capsule with a diameter varying from 3–800µm. The substance
then escapes through the capsule wall in a variety of ways, such as breakage, dissolution,
melting, or dispersion. In the manufacture of wound healing materials, tissue engineering
materials such as alginate, cellulose, hyaluronic acid, chitin, and chitosan have been widely
used. As the description of tissue engineering material, soluble LPs and chitosan exerted
strong antibacterial effects, showing that the LPs/alginate gel was suitable to be used as a
wound dressing.

By microencapsulating of cross-linking sodium alginate, a calcium chloride-LPs com-
plex was generated as a new biomedical material. The entrapment rate of 59.92% was
achieved, by the combination of 2% sodium alginate, 0.3% chitosan, 3% calcium chloride,
and 0.6 g/mL of ural LPs. The physical properties of LP-based microcapsules showed adhe-
siveness, hardness, and elasticity were 0.0372 ± 0.00599, 2.0 ± 0.157, and 0.18 ± 0.000258,
respectively. The weight loss occurred at 65% at 109.7 ◦C and decomposition at 150 ◦C and
550 ◦C which is attributive to the condensation of the system. The swelling rate reached
equilibrium in 36 min, could absorb water, and peeled off, having a 16-day in vitro degra-
dation rate; indicating a good capability of satisfying the microcapsules formulation. The
wound healing property was assessed using a rat model. The results showed that it can
remarkably activate the expression of p-STAT3 and VEGF proteins, the transcription of
VEGF mRNA and miRNA-21 genes, and microvessels in wounds increased and hence
promoted healing [40].

5.4. Nanocomposites

Nanocomposites are hybrid materials made at the nanometric scale (<100 nm) by
combining polymers with inorganic solids. Because of their small size and high surface-to-
volume ratio, nanocomposites have chemical and physical properties that distinguish them
from their bulk counterparts.

Silver nanoparticles (AgNPs) are frequently reported as antibacterial material. Most of
the formulated AgNPs rely on using certain reducing agents and polymers for cross-linking.
Reducing agents such as hydrazine or borohydride are toxic, leading researchers to look
for an alternative to toxic chemicals. In the creation of soft nanomaterials, polysaccharides
are a green alternative to synthetic polymers. Cai prepared nanocomposite (20–50 nm)
with acidic polysaccharides from glabra licorice incorporated Ag and integrated into a
biopolymeric film of curdlan, which showed high wetting property and maintenance of its
shape after 16 h in PBS, and had a clear antibacterial effect, providing an attractive template
for the development of novel antibacterial biomaterials. The incorporated LPs acts both as
reducing agent as well as stabilizing agent [82,105].
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5.5. Hydrogel

Hydrogels are hydrophilic polymeric networks that are held together by a range of
physiological or chemical crosslinks in three dimensions. Its attractive properties are low
stiffness and water retaining capability. Polysaccharides have gained a lot of attention
among the many polymers that can be used to generate hydrogels. LPs were mixed with
chitosan and crosslinked with genipin. The results showed that swelling ratios ranged from
986% to 1677%, with stiffness values ranging from 777% to 1792% Pa. The inclusion of LPs
lowered the mechanical strength of the hydrogel and slowed their gelation and breakdown.
Hydrogel made from 1% genipin, 3% chitosan, and 4% LPs were found to have the best
bactericidal and fibroblast reproduction boosting properties. It showed good swelling and
disintegration rate over time and was more suited to effective recovery of chronic wound
infection. These findings suggest a new approach for improving the antibacterial property
and cytocompatibility of chitosan hydrogels containing water-soluble active LPs [106].

5.6. LPs Liposomes

One of the popular nano-drug delivery systems is “Liposomes”. Nanoliposomes are
nanometric cargos with a diameter of less than 200 nm and a larger surface area than
normal liposomes. They are spherical-shaped one- or two-layer structures. The inside
cavity is made up of hydrophilic molecules aimed at water suspension and the bilayer
membrane has lipophilic ends made up of phospholipids. Furthermore, on the basis of
the lipid bilayer, liposomes are divided into two major groups. Liposomes with a single
lipid bilayer are referred to as unilamellar, whereas those with two or more are referred to
as multilamellar.

LPs from ural licorice were explored in unilamellar liposome formulation for the first
time, by Wu, using the reverse phase evaporation method. The optimized ratio of soybean
phosphatide to LPs was 24:1, temp. 46 ◦C and ultrasound time 16 min. The achieved
liposome was spherical, uniform in size 136.4 nm, and had an entrapment efficiency of
78.33 ± 0.25%. In vivo, high and medium doses of liposome could significantly enhance
the maturation and proliferation of bone marrow-derived dendritic cells in chicken which
in turn stimulated T-cells and cytokines IL-2, IFN-γ, and IL-10 secretion. The results
showed that liposomes improved immune-enhancing activity compared to LPs alone [107].
LP liposomes can be further decorated with imaging probes, ligands, or drugs/protein
entrapment to widen their applications.

5.7. Nanofibers

Particles having a size range from 50–1000 nm are called “Nanofibers”. The incorpora-
tion of bioactive chemicals into polymer scaffolds for steady and prolonged drug release
has emerged as an appealing area of research. The polysaccharides-based nanofibers pro-
duction via electrospinning is difficult but it gives the advantage of high porosity, superb
surface functioning, and the huge surface area needed for environmental applications [108].

Cai designed gum arabic (Ga) stabilized gliadin (Gli) nanoparticles encapsulated tea
tree essential oil (TTO) and loaded them on LPs nanofibers. The addition of gum arabic
to Gli nanoparticles increases their stability and TTO embedding efficiency and ural LPs
increased the release efficiency. The diameter of nanofibers was an average of 407 nm
and showed the novel application of meat preservatives against Salmonella typhimurium.
During the 5 days storage conditions, the use of nanofibers inhibited the bacterial growth
and slowed the lipid oxidation process in pork and chicken meat by 98.52% and 97.86%,
respectively [109]. Such nanofibers have practical applications in the food sector providing
food loss and inhibiting food-borne diseases.

5.8. Biosensor

Biosensors are multifunctional assemblies made up of matrix-bound bioactive com-
pounds that are responsible for specific species recognition and thus perform a biochemical
assay. The main problem with biosensors is that after some time their surface becomes
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electrodeposited with nonspecific protein adsorption and leading to false-negative results.
Polysaccharides are recognized as antifouling compounds and gained popularity in biosen-
sors production. Polysaccharides are non-conductive in nature but doping with conductive
polymer could make them useful in designing an antifouling and sensitive biosensor [110].
Wang developed a low fouling, label-free biosensor based on LPs doping with Poly (3,4-
ethylenedioxythiophene)-AuNPs. This biosensor performance was evaluated by microRNA
detection, which has demonstrated good sensing capabilities with detection limit as low
as 300 fM (range 0.01–10 nM), and high reproducibility, showing great potential in the
biomedical field [111]. These results suggest that LPs in industrial and medical fields have
prospective technical applications.
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Figure 5. Corresponding results LPs-based formulations. (a) LPs based microencapsulation (spec-
ulated diagram) and results A, B, and C obtained from [40], (b) LPs based nanocomposite film
(diagrammatic concept adopted), and the experimental results obtained from [105], (c) LPs based
hydrogel (speculated diagram) and result obtained from [106] (d) LPs based Liposome (speculated
diagram), and experimental result obtained from [107], (e) LPs based electrospun nanofiber (specu-
lated diagram), and experimental result obtained from [109], (f) LPs based biosensor (diagrammatic
concept adopted), and results obtained from [111]; TH; diagrammatic concept of triple helix structure
of LPs.

5.9. Vaccine Adjuvant

In populations that do not respond well to vaccination, adjuvant material is needed
to add to the vaccine to boost the immunogenicity of antigens, elicit stronger immune
responses, and lower vaccine dosage and production costs [112]. LPs have various phar-
macological activities as we have discussed in Section 4. The presence of α-1,4 and α-
1,6-linkage [113,114] in polysaccharides can help to enhance the body’s natural immune
system as well as stimulate antigen-specific immunity. The linkage type of 1,4 glucopyra-
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nose residue was the predominant (77.6%) linkage type in glabra LPs [44]. Therefore, it has
the potential to be used as adjuvant material for a vaccine. To identify the capability of
ural LPs as immune boosters against Newcastle disease virus (NDV), Wu has showed that
administration of LPs in a vaccinated chicken group could boost their immune response
compared to the only vaccinated group [115]. Although this study did only oral adminis-
tration of LPs which increased the response against the virus, it also gives a clue that LPs
can be used as vaccine adjuvant in future formulations. TCM polysaccharides’ potential as
vaccine adjuvant is well discussed by [116].

6. Conclusions and Perspective

This review summarized the extraction and purification, characterization, pharma-
cological activities, and formulation applications of licorice polysaccharides. The genus
Glycyrrhiza has 29 species and 6 variations but only Glycyrrhiza uralensis Fisch, G. glabra
Licorice, and G. inflata Batalin, collectively called licorice, are the most medicinally used and
scientifically explored species. They are proven rich in many chemically active components
and considered superior to the other species for the corresponding bioactivities.

LPs from the root contain large proportions of glucose, galactose, and arabinose, while
leaf and seeds have higher proportions of arabinose, galactose, mannose, and rhamnose
along with protein association. The polysaccharides composition of LPs is influenced by
physical conditions such as geographic location, growth years, and processing, as well as by
extraction and purification methods. The extraction method affects the monosaccharides’
composition, molecular weight, and structures of polysaccharides. Among different extrac-
tion methods, ultrasonic-assisted extraction is a cheap and fast method for LPs extraction.
However, it must be noted that the triple helix structure of LPs might be destroyed if extrac-
tion occurs at high power. The triple helix structure of LPs is vital to performing its function
in formulations. Then, solvent extraction is preferable with optimized temperature.

Considering structural and conformational studies, both primary and secondary
structures of LPs are important to evaluate their performance for the intended use. The
structure elucidation needs purified fractions and sophisticated techniques such as NMR
and GC-MS. Therefore, few reports investigated the structures of LPs from root, leaf, and
seed. LPs from root and seed are reported to have TH structure but an exploration of the
leaf is still pending. Both seed and leaf are reported to have high Mw LPs. High Mw LPs
are serviceable for food and medicines formulations. Certainly, it is necessary to explore
more about composition and structure to obtain benefits from licorice.

LPs have potential as therapeutic agents for treating a wide range of malignant dis-
orders, through significant pathways and at certain doses. Antioxidants and immune
regulation are the most reported bioactivities of LPs.

Presently, biomaterial is a hot topic in both medical and industrial fields. LPs are
hydrophilic in nature, containing an abundance of -OH and -COOH groups. They are
biocompatible and biodegradable, and thus deemed eco-friendly biomaterial. The funda-
mental disadvantage of LPs could be the inherent property of non-specific recognition and
adsorption with plasma proteins, which might lead to selective reticuloendothelial system
absorption, and hence reduced bioavailability. However, on the other hand, they have the
potential to allow chemical or enzymatic derivatization, providing opportunities to modify
and customize for the intended use. Especially, they can be tailored to create a variety
of unique bio-nanostructures, as well as used as nanocarriers. Hence, conjugating LPs in
pharmaceutical formulations could avoid facing the last-minute ditch challenges. Most of
the extracted LPs fractions fall in the ideal Mw (2 × 104 to 2 × 105 Da [117]) of a polymer
for formulations, and vaccine adjuvants [118]. LPs-based nanocarriers provide efficiency
to the end products which in turn increases the bioavailability. Another advantage of LPs
as nanocarriers is that the preparation under an aqueous environment is favorable for
the stability of most drugs, especially protein encapsulation, and reduces the deactivation
and toxicity.
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LPs’ role in these formulations can give rise to a new horizon of producing more
“Biosimilar” products and a green alternative to synthetic polymers in the future.
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