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In the era of “Bad Bugs, No Drugs,” optimizing antibiotic therapy against multi-drug
resistant (MDR) pathogens is crucial. Mathematical modelling has been employed to
further optimize dosing regimens. These models include mechanism-based PK/PD
models, systems-based models, quantitative systems pharmacology (QSP) and
population PK models. Quantitative systems pharmacology has significant potential in
precision antimicrobial chemotherapy in the clinic. Population PK models have been
employed in model-informed precision dosing (MIPD). Several antibiotics require close
monitoring and dose adjustments in order to ensure optimal outcomes in patients with
infectious diseases. Success or failure of antibiotic therapy is dependent on the patient,
antibiotic and bacterium. For some drugs, treatment responses vary greatly between
individuals due to genotype and disease characteristics. Thus, for these drugs, tailored
dosing is required for successful therapy. With antibiotics, inappropriate dosing such as
insufficient dosing may put patients at risk of therapeutic failure which could lead to
mortality. Conversely, doses that are too high could lead to toxicities. Hence, precision
dosing which customizes doses to individual patients is crucial for antibiotics especially
those with a narrow therapeutic index. In this review, we discuss the various strategies in
optimizing antimicrobial therapy to address the challenges in themanagement of infectious
diseases and delivering personalized therapy.

Keywords: antimicrobial therapy, pharmacokinetic/pharmacodynamic (PK/PD), mechanism-based PK/PD models,
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INTRODUCTION

Antibiotics have been regarded as one of the most instrumental advances in modern healthcare from
the beginning of their discovery until the present day in controlling infectious diseases that were the
leading causes of humanmorbidity and mortality. However, despite their indispensable contribution
to global healthcare, their equilibrium in the arms race against microorganisms is fragile.
Inappropriate and overuse of antibiotics lead to the emergence and spread of antibiotic-resistant
bacteria in the community, which significantly threaten human health and the global economy. In
2019 theWorld Health Organization (WHO), reported that antimicrobial resistance (AMR) is one of
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the top 10 global public health threats facing humanity. The
acceleration of antibiotic resistance is one of the most alarming
consequences of antibiotic overuse. According to a recent study,
50% of all the antibiotics prescribed for people are not needed or
are not optimally effective as prescribed in US hospitals (Magill
et al., 2021).

AMR occurs naturally over time, usually through genetic
changes, and antibiotics are becoming increasingly ineffective
as drug resistance spreads globally, making it more difficult to
treat infections and death. At the heart of this problem is the
dearth of antimicrobial drugs development in the clinical
pipeline. In 2019, WHO identified 32 antibiotics in clinical
development that address the WHO list of priority pathogens,
of which only six were classified as innovative. The findings
clearly highlight the pressing need for greater innovation and
investment in developing new antimicrobials for efficient control
and management of infectious diseases.

Presently, the progress in the development of antimicrobials is
driven by the modification of existing classes of antimicrobials
rather than by the discovery of new antimicrobial classes
(Aminov, 2017). Thus, hindering the discovery of new classes
of antimicrobials for decades. However, acknowledging the battle
against rapidly emerging bacterial resistance is a relentless clinical
problem and cannot be solved once and for all; we can no longer
rely entirely on discovering new antibiotics. Instead,
implementing better strategies for the use of older and readily
available antibiotics would be worthwhile pursuing to handle the
problem as efficiently and safely as possible. These strategies
should be formulated based on how antimicrobial resistance
develops and on identifying critical checkpoints where
preventive measures could be imposed to stop or at least
hamper the process (Chernov et al., 2019).

One of the strategies to contain the rapid expansion of
resistance could be to emphasize the reengineering and
optimization of existing antimicrobials since the new
antimicrobial drug development has been largely focused on
extensive modifications of existing natural drugs. For example,
due to toxicity concerns, antibiotics such as chloramphenicol
which may cause neurotoxicity, and haematological disorders
have had derivatives developed, including florfenicol and
thiamphenicol, which exhibit less toxicity (Dinos et al., 2016).
However, to date, florfenicol and thiamphenicol have only been
used in animals (Shin et al., 2005; Wei et al., 2016). Promisingly,
the application of pharmacokinetic and pharmacodynamics (PK/
PD) strategies may allow more therapeutically effective use of
some existing antibiotics. Antimicrobials that have previously
been shelved due to toxicity concerns, such as daptomycin and
colistin, are now being used to treat life-threatening infections,
highlighting the importance of PK/PD data in the optimal use of
old antimicrobials (Ortwine et al., 2015). Another strategy worthy
of consideration is combining antibiotics with non-antimicrobial
compounds that display synergistic effects to extend the useful life
of some older antibiotics (Ejim et al., 2011). Mechanism-based
PK/PD models have also been developed to further investigate
and inform optimal dosing regimens. Moreover, the use of omics
technologies could substantially contribute to the discovery/
development of these compounds and identify novel targets.

The advances in transcriptomics, proteomics, and
metabolomics permit the profiling of bacteria during
antimicrobial exposure and have revealed the involvement of
many pathways in antimicrobial response and resistance (Pulido
et al., 2016). This has led to the emergence of quantitative systems
pharmacology (QSP) and model-informed precision dosing
(MIPD).

Herein in this review, we discuss the various strategies for
optimizing antimicrobial therapy to address the challenges in the
management of infectious diseases and delivering personalized
therapy.

PK/PD CONSIDERATIONS WHEN
OPTIMIZING ANTIBIOTIC DOSING

In addition to the appropriateness of antimicrobial agent
selection (both mono- and combination therapies), optimal
antimicrobial dosing is another key factor for therapeutic
success in managing infectious diseases, while minimizing the
toxicity and preventing the emergence of antimicrobial resistance
(Figure 1). Suboptimal antimicrobial dosing has been associated
with poorer clinical outcomes, in terms of clinical cure rate and
mortality (Roberts et al., 2014; Appaneal et al., 2021). This is
attributed to inadequate drug exposure in achieving PK/PD
targets in individual patients (Hoo et al., 2017). This issue is
closely related to the physiological changes of patients, which are
commonly observed in critically ill, comorbidities, elderly and
obese patients (Pai and Bearden, 2007; Chai et al., 2020; Rawson
et al., 2021). Pharmacokinetic variation is well-explained in
critically ill patients, who often present with altered
pharmacokinetic parameters. These include fluid shifts due to
capillary leak syndrome leading to an increase in the volume of
distribution of hydrophilic antimicrobial agents (e.g., beta-
lactams and aminoglycosides) and a decrease in plasma
concentration, hypoalbuminemia causing changes in protein
binding for high protein-bound antimicrobials (e.g., ertapenem
and flucloxacillin) and organ dysfunction that reduces or
increases the drug clearance through renal and hepatic systems
and therefore leading to pharmacokinetic variability (Cai et al.,
2012; Chai et al., 2020; Rawson et al., 2021).

Besides inter-individual variability, antimicrobial dosing is
also affected by two other factors: antimicrobial and
microorganism factors. Antibiotics available vary in
physicochemical and pharmacokinetic properties, including
solubility, the volume of distribution, protein binding and
drug clearance (Hoo et al., 2017). These properties must be
taken into consideration to estimate the antimicrobial
disposition in the body. To understand the application of
antimicrobial dosing to efficacy, the pharmacology of
antimicrobial agents in terms of pharmacokinetic and
pharmacodynamic profiles need to be integrated (Table 1).
Antimicrobial dosing is conventionally prescribed using a
fixed-dose based on a one-size-fits-all approach, where
pharmacokinetics and pharmacodynamic variabilities are not
taken into account and the antimicrobial dosing regimen is
chosen according to the drug exposure and pharmacokinetic
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data from the general population (Tuntland et al., 2014).
Together with the pharmacokinetic and pharmacodynamic
variabilities driven by patients, determining optimal dosing of
antimicrobial agents for individual patients is challenging.

Unfortunately, antimicrobial dosing is further complicated by
the susceptibility of the pathogen to the antimicrobial agent,
which is determined by measuring the minimum inhibitory
concentration (MIC) of the antimicrobial agent in inhibiting
microbial growth. MIC is the major indicator of antimicrobial
effectiveness (Kowalska-Krochmal and Dudek-Wicher 2021). It
is the denominator in the PK/PD index, which describes the
quantitative relationship between the given dose and the bacterial
killing effect in terms of rate and extent of killing (Hoo et al.,
2017). European Committee on Antimicrobial Susceptibility
Testing (EUCAST) and Clinical and Laboratory Standards
Institute (CLSI) classified the susceptibility breakpoints that
are useful for dose optimization depending on MIC values,
which is vital when local laboratory antibiograms are not

available (Clinical & Laboratory Standards Institute, 2022;
European Committee on Antimicrobial Susceptibility Testing,
2022). The accuracy in MIC determination is subjected to a few
factors, such as variation in a laboratory (intra-laboratory
variability) and variation in determination method (intra-
sample variability) (Mouton et al., 2018; Kowalska-Krochmal
and Dudek-Wicher 2021). On the other hand, several studies
reported that pathogens isolated from critically ill patients were
less susceptible to antimicrobial agents with the presence of
higher MIC values (Kiratisin et al., 2012; Leblebicioglu et al.,
2012; Valenza et al., 2012; Pérez-Pitarch et al., 2018). This
indicates that higher antimicrobial dosing is needed to achieve
the PK/PD targets for better clinical outcomes.

In order to achieve optimal antimicrobial dosing, several
approaches are implemented in the clinical practice settings or
under the experimental phase to provide individualized dosing
and address some degree of variabilities. These include dosing
nomograms, therapeutic drug monitoring (TDM), dosing

FIGURE 1 | Antimicrobial pharmacokinetic-pharmacodynamic is affected by three main factors: patient, antimicrobial and microorganism factors. Several
approaches are implemented in the clinical practice settings or under the experimental phase to provide individualized dosing and address some degree of variabilities.
AUC: area under the curve; MIC: minimum inhibitory concentration; Cmax: maximum concentration; fT > MIC: Time that free serum concentration above minimum
inhibitory concentration; Cmax:MIC: ratio of maximum concentration to minimum inhibitory concentration; AUC:MIC: ratio of area under the concentration-curve to
minimum inhibitory concentration.

TABLE 1 | Pharmacokinetic characteristics of commonly used antibiotics with their pattern of killing and pharmacokinetic/pharmacodynamic target.

Antibiotic Pharmacokinetic properties (Hoo et al., 2017) Pattern of antimicrobial
activity

PK/PD index (Kowalska-Krochmal
& Dudek-Wicher 2021;
Rawson et al., 2021)

Solubility Vd
a Protein binding CL

Beta-lactams Hydrophilic Low Low to moderateb Renal Time-dependent fT > MIC
Vancomycin Hydrophilic Low Moderate Renal Time- and concentration dependent AUC:MIC
Fluoroquinolones Lipophilic Moderate Low to moderate Hepatic and renal Concentration-dependent Cmax:MIC

AUC:MIC
Aminoglycosides Hydrophilic Low Low Renal Concentration-dependent Cmax:MIC

aLow Vd: 0.1–0.4 L/kg, moderate Vd: 0.6–5 L/kg.
bExceptions: Cefazolin (75%–85%), ceftriaxone (85%–95%), ertapenem (85%–95%), flucloxacillin (95%), dicloxacillin (97%), oxacillin (94%). Vd, volume of distribution; CL, clearance; fT >
MIC, time that free serum concentration above minimum inhibitory concentration; Cmax:MIC, ratio of maximum concentration to minimum inhibitory concentration; AUC:MIC, ratio of area
under the concentration-curve to minimum inhibitory concentration.
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software and other novel technology-based approaches, such as
real-time drug monitoring using biosensors, closed-loop
controlled systems, artificial intelligence and machine learning
assisted systems (He et al., 2021; Rawson et al., 2021). These
technology-based approaches have several barriers to applying in
clinical practice including inadequate investigation on their
applications, the issue of data integration with patient medical
records (Rawson et al., 2021). Thus, advanced strategies that can
offer rapid and precise antimicrobial dosing adjustments are
needed to optimize the antimicrobial dosing. TDM and
model-informed precision dosing (MIPD), which is an
emerging approach, are further addressed in the sections below.

PHARMACOLOGY AND
MECHANISM-BASED PK/PD MODELS

It is well known that bacteria behave differently in vitro and in
vivo. As such, in antibiotic discovery and development, PK/PD
studies are imperative to provide substantial insight into the
therapeutic potential of lead compounds at the early discovery
stage and assist in the establishment of optimal dosage regimens
(de Araujo et al., 2011; Velkov et al., 2013). As Schmidt et al.
(2008) described, ideal treatment optimization requires
information on the mechanisms involved in the effect of the
antibiotics (pharmacodynamics, PD) and the evolution of the
antibiotic concentration in the patients (pharmacokinetics, PK).

PK is a central part of clinical pharmacology and
pharmacometrics. It describes the relationship between drug
dosing and the drug concentration-time profile in the body.
Whilst PD describes the relationship between the
concentration of an antibiotic and its ability to inhibit the
growth of microorganisms. The major pharmacodynamic
parameter is the drug’s minimum inhibitory concentration
(MIC) against the infecting pathogen. Despite MIC’s well-
established susceptibility parameter, which has been
paramount to understanding antimicrobial dosing, it is a
crude and mono-dimensional threshold value. The value can
show high variability and does not provide information on the
time course of antimicrobial activity or growth inhibition due to
antibiotic exposure (Craig, 2003). In comparison, the evaluation
of growth and kill profiles over time (time-kill curves) offer a
more robust approach.

PK/PD models link the dose/concentration relationship (PK)
and concentration/effect relationship (PD), thereby facilitating
the description and prediction of the clinically relevant
relationship between time and drug effects (Schmidt et al.,
2008). The PK/PD approach implies the use of in vitro, ex
vivo, and in vivo models, as well as mathematical models
(Rodríguez-Gascón et al., 2021). Each one exhibits advantages
and disadvantages and may be regarded as complementary. The
mathematical modelling to analyze PK/PD data resulting from
in vitro, ex vivo or in vivo experiments has an important impact
on the development and optimization of antibiotic dosing.

Besides its main application, to optimize dosing strategies to
improve the clinical outcome of antibiotic therapy, the PK/PD
analysis also minimizes side effects and the emergence of

resistances (Asín-Prieto et al., 2015). Furthermore, the PK/PD
indices define the combination of pharmacokinetic and
pharmacodynamic parameters. For instance, the ratio of the
peak concentration of the antimicrobial (Cmax) to the
minimum inhibitory concentrations (MICs) (Cmax/MIC)
(McAleenan et al., 2020).

Three PK/PD indices have been set as the best descriptors of
clinical efficacy and bacterial kill characteristics of the antibiotic
based on the activity pattern of the antibiotic (Table 1). The first
pattern of antimicrobial activity exhibits concentration-
dependent activity and the PK/PD indices preferred are the
ratios of the free-drug maximum concentration (fCmax) to the
MIC (fCmax/MIC) or the area under the free-drug concentration-
time curve, typically over a 24-h period, to the MIC (fAUC24/
MIC). The second is the time-dependent pattern, where the
antibacterial effect is best described by the percentage of time
the free drug concentration remains above the MIC throughout
the dosing interval (fT>MIC). Finally, the best PK/PD ratio for
concentration-dependent with time-dependence antibiotics is
fAUC24/MIC (Jorda and Zeitlinger, 2020; McAleenan et al.,
2020).

Over the last decades, the regulatory agencies recommended
model-based drug development to strengthen scientific evidence
as a basis for making key decisions. However, very few PK/PD
models describe time courses of antibiotic drug effects in animals
and patients. The model-based has its drawbacks as only a few
PK/PD models describe time courses of antibiotic drug effects in
animals and patients. To overcome the drawback, the
mechanism-based model could help predict the time-course of
bacteria growth and kill in patients, based on in vitro and/or in
vivo information compared with more empirical models. Notably
the mechanism-based PK/PDmodel (MBM) are more reliable for
extrapolating different dosing regimens in the presence of
resistant mutants in investigating how resistance selection can
be reduced or overcome (Danhof et al., 2008; Khan et al., 2015).

The MBM includes equations that describe microorganism
growth, the effect of antimicrobial drugs, and changing drug
concentrations (Czock and Keller, 2007). The MBM takes into
account several parameters, including MIC value, at minimum, a
control growth rate constant (Kgrowth) and a killing rate (Kdeath), a
maximum kill rate (Emax) and a potency value such as the half-
maximum effect concentration (EC50) (Nielsen and Friberg,
2013). Moreover, as only limited information on the drug
effect may be needed when the underlying system is
characterized, MBM can be useful for selecting between
candidate drugs. As such, it allows more therapeutically
effective use and has renewed interest in some old antibiotics.
For example, colistin is administered as a last-line therapy for
difficult-to-treat respiratory tract infections via intravenous
administration or inhalation (Lin et al., 2018). However, both
routes fail to achieve adequate exposure owing to poor
penetration into the epithelial lining fluid and a lack of
scientific evaluation with well-designed PK/PD studies,
respectively (Landersdorfer et al., 2017; Yapa et al., 2014).
When an MBM was used, optimal inhalational dosage
regimens of colistin were developed to treat life-threatening
respiratory tract infections caused by Gram-negative superbugs

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9153554

Yow et al. Optimizing Antimicrobial Therapy With Pharmacokinetics/Pharmacodynamics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


in patients (Lin et al., 2018). Nielsen et al. (2007) have previously
developed a mechanism-based in silico model that successfully
described the bacterial growth and killing kinetics for
Streptococcus pyogenes exposed to antibiotics of different
classes. The Nelson model structure provides valuable
information for future studies’ design and the development of
improved dosing regimens. Therefore, the efforts taken to
develop this model are rewarding in the battle against rapidly
emerging bacterial resistance as we can no longer rely entirely on
discovering new antibiotics.

Following established MBMs using parameter estimates
including bacterial growth, bacterial killing and mutation
frequency with the application of relevant software, dosing
regimens of antibiotics can be further optimized via Monte
Carlo simulation in conjunction with human population PK
models. Monte Carlo simulation is a mathematical technique
which can be performed to determine the probability of target
attainment (PTA) under different dosing regimens by utilizing

PK data and PK/PD targets (Llanos-Paez et al., 2017; Trang et al.,
2017). The Monte Carlo simulation combines PK and
microbiological data to predict the therapeutic outcome for
different antimicrobial dosage regimens. Thus acting as an
additional tool that can support antimicrobial dose
optimization and guide empiric therapy. Overall, these in silico
PK/PD models have been essential in optimizing therapy,
including antibiotics dosage regimens (Yadav et al., 2017).

MULTI-OMICS AND METABOLIC
MODELLING

Conventionally, growth inhibition assays in disk-diffusion, well
diffusion, broth or agar dilution can be used for epidemiology,
drug discovery and prediction of therapeutic outcomes (Balouiri
et al., 2016). However, the procedures are laborious and time-
consuming as only a few isolates can be studied at one time, while

TABLE 2 | Examples of microbial studies used omics technologies.

Omics strategies Approach Study objective Drug/ compound Pathogen Reference

Genomics Single-cell
sequencing

Evaluate human microbiota — Microbiota of a healthy oral subject Campbell
et al. (2013)

Genomics Single-cell
sequencing

Identify bacteria that affect disease
susceptibility and severity

— Intestinal microbiome from 11
patients with inflammatory bowel
disease

Palm et al.
(2014)

Genomics and
metagenomics

Single-cell
sequencing +
Shotgun sequencing

Evaluate the genomes of SAR86
marine bacterial lineage

— SAR86 from seawater Dupont et al.
(2012)

Metagenomics Shotgun sequencing Assess health risk of antimicrobial
resistance genes (ARGs)

— 1,921 gut microbiome genomes
from 59 healthy stool donors

Zhang et al.
(2021)

Metagenomics Shotgun sequencing Investigate the rates and targets of
horizontal gene transfer (HGT) across
thousands of bacterial strains

— Samples were collected from 15
human populations spanning a
range of industrialization

Groussin et al.
(2021)

Transcriptomics RNA-Seq Analyze the regulation of adaptive
resistance upon adaptation to
disparate toxins

Ampicillin,
tetracycline,
n-butanol

E. coli Erickson et al.
(2017)

Transcriptomics Microarray Identify molecular mechanism of
Licochalcone A

Licochalcone A
from Glycyrrhiza
inflata

S. aureus Shen et al.
(2015)

Transcriptomics,
metabolomics, lipidomics
and lipid A profiling data

Genome-scale
metabolic modelling

Analyze bacterial metabolic changes
at the systems levels

Polymyxins P. aeruginosa Zhu et al.
(2018)

Proteomics nanoLC-MS/MS Analyze bacterial phosphoproteomic
changes of prokaryotes for drug
resistance

- A. baumannii, H. pylori, K.
pneumoniae, V. vulnificus, A.
platensis, M. taiwanensis, T.
thermophilus, M. mazei, M.
portucalensis

Lai et al.
(2017)

Proteomics MS and 2D-DIGE Identify changes in subproteome Piperacillin/
tazobactam

E. coli dos Santos
et al. (2010)

Proteomics 2DE and iTRAQ Investigate the mechanism of
Plumbagin

Plumbagin B. subtilis Reddy et al.
(2015)

Metabolomics and
proteomics

Computational model Identify the biomarkers to predict
patient outcomes and guide
therapeutic development

- S. aureus Wozniak et al.
(2020)

Metabolomics HPLC with MS identify metabolic changes of
bacteria

Methicillin,
ampicillin,
kanamycin,
norfloxacin

Two isogenic S. aureus strains Schelli et al.
(2017)

Nano LC-MS/MS, nanoscale liquid chromatography coupled to tandem mass spectrometry; MS, mass spectrometry; 2D-DIGE, two-dimensional difference gel electrophoresis; 2DE,
two-dimensional electrophoresis; iTRAQ, isobaric tag for relative and absolute quantification; HPLC, high performance liquid chromatography.
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some methods are highly subjected to the risk of errors in the
preparation of dilutions or determining MIC values (Balouiri
et al., 2016). Recent advances in “omics,” which is an umbrella
term for genomics, transcriptomics, proteomics, lipidomics and
metabolomics, are emerging and provide valuable tools in getting
deeper insights into bacterial physiology and virulence
mechanism of antimicrobial resistance and mechanisms of
potential antimicrobial compounds (Table 2). The schematic
representation of omics workflow is depicted in Figure 2. The
integration of high-throughput multi-omics data can unravel the
relationship between genes and proteins, as well as the interaction
of biological networks in a system-based model (Garcia et al.,
2021). This explains the reason for the growing interest in using
multi-omics analysis in microbiology research.

The advent of genetic sequencing technologies over the past
decade, together with the bioinformatics tools, enable the
decoding of microbial genomes with better taxonomic and
functional annotation of genomic and metagenomic data,
which leads to the identification of novel genes related to
bacterial virulence, resistance and mutations (Roemer & Boone
2013; Scheffler et al., 2013). The incorporation of genomic
technologies into microbiology research provides a large
genomic dataset which is valuable in predicting the metabolic
pathway of microorganisms (Garza and Dutilh, 2015),
identification of promising candidate targets for novel
antimicrobials in drug discovery and development (Santos
et al., 2016), elucidating the antimicrobial resistance
mechanisms via comparative genomic analysis (Chernov et al.,
2019). Single-cell sequencing and metagenomic sequencing are

widely used approaches for investigating microbiome, which
refers to the microorganisms inhabiting a particular
environment (Cheng et al., 2019). Single-cell sequencing
provides high-quality genomic information for microbe strains
with low abundance (which might be missing from metagenomic
sequencing), by isolating individual cells for DNA extraction,
whole-genomic amplification, high-throughput sequencing and
lastly followed by genome assembly and genome analysis (Cheng
et al., 2019). The application of single-cell sequencing in
microbiology research has led to significant findings, including
the discovery of bacteria with novel metabolic features and
alternative genetic code (Campbell et al., 2013), and the
identification of microbial taxa that induce specific disease
(Palm et al., 2014).

However, single-cells genomics represents genomes of
individual cells and may not provide the full genomic
collection within a microbial community or biome. This
shortcoming can be solved with the integration of
metagenomics and single-cell genomics (Cheng et al., 2019).
Metagenomics allows the assembly of basic genomes with
microbial communities by investigating the whole genomes of
all microbes in microbial communities contained within a certain
environment. Antibiotic resistance can be transferred from one
bacterium to another via horizontal gene transfer. A recent report
demonstrated that it occurs at an elevated rate in the gut
microbiome among individuals from industrialized and urban
populations (Groussin et al., 2021). This approach has been
employed to investigate microbial diversity and antibiotic
resistance genes (Dupont et al., 2012; Zhang et al., 2021).

FIGURE 2 | Schematic representation of omics workflow for genomics, transcriptomics, proteomics and metabolomics approaches. Multi-omics data integration
can be used for refining and reconciling modelling predictions to construct computational simulations. RNA-Seq: RNA-sequencing; LC-MS: liquid chromatography-
mass spectrometry; MS: Mass spectrometry; 2DE: two-dimensional electrophoresis; NMR: nuclear magnetic resonance; GC-MS: gas chromatography coupled to
mass spectrometry; UPLC-MS: ultra-high-performance liquid chromatography coupled to mass spectrometry. Created with BioRender.com.
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Integration of single-cell genomics and metagenomics produced
better microbe genome assemblies from microbial communities
(Dupont et al., 2012; Nobu et al., 2015).

Transcriptomics involves large-scale analysis of
transcriptional changes in gene expression levels, which are
produced by the microbes in response to a defined
environmental condition, such as antimicrobial treatment. The
mechanism controlling the activity of antimicrobial agents on
microbial cells involves a complex interaction of multiple
pathways at different levels, such as transcriptional,
translational and post-translational levels (Dwyer et al., 2015;
Erickson et al., 2017). Gene expression analysis, together with
bioinformatics resources, may help in unveiling the mechanism
of antimicrobial action (Shen et al., 2015), metabolic changes of
bacteria (Zhu et al., 2018) and mechanism of bacterial adaptive
resistance (Erickson et al., 2017). The microarray approach using
microchip technology allows simultaneous analysis on gene
expression levels in microbes at the transcription level, where
the gene expression patterns (up-regulation or down-regulation)
of microbes in response to a stimulus can be identified. Therefore,
it can provide insights into the molecular mechanisms or
pathways involved in the investigated phenomena at a systems
level. It has been applied in microbiology research to elucidate the
mechanism of action of several potential antimicrobial agents
(Shen et al., 2015; Santos et al., 2016).

The application of microarray or gene probe-based methods
are limited to the availability of the array for the specific microbe
strain, completeness of genome sequence of an investigated
organism, issue of result reproducibility and availability of
instrument to read microchip (Chernov et al., 2019). As an
alternative, the RNA sequencing (also termed as RNA-Seq)
method is employed to provide quantitative analysis of gene
expression, and at the same time, it allows the gene profiling of
non-coding RNAs involved in regulating gene expression at
transcriptional and post-transcriptional levels. Unlike probe-
based approaches, RNA-Seq can be used to detect the
transcripts in an organism without a complete sequenced
genome and provides high accuracy and reproducibility in
quantifying gene expression levels (Wang et al., 2009).

The assessment of protein expression level (qualitatively or
quantitatively) at the whole-cell level can be achieved via
proteomics analysis. It allows protein identification and
evaluation of differential protein expression for the
investigated phenomena, as well as provides information on
post-translational modifications of proteins (Chernov et al.,
2019). This information highlights the key proteins involved,
pathways affected and the underlying mechanisms in response
to stimuli, including identification of bacteria proteome and
mechanism of drug resistance (Lai et al., 2017; dos Santos et al.,
2010). Proteomic approaches are also adopted in drug
discovery research to investigate the mechanism of actions
of potential antimicrobial agents and reveal their cellular
targets (Reddy et al., 2015). Various methods can be used
for proteomics analysis, such as mass spectrometry and two-
dimensional electrophoresis, liquid chromatography-
mass spectrometry (LC-MS) (Lai et al., 2017; dos Santos
et al., 2010).

Metabolomics offers the metabolic profiling of an organism by
determining the metabolites present over a given time under
certain conditions. In other words, it provides a snapshot of cell
physiology in view of metabolites as end-products of cellular
processes. Similar to proteomics, various approaches can be used
for metabolomics, such as nuclear magnetic resonance (NMR),
LC-MS, gas chromatography coupled to mass spectrometry (GC-
MS) and ultra-high performance liquid chromatography coupled
to mass spectrometry (UPLC-MS) (Chernov et al., 2019). This
technology may help in determining metabolic changes related to
antimicrobial resistance (Schelli et al., 2017), disease, toxins or
drugs (Santos et al., 2016).

To unveil the complexity of the microbial system, data from
multi-omics are integrated into metabolic modelling to improve
model predictions and provide comprehensive insights into
cellular networks at the system level (Fondi and Liò 2015).
This is due to the limitation of inaccuracy prediction in a
single layer network. Genomic-scale cellular network has
become an important tool to bridge the gap between genomic-
derived data (such as gene products, mRNA, proteins and
metabolites) and their interactions, offering a comprehensive
understanding of the dynamic physiological function of
microbes under a specific condition (Hao et al., 2018). The
cellular networks have been classified into: 1) genomic-scale
metabolic network—allows systematic level predictions of
metabolism in the organism, 2) transcriptional regulatory
network—allows predictions of interactions between different
transcriptional factors and target genes, and 3) signal
transduction network—allows predictions of molecular cell
response (protein-protein ad protein-gene interactions) to
stimuli (Hao et al., 2018). Zhu et al. (2018) integrated multi-
omics data with a genome-scale metabolic model (GSMM) to
analyze the responses of P. aeruginosa to polymyxins. Abdul
Rahim et al. (2021) employed a systems-based model to analyze
the synergistic activity of polymyxin B and chloramphenicol.
Wozniak et al. (2020) adopted a combination of metabolomics
and proteomics analysis of S. aureus bacteraemia together with
the computational tool as biomarkers to predict mortality risk
and recommend personalized therapy.

In addition to exploring the genome information of the
microbes and the response of the antimicrobial agents, multi-
omics also provide a meaningful approach to address the inter-
individual variability through exploration of genomic
information from the host, which is important in optimizing
antimicrobial therapy. Genetic polymorphisms of drug-
metabolizing enzymes were reported to be associated with
anti-tuberculosis drug-induced hepatitis, including NAT2*4
and CYP2E1*4 (Kim et al., 2009; Cai et al., 2012). These
pharmacogenomic data are important in predicting the clinical
response to antimicrobial agents and tailor an individualized
antimicrobial therapy. Interestingly, mitochondrial
pharmacogenomics is also useful to provide a personalized
barcode for antimicrobial therapy in view of the mutational
rate of mitochondrial DNA is much higher than nuclear DNA
(Pacheu-Grau et al., 2010; Singh et al., 2014). Mitochondrial DNA
genetic variants were found to be associated with different
aminoglycosides-related ototoxicity susceptibility (Rydzanicz
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et al., 2010; Muyderman et al., 2012). Integrating the data from
pharmacogenomics into the drug’s PK/PD could provide an
approach in optimizing antibiotic doses while minimizing the
toxicity of antimicrobial agents.

On the other hand, multi-omics technology is also supported
by European Union as a framework for developing an omics-
based personalized treatment scheme as an approach in
addressing the emergence of antibiotic resistance (Cohen et al.,
2015). This tailored-treatment approach integrates personalized
patient data such as identification of genetic predisposition to
specific infections (host genomics), host immune response to
infections (proteomics, transcriptomics), microbiome analysis
(transcriptomics) and characterization of pathogen resistance
profile (microbial genomics) to generate a database and this
database will be mined using bioinformatics tools to identify
the significant associations between different datasets. This
eventually will contribute to the building of treatment
algorithms to implement the personalized treatment with an
optimal treatment regimen for individual patients (Cohen
et al., 2015).

QUANTITATIVE SYSTEMS
PHARMACOLOGY

As highlighted above, PK/PD consideration is essential for
antimicrobial dose optimization. Moreover, with multi-omics,
there has been a paradigm shift from MBM to systems-based
models. In recent years, there has been an increase in interest in
quantitative systems pharmacology (QSP) (Ribba et al., 2017).
QSP is an innovative, emerging interdisciplinary approach that
integrates systems biology and PK/PD (Pichardo-Almarza and
Diaz-Zuccarini, 2016). QSP modelling technique applies biology
with findings of in vitro studies to determine the way drugs affect
biological processes (Woodhead et al., 2017). It differs from other
pharmacometrics approaches as QSP modelling enables the
elucidation of the mechanisms of action and possibly
resistance of drugs upon exposure on a systems level. This is
done by quantitatively analyzing the dynamic interactions
between drug(s) and a biological system (van der Graaf &
Benson 2011). Unlike the traditional mechanism-based PK/PD
models, which apply minimal mechanistic biology, QSP
incorporates omics data, including transcriptomics and
metabolomics, along with computational techniques to
incorporate key interactions between the drug and its targets
which result in changes in cellular processes (Zhao & Iyengar
2012).

This promising approach has led to the release of a US
National Institutes of Health (NIH) white paper in 2011
(Sorger et al., 2011). There are many different applications of
QSP, including evaluating the impact on the efficacy of novel
mono- and combination therapies (Musante et al., 2017). The
application of QSP modelling is evident in neoplasms, nervous
system, cardiovascular system and nutritional and metabolic
disease (Knight-Schrijver et al., 2016). Nonetheless, there are
still barriers to QSP. Among them is the complexity of the
models, and hence simplification via model reduction is

recommended (Derbalah et al., 2022). Others include the cost
and time of model development due to the large amount of
datasets (Garcia et al., 2021).

To date, no QSP models have been published for antibiotics
against “superbugs.” Due to the rapidly emerging resistance of
MDR Gram-negative bacteria, these in silico models are urgently
needed to optimize antibiotic combinations and hence to meet
the needs of the current global health problem.

MODEL-INFORMED PRECISION DOSING

Another emerging approach is model-informed precision
dosing (MIPD). Treatment response in individuals for some
drugs may vary due to genotype and phenotype differences
(Peck, 2021). In order to ensure optimal outcomes in patients,
drugs with certain characteristics would benefit from close
monitoring and precision dosing (i.e., dosing tailored to
individual patients). These characteristics include drugs with
a narrow therapeutic index which may lead to serious adverse
effects from overtreatment or severe consequences due to
suboptimal treatment (Peck, 2021). Pharmacokinetics is the
study of drug concentration changes in the body that results
from various physiological processes over time. To identify
significant covariates of response variability, population
pharmacokinetic (popPK) modelling can be utilized for dose
adjustments. The approach of using Bayesian popPK modelling
to optimize dosing is called model-informed precision dosing
(MIPD) (Abdulla et al., 2021). As PK/PD is employed, MIPD
can be carried out if drug plasma concentrations are useful in
predicting pharmacological effects.

Antibiotics with a narrow therapeutic window require close
monitoring and are done with a therapeutic drug monitoring
service (TDM). TDM service is offered in hospitals globally and is
usually led by pharmacists (Ab Rahman et al., 2013). TDM
involves the interpretation of drug plasma concentration levels
which are compared to a therapeutic range. Based on this,
recommendations are made, which often involve dose
adjustments in order to optimize outcomes. Examples of
antibiotics where TDM is conducted are vancomycin and
aminoglycosides (amikacin and gentamicin). Suboptimal doses
may lead to treatment failure and the emergence of AMR.
Increased exposure, often demonstrated by levels above the
recommended therapeutic range for vancomycin, amikacin
and gentamicin, would lead to nephrotoxicity (Morales-
Alvarez, 2020). Nonetheless, serious adverse effects and
toxicities may also develop in patients with plasma
concentration levels well within the therapeutic range.

Although TDM can assist individualized therapy, the TDM
based dose optimization approach alone is not powerful
enough to enable precision dosing for individual patients.
The traditional TDM approach is associated with several
limitations including the need for steady-state for sample
collection, leading to delayed and suboptimal attainment of
the PK/PD targets (Wicha et al., 2021). To address this,
statistical and mathematical techniques are being applied
using TDM results in dose optimization with the use of
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dosing software (Chai et al., 2020). Model-informed precision
dosing (MIPD) is a mathematical framework that integrates
different sources of information to streamline the TDM
process and maximize the success of antibacterial therapy.
To provide precise dosing, many other factors and parameters
must be taken into consideration. This is where PK/PD models
play a crucial role where the models provide information on
drug exposure and effect either efficacy or toxicity (Wakefield
et al., 1999). Furthermore, the incorporation of population PK
and PK/PD models using the Bayesian approach and dosing
simulations (Monte Carlo simulation) are utilized in MIPD.
For some antibiotics, MIPD has been successfully developed
(Roggeveen et al., 2020) and even implemented, for
example, vancomycin (Frymoyer et al., 2020). As there is a
demand for MIPD, it is not surprising that software tools have
been developed to meet this need. Recent reviews
(Kantasiripitak et al., 2020; Abdulla et al., 2021) reported
there are around 10 MIPD software tools available, as
shown in Table 3 below.

Although there are tools already available, there are still gaps
in addressing unmet needs. As shown in Table 3, the
performance of MIPD tools is based on 8 criteria: user-
friendliness and utilization, user support, population models,
quality and validation, output generation, privacy, data
security and costs. Only four tools had a performance of more
than 75%, with the highest scoring 83%. Thus, there is still room
for improvement, including in aspects of validation and
prospective evidence. Another crucial aspect of MIPD is
continuous learning (Hughes et al., 2021). This involves the
continuous update of the models and hence software tools
based on data availability.

Notably, two MIPD tools have demonstrated cost-
effectiveness, while for other products, trials are ongoing
(Kantasiripitak et al., 2020). A study in 2018 by Tong et al.
reported that the costs associated with pneumonia in the
United States from 2008 to 2014 remain substantial and is a
burden on the US healthcare system (Tong et al., 2018).
Collectively, MIPD tools could potentially also save
hospitalization costs in addition to saving lives.

FUTURE DIRECTIONS

Applying and utilizing antimicrobial PK/PDmodels are crucial in
optimizing antimicrobial therapy. Nonetheless, in the fight
against antimicrobial resistance, novel strategies integrating
mechanistic data from systems biology with antimicrobial PK/
PD are warranted. As high-throughput data become more widely
available and the demand for model-informed precision dosing
(MIPD) increases, especially for narrow therapeutic window
antibiotics, the need for QSP will also be more evident. MIPD
will continue to evolve, thus requiring more information on
biomarkers and mechanistic data. These can be obtained and
provided from systems-based models, including QSP models.
More studies investigating host-pathogen interactions and
identifying biomarkers are crucial to further inform the
models to enable optimization of antimicrobial therapy and
precision dosing. As MIPD involves pharmacometrics,
software and training costs must also be considered before
they can be applied. Integration of MIPD tools with electronic
health records must also be seamless for wider implementation.
Lastly, cost-effectiveness studies of MIPD tools are scarce and
therefore warranted. With the advent and availability of cost-
effective, user-friendly and validated MIPD tools, clinicians will
be able to further optimize antimicrobial therapy for their
patients and thus health outcomes.
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TABLE 3 | Characteristics of model-informed precision dosing (MIPD) tools.

MIPD tool Country Mathematical software Performance#

(%) > 75%

Autokinetics Netherlands NONMEM
®
, R

®
X

Bestdose United States — X
DoseMeRx United States GNU scientific library ✓
ID-ODS United States Matlab

®
X

InsightRX nova United States NONMEM
® ✓

MwPharm++ Netherlands/Czech
Republic

— ✓

NextDose New Zealand — X
PrecisePK United States — ✓
TDMx Germany NONMEM

®
X

Tucuxi Switzerland NONMEM
®

X

Adapted from Abdulla et al., 2021; Kantasiripitak et al., 2020. NONMEM: non-linear mixed effects model.
#Criteria include user-friendliness and utilization, user support, computational aspects, population models, quality and validation, output generation, privacy, data security, and costs
(Kantasiripitak et al., 2020).
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