
RESEARCH ARTICLE

Time-series transcriptomic analysis reveals

novel gene modules that control theanine

biosynthesis in tea plant (Camellia sinensis)

Haisheng Cao1☯, Xiaolong He2☯, Jinke Du1☯, Rui Zhang3, Ying Chen1, Yong Ma3, Qi Chen1,

Congbing Fang1, Chi-Tang Ho4, Shihua ZhangID
5*, Xiaochun Wan1*

1 State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China,

2 School of Sciences, Anhui Agricultural University, Hefei, China, 3 College of Information and Computer

Science, Anhui Agricultural University, Hefei, China, 4 Department of Food Science, Rutgers University, New

Brunswick, New Jersey, United States of America, 5 College of Life Science and Health, Wuhan University of

Science and Technology, Wuhan, China

☯ These authors contributed equally to this work.

* zhangshihua@ahau.edu.cn (SZ); xcwan@ahau.edu.cn (XW)

Abstract

Theanine (thea) is a unique non-protein amino acid in tea plant (Camellia sinensis) and one

of the most important small molecular compounds for tea quality and health effects. The

molecular mechanism that maintains thea biosynthesis is not clear but may be reflected in

complicated biological networks as other secondary metabolites in plants. We performed an

integrative transcriptomic analysis of tea seedlings bud and leave over the time-course of

ethylamine (EA) treatment that activated thea pathway. We identified 54 consistent differen-

tially expressed genes (cDEGs, 25 upregulated and 29 downregulated) during thea activa-

tion. Gene Ontology (GO) functional enrichment analysis of upregulated genes and

downregulated genes showed that they may function as a cascade of biological events dur-

ing their cooperative contribution to thea biosynthesis. Among the total cDEGs, a diversity

of functional genes (e.g., enzymes, transcription factors, transport and binding proteins)

were identified, indicating a hierarchy of gene control network underlying thea biosynthesis.

A gene network associated with thea biosynthesis was modeled and three interconnected

gene functional modules were identified. Among the gene modules, several topologically

important genes (e.g., CsBCS-1, CsRP, CsABC2) were experimentally validated using a

combined thea content and gene expression analysis. Collectively, we presented here for

the first time a comprehensive landscape of the biosynthetic mechanism of thea controlled

by a underling gene network, which might provide a theoretical basis for the identification of

key genes that contribute to thea biosynthesis.

Introduction

Theanine (thea) is a non-protein amino acid that was first discovered in the leaves of tea plant

(Camellia sinensis) [1]. It has also been found in trace amounts in two other Camellia plants
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(C. japonica and C. sasanqua) and one mushroom species, Xerocomus badius [2]. As a unique

characteristic component in tea plant, thea is an important indicator of tea quality due to its

umami taste [3]. Many studies have confirmed a variety of health effects of thea on humans,

including promoting memory, promoting concentration to learn and study [4]. It also has

anti-obesity and neuroprotective effects, facilitates relaxation by inhibiting the side effects of

caffeine, reduces blood-pressure, prevents vascular diseases, and enhances anti-tumor activity

[5–10]. In recent years, thea has become a focus bioactive in the development and utilization

of functional components in tea due to its numerous physiological functions [11, 12].

Compared with the extensive exploration of thea related to food science and human nutri-

tion, the research of its biosynthesis remains largely lagging because of the fact that thea path-

way is unique to tea plant and has no reference in data-rich model plants, such as Arabidopsis
thaliana and rice [13]. The earliest investigations of thea biosynthesis were mainly concerned

on a key thea synthetase (TS), which unfortunately remains unclear because the enzyme activ-

ity has not been confirmed in vivo tea plant [14–16]. In 2018, the genomic dissection of tea

plant combined with targeted gene functional analysis revealed a TS candidate (named CsTSI)

that had an evidence of thea synthetase activity [17]. With the popularity of high-throughput

transcriptome sequencing (RNA-seq) technology, members of thea related genes (e.g., GS,

GOGAT, GDH) have been identified and characterized in terms of tissue expression specificity,

abiotic/biotic stress induced expression pattern, and genotype-phenotype association coupled

with targeted metabolomics analysis of thea biosynthetic pathway [18–21].

Despite significant progress has been achieved in the identification of several key genes

involved in thea pathway, our knowledge of its underlying biosynthetic mechanisms is limited.

It is noted that previous efforts lacked possible connections among the above individual genes

that may cooperatively contribute to thea biosynthesis together with other unknown genes.

Moreover, transcriptional regulation of thea pathway under transcription factors (TFs) has not

been explored to date. To our knowledge, gene control network underlies the biosynthesis of a

wide variety of plant-specialized (secondary) metabolites, such as anthocyanin [22], lignin [23]

and glucosinolate [24], suggesting a highly complex regulatory mechanisms related to plant

secondary metabolism.

With the above considerations, we designed a time-series transcriptome sequencing of tea

seedlings bud and leave, and identified 54 consistent differentially expressed genes (cDEGs) over

the time-course of ethylamine (EA) treatment, which has been demonstrated to promote thea

accumulation as its biosynthetic precursor in vivo tea plant [17]. Gene Ontology (GO) functional

enrichment analysis for upregulated genes and downregulated genes showed that they may

behave cascading and cooperative biological functions dominating thea biosynthesis. Among the

total 54 cDEGs, different types of functional genes, including enzymes, TFs, transport and bind-

ing proteins, were distributed, suggesting a complicated gene control network involved in thea

pathway. Next, We modeled a gene network related to thea biosynthesis via the integration of

gene co-expression and protein-protein interactions, and three functionally important gene

modules were identified from the network. Importantly, we presented experimental evidences

for several key genes identified from the network analysis. Our results highlighted the underlying

genes and their interaction patterns involved in thea pathway, providing a valuable platform for

the further exploration of molecular mechanisms that drive thea biosynthesis.

Materials and methods

Plant materials and treatments

Cutting seedlings of tea plant cultivar ‘Shuchazao’ (one-and-a-half-year-age) were collected

from Dechang Nursery Stock Company in Anhui Province (China). Tea cutting seedlings
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were then pre-cultivated for 7 days using the tap water after being exposed in the sun in order

to remove the hypochlorite in the water because tea is a class of anti-chlorine plant. Next, we

transferred the seedlings into culture vessel filled with hydroponic solution in which Shigeki

Konish nutritional ingredient accounted for the half of the whole content [25]. Within about

30 days, the tea seedlings grew up strongly and the fresh root produced. We selected those tea

cutting seedlings with the same size and similar growing trend and divided them into groups I

and II. The tea cutting seedlings in group I were used as control and cultivated in Shigeki

Konishi nutrient solution, while those in the group II were cultivated using the same solution

with the addition of 25mM EA. The nutrient solution in the culture vessel was changed once

every 3 days, and air pumps were used for pouring fresh air into the nutrient solution for 12

hours every day. Four parallel experiments were performed for each treatment, bud and leaf at

the developmental stage ‘one bud and one leaf’ were mixedly-collected for each treatment at

the beginning of cultivation, and then sampled with three biological replicates at day(s) of 0, 1,

3, 6, 9, 12, 18, 24 in April of the year (S2 Fig). The samples collected were frozen immediately

in liquid nitrogen and stored at -80˚C in a freezer.

Total RNA extraction, library construction and transcriptome sequencing

Total RNA was extracted from the samples using the RNA Prep Pure Plant Kit (TianGen,

Shanghai, China). The integrity and quality of RNA was measured using gel electrophoresis

(Thermo Scientific, Waltham, MA, USA) and a NanoDrop-2000 spectrophotometer (Nano-

Drop, Wilmington, DE, USA). The cDNA libraries were constructed by the staff at Shanghai

DayGene Biotechnology Company (Shanghai, China) and paired-end sequenced using an Illu-

minaHiSeq™ 2000 platform according to the manufacturer’s instructions. The raw sequencing

reads were submitted to the National Center for Biotechnology Information Sequence Read

Archive under Accession No. SRP271510. Clean reads were obtained from the original

sequenced reads using in-house Python scripts by removing adaptor sequences and low quality

reads according to the method described in [26].

Identification of DEGs in thea activation

The Fasta sequence file for Camellia sinensis var. sinensis (CSS) were retrieved from the Inter-

national Tea Plant Genome Sequencing Consortium [27]. Based on the reference genome, we

used the command hisat2-build implemented in hisat2 [28] (version 2.1.0) to build a genome

index. All the clean reads for each of the above samples were then mapped to the indexed refer-

ence genome using the command hisat2. The generated SAM format alignments together with

the reference genome GTF annotation files were then fed to HTSeq-Count [29] (version 0.9.1)

and in-house Python scripts to quantify the expression level of each tea gene model using the

widely-used Reads Per Kilobase Per Million Mapped Reads (RPKM) value. For paired Shigeki

Konish nutrition solution control and EA aqueous solution activation, DEGs were defined as

two folds of change in abundance of expressed transcript by using edgeR [30] (corrected p-

value < 0.05).

Screening for cDEGs in thea activation using an integrative statistics model

Consistent DEGs (cDEGs) over the time-course of EA treatment usually represent the under-

lying molecular drivers in the whole thea activation process. Here, we used the robust rank

aggregation (RRA) algorithm [31] with default parameters to identify cDEGs in thea activa-

tion. This RRA approach was specifically designed for comparison of ranked gene lists and rec-

ognition of overlapping genes in different experimental conditions using an integrative order

statistic approach. The R package named RobustRankAggreg for the RRA algorithm was
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downloaded from the Comprehensive R Network (http://www.omicshare.com) and used to

obtain a list of consistent upregulated genes and downregulated genes in different time point

of thea activation for the downstream analysis.

GO functional enrichment analysis of cDEGs

To dissect the functional relationships among the individual cDEGs, GO functional enrich-

ment analysis was performed. We firstly used the Blast2GO program [32] (version 2.3.5) to

conduct GO term functional annotation for each of the above obtained cDEGs with default

parameters. The cDEGs in thea activation were separated as upregulated and downregulated

groups to conduct gene set functional enrichment analysis using the webserver OmicShare

tool (http://www.omicshare.com) with default parameters. The enriched GO terms (hypergeo-

metric p-value< 0.05) in the three functional categories, including biological process, molecu-

lar function and cellular component were visualized using the R package ggplot2 [33].

Gene network modeling for thea biosynthesis

The modeling of a gene network associated with sustaining thea activation under EA treatment

may be a good way to identify the underlying molecular mechanisms that maintain thea bio-

synthesis from the view of the interacting relationships among all the identified cDEGs. To

this end, we obtained the co-expression relationships among the cDEGs from our developed

TeaCoN (http://teacon.wchoda.com) [34], that documents genome-wide gene co-expression

interactions using a computational inference of a large sample of RNA-seq datasets for tea

plant available in the Sequence Read Archive (SRA) of National Center for Biotechnology

Information [35]. We then used our previously described interolog method [36] to establish

the protein-protein interactions among the cDEGs to supplement the above deduced gene co-

expression relationships. Thus, the resulting integrated gene-gene interactions represents a

more comprehensive gene interacting network among the cDEGs and then can be used to

identify the possible key genes involved in thea biosynthesis.

Determination of thea content by HPLC and qRT-PCR validation of

identified thea-related key genes

To provide the possible evidence of the key genes identified from the network analysis for

their involvement in thea biosynthesis, the determination of thea content and quantitative

real-time PCR (qRT-PCR) validation of genes were performed. The corresponding time-

series tea samples in control and EA activation groups were collected with three biological

replicates. Thea was extracted from the samples using the protocol described by our previous

work [37], and thea content was measured using a Waters 2695 HPLC system (Waters, USA)

equipped with a 2489 ultraviolet-visible detector. The liquid column (Phenomenex Kinetex

XB-C18, 1.7 micron, 2.1 mm × 100 mm) was used at a flow rate of 0.2 ml/min. The column

temperature was set to 40˚C, and the detection wave length was 195nm. The expression pat-

terns of the identified thenine-related key genes were monitored using a QuanStudio 6 Flex

Real-Time PCR Detection System (Applied Biosystems, USA). RNA samples were isolated

from samples using the same way described in the above transcriptomic experiments, and

gene-specific primers of genes were designed according to the manufacturer’s instructions

(S1 Table). The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

was used as an internal reference gene, and the relative expression of genes was calculated

using the ΔCT method [38]. To evaluate the statistical significance of a gene’s expresion in

control and EA treatment at each time point, one-way ANOVA and a Fisher’s LSD test were

conducted.
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Results

Identification of cDEGs in thea activation over the time-course of EA

treatment

Compared to the same time point of Shigeki Konish nutrition feeding control, a total of 611,

707, 176, 72, 476, 210, 2177 differentially expressed genes (DEGs) were screened using the R

package edgeR [30] (corrected p-value < 0.05, fold change > 2) after 1, 3, 6, 9, 12, 18, 24 day(s)

of EA treatment, respectively. Among these DEGs, 324/287, 286/421, 74/102, 37/35, 206/270,

47/163 and 956/1221 were upregulated/downregulated, in the corresponding EA activating

time points (S1 Fig). It is obvious that DEGs strikingly decreased and increased in number

after 9 and 24 days of EA treatment, respectively, indicating the possible transcriptional repro-

gramming events during the whole thea activation process. We then used the RRA algorithm

(see details in Methods) to identify consistent DEGs (cDEGs) over the time-course of EA treat-

ment. Consequently, a total of 54 cDEGs, with 25 upregulated genes and 29 downregulated

genes, were identified (S2 Table). Among all the cDEGs, 13 genes (24.1%) were denoted as

enzyme genes using a combinational annotation of KEGG, NR and Swiss-Prot databases.

These enzyme genes, such as serine carboxypeptidase, glutamate synthase and glutathione S-

transferase, were reported to be related to plant secondary metabolism in the previous studies

[39–41]. We also found a number of TF genes (e.g., NAC, bZIP) that may act as regulatory

switches in thea biosynthesis. In addition to the structural enzyme genes and regulatory TFs,

several transport and binding protein, such as ABC transporter family protein, UDP-glycosyl-

transferase and polyadenylate-binding protein, are also shown to be involved in thea biosyn-

thesis, indicating a hierarchy of gene control network underlying thea biosynthesis as other

secondary metabolisms in plants [42].

GO functional enrichment analysis of cDEGs in thea activation

After a view of the functional distribution of the cDEGs in thea activation, a concerned ques-

tion remained to be immediately answered, that is, how these cDEGs function together to

confer to thea biosynthesis. To answer this question, we subjected these cDEGs to GO func-

tional enrichment analysis. With the aim of being elaborately depicted in gene functional con-

tribution in thea activation, upregulated genes and downregulated genes were separated from

the whole cDEGs for the GO functional enrichment analysis. As shown in Fig 1 and S2 Table,

upregulated cDEGs were mainly overrepresented in the GO terms endonuclease, hydrolase,

transferase, phospholipase and carboxypeptidase in the molecular function; glycyl-tRNA ami-

noacylation, phospholipid catabolic process, IMP metabolic process and tRNA aminoacyla-

tion in the biological process. Whereas downregulated cDEGs were mainly overrepresented

in the GO terms oxidoreductase, transferase, glutamate synthase, iron ion binding and trans-

membrane transporter in the molecular function; toxin catabolic process, monoterpenoid

biosynthetic process, glutathione metabolic process and ammonia assimilation cycle in the

biological process. Our results indicated that the majority of these cDEGs were significantly

enriched in different enzyme activities and metabolic processes despite of minor differences

between upregulated genes and downregulated genes, e.g., upregulated genes tend to have the

biological function as hydrolase and transferase, and downregulated genes instead tend to

have the biological function as transporter and symporter, indicating that upregulated genes

and downregulated genes may behave as a cascade of biological events during their coopera-

tive contribution to thea biosynthesis.
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Fig 1. The most enriched terms in the GO analysis for upregulated genes (A) and downregulated genes (B). In the diagram, the most enriched GO

terms were left-listed, and GeneNumber denoted the number of genes inupregulated/downregulated cDEGs (as a gene set) that have the corresponding

GO functional annotation. The right color gradient represented -log10(p-value) of upregulated/downregulated cDEGs enriching in each GO term.

https://doi.org/10.1371/journal.pone.0238175.g001
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Gene network analysis of thea biosynthesis

The modeled gene network was visualized using an open source software platform named

Cytoscape [43]. As indicated in Fig 2, the gene network contained 127 non-redundant interac-

tions among 45 (83.3%) genes of the total cDEGs, with three large connected components

(overlapped among them) and two isolated genes (CsCCP interacts with CsHASP). In this net-

work, we found that only one gene pair has both gene co-expression and protein-protein inter-

actions (CsG8H interacts with CsHOM), which represented the strong gene-gene interaction

involved in thea biosynthesis. GO functional enrichment analysis of the three components as

different gene sets showed that they have the possible function of transferase activity, hydrolase

activity, and organonitrogen compound biosynthesis, respectively (Table 1). From the network

perspective, we called these three network components as gene functional modules that may

interact with each other as individual gene functional groups to contribute for thea biosynthe-

sis. The overlapping gene nodes among the three gene functional modules were identified as

CsSAP2, CsRP, CsBCS-1, CsABC2, and CsADE4 (thereafter named as module-connecting

genes). It is noted that only one of the five genes was attributed as enzyme gene, indicating that

several other types of functional genes may be the main switch gene nodes in the gene network

that maintains thea biosynthesis. In a network, hubs denotes gene nodes with high connectiv-

ity (degree) linking to other gene nodes, and degree can be considered as a predictor of essenti-

ality in the network [44]. Table 2 listed the five typical hub genes (solid purple nodes in the

network) in the three gene functional modules, as CsPNC, CsABC2, CsRP, CsCYP1, and CsGO-
GAT, which represented functionally important genes in the gene network associated with

thea biosynthesis. It is noted that CsRP and CsABC2 behaved as both the module-connecting

Fig 2. A modeled gene network associated with thea biosynthesis. In the network, square, triangle, and circle nodes

denoted enzymes genes, TF genes and other types of functional genes, respectively. An edge was placed between two

genes indicating they had gene co-expression or protein-protein interactions. The outlined red and blue of a node

denoted upregulated and downregulated expression pattern of a certain gene, respectively. Solid purple of a node

denoted the five representative hub genes. Module I- III were labeled in the upper-left or upper-right corner of the

corresponding gene functional modules.

https://doi.org/10.1371/journal.pone.0238175.g002
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genes and hub genes. Interestingly, previously confirmed thea related enzyme gene CsGOGAT
behaved as one of the hub genes identified from the network analysis [45].

Experimental confirmation of identified thea-related key genes

We chose thea as an indicator metabolite for thea pathway. The change of thea content in the

time-series tea samples was observed using High Performance Liquid Chromatography

(HPLC). Compared with the control group, thea content in EA activation significantly

decreased in the 1st day, and consistently increased from the 3rd day to the 12th day, arriving

at the highest value (3.43 times, Fig 3). The 12th day can be considered as an EA activation

turning point because thea content increased at the highest on this day and then decreased

after this day during EA treatment. The expression patterns of eight topologically important

genes (hub genes and module-connecting genes) identified from the network analysis were

detected using qRT-PCR quantification. Our results indicated the expression of CsSAP2,

CsBCS-1, CsPNC, CsCYP1, CsGOGAT, CsABC2 and CsRP gradually increased, reaching at the

highest on the 6th day, and then began to decrease. The content of thea and the expression of

the above seven genes all increased to a highest point and then decreased, with a consistent

pattern over the time-course of EA activation. It should be noted that the time point is differ-

ent for the appearance of thea content and gene expression at a highest value, presenting a pos-

sible mechanism that the expression (transcription and translation) of tea genes has the

lagging phenotypic effect in thea content due to the spatiotemporal separation in gene-thea

interaction.

Table 2. Module-connecting genes and typical hub genes in the three gene functional modules.

Gene symbol Functional description Module-connecting gene or hub gene Degree

CsSAP2 Senescence-associated protein Module-connecting 2

CsADE4 Amidophosphoribosyltransferase Module-connecting 4

CsBCS-1 Mitochondrial chaperone BCS1 Module-connecting 3

CsPNC Peroxisomal adenine nucleotide carrier Hub gene 11

CsCYP1 Cytochrome P450 Hub gene 11

CsGOGAT Glutamate synthase Hub gene 6

CsABC2 ABC transporter 2 Both of them 12

CsRP Ribosomal protein Both of them 11

https://doi.org/10.1371/journal.pone.0238175.t002

Table 1. GO functional enrichment analysis of the three gene functional modules (p-value< 0.01).

Module ID # of genes (annotated�) Possible biological function GO ID

ModuleI 19(17) Transferase activity GO:0016765

Glutathione transferase activity GO:0004364

Peptide metabolic process GO:0006518

ModuleII 16(6) Hydrolase activity GO:0016787

Endonuclease activity GO:0004519

ModuleIII 8(7) Organonitrogen compound metabolic process GO:1901564

Organonitrogen compound biosynthetic process GO:1901566

Glutamate synthase (NADH) activity GO:0016040

�Number of genes that can be annotated in the corresponding gene functional module

https://doi.org/10.1371/journal.pone.0238175.t001
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Discussion

Plant-specialized metabolites, some of which can be used as flavors, fragrances, colorants, or

pharmaceuticals in human life, are biosynthesized through multiple enzymatic steps controlled

by the genomes of plants [46, 47]. In the past several decades, functional exploration of enzyme

genes in certain plant secondary pathways have been extensively performed, or even dissected

informs of biological networks together with other types of functional genes, which enhance

our knowledge of the molecular mechanisms of secondary metabolism in plants and give

novel clues for applied genetic improvement and metabolic engineering [48]. In this study, we

Fig 3. HPLC and qRT-PCR analysis of thea content and gene expression. The abscissa indicated samples collected at 0-day, 1-day,3-day, 6-day, 9-day, 12-day,

18-day and 24-day. The grey bar and colored (green, blue) bar represented the changes of thea content or gene expression in the control and EA treatment,

respectively. Significant differences comparing the control and EA treatment at each time point using one-way ANOVA and a Fisher’s LSD test (�p-value< 0.05,
��p-value< 0.01). The black asterisk and blue asterisk denoted a significant drop and increase, respectively. Different letters indicated statistical significance among

time points for the control (a, b, c, d, e, f) and EA treatment(g, h, i, j). GraphPad Prism was used to draw the plot, and SPSS was used to conduct statistical analysis.

https://doi.org/10.1371/journal.pone.0238175.g003
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focused on theanine (thea), a unique small molecular compound in tea plant and an important

determinant for tea quality and health effects. We utilized a combinational approach of deep

RNA-seq and bioinformatics analysis to uncover the underlying mechanisms of gene network

action involved in thea biosynthesis. To this end, we performed a time-series transcriptome

sequencing of tea seedlings bud and leave under the feeding of EA aqueous solution, which has

been confirmed to be an activator of thea pathway as its biosynthetic precursor [17], and then

screened 54 cDEGs over the time course of thea activation. Time-series transcriptome experi-

mental design can help identify a robust set of functional genes related to a certain biological

process (e.g., a secondary pathway) by using statistical analysis with the time-course omics

data.

Among the total 54 cDEGs, 13 genes were identified as enzyme genes, accounting for a rela-

tively large proportion compared to other types of functional genes. We found that these

enzyme genes were attributed to various types of active enzymes, such as ligase, transferase,

hydroxylase, synthase and decarboxylase (S3 Table), indicating a complicated and cooperative

enzyme-catalyzed process related to thea biosynthesis. We also found that several plant sec-

ondary metabolism related enzyme genes, such as serine carboxypeptidase and glutamate

synthase. Interesting, glutamate molecular, a precursors of thea, has shown to be catalyzed by

the above glutamate synthase and be incorporated into thea pathway [45]. To our knowledge,

the biosynthesis of most plant secondary metabolites has been controlled by TF genes through

the expression regulation of the related enzyme genes. In this study, we found that NAC and

bZIP were involved in the time course of thea activation. These two TF genes have not been

reported to be related to plant-specialized metabolites. We speculated that the transcriptional

regulation of thea biosynthesis was specific in tea plant as a unique pathway and this may give

useful clues for the possible TF-focused metabolic engineering. It should be noted that a wide

variety of functional genes, such as transport and binding protein, were involved in thea bio-

synthesis, apart from the above structural enzyme genes and regulatory TF genes. All these

findings supported our initial hypothesis that a complicated gene control network

underlined thea biosynthesis as other plant-specialized metabolites described in the previous

studies [22–24].

We then used GO functional enrichment analysis to investigate the functional relation-

ships among the identified cDEGs in thea activation. The total cDEGs were divided into

upregulated and downregulated groups according to their expression tendency. The func-

tional comparative analysis of upregulated genes and downregulated genes showed that they

may function together in different enzyme activities and metabolic processes conferring

thea biosynthesis. Meanwhile, they have the possibility of functioning as a cascade of biolog-

ical events as separate functional groups. For instance, upregulated cDEGs tend to function

as hydrolase and transferase and downregulated cDEGs instead of functioning as trans-

porter and symporter. To explore the interaction pattern among these individual cDEGs, we

modeled a gene network related to thea biosynthesis using a combinational index of gene

co-expression and protein-protein interaction. From this network, we found three main

gene functional modules that may cooperate to contribute for thea biosynthesis. Moreover,

several functionally important hub genes and module-connecting genes were computation-

ally identified, and experimentally confirmed using an integrative statistical analysis of

HPLC and qRT-PCR qualification for thea content and gene expression, respectively. These

findings helped to disclose the underlying functional genes involved in thea pathway and

their molecular interaction pattern from the network perspective. Our investigation has sig-

nificance for the further understanding of molecular regulatory mechanisms that contribute

to thea biosynthesis.
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