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One practical challenge in observational studies and quasi-experimental designs is

selection bias. The issue of selection bias becomes more concerning when data

are non-normal and contain missing values. Recently, a Bayesian robust two-stage

causal modeling with instrumental variables was developed and has the advantages of

addressing selection bias and handle non-normal data and missing data simultaneously

in one model. The method provides reliable parameter and standard error estimates

when missing data and outliers exist. The modeling technique can be widely applied

to empirical studies particularly in social, psychological and behavioral areas where any

of the three issues (e.g., selection bias, data with outliers and missing data) is commonly

seen. To implement this method, we developed an R package named ALMOND (Analysis

of LATE (Local Average Treatment Effect) forMissing Or/and Nonnormal Data). Package

users have the flexibility to directly apply the Bayesian robust two-stage causal models

or write their own Bayesian models from scratch within the package. To facilitate the

application of the Bayesian robust two-stage causal modeling technique, we provide a

tutorial for the ALMOND package in this article, and illustrate the application with two

examples from empirical research.

Keywords: instrumental variables (IV), bayesian method, robust method, missing data, selection bias, R package,

causal modeling, local average treatment effect

In observational studies or quasi-experimental designs, when there are omitted variables or
confounder effects, the regression coefficient estimates in the causal model are biased (e.g., Angrist
and Keueger, 1991; Angrist and Pischke, 2014), which is a source of selection bias. One strategy
to address the selection bias is to introduce instrumental variables (InsV) into the analytic model
(Angrist and Pischke, 2008). In particular, in the presence of confounder effects, the changes in the
treatment are associated not only with changes in the outcome but also with changes in the error.
The two associations/variations in the treatment variable eventually lead to an inconsistent estimate
of the treatment effect. Incorporating InsVs in the analytic model is a frequently used and effective
way to separate the two variations in the causal treatment: InsVs separate the variations of the
treatment effects that are associated with the causal outcome from the variations in the treatment
that are associated with the model residuals. In other words, InsVs are factors that cause some
variations in the treatment variable but have no associations with the model residuals. When InsVs
are incorporated in the analytical model, changes in InsVs are associated only with the changes
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in the treatment but not with the error. The only association
between the InsVs and the outcome variables is via the indirect
route of the treatment variable (Cameron and Trivedi, 2005).

InsVs play an instrumental role in the causal chain between
the treatment and the outcome variable. At least two properties
qualify variables as InsVs. First, the instrument needs to be
related to the treatment so that the associated part between the
instrument and the treatment explains variations of the outcome
that contributes to the biasedness of the coefficient estimates. In
addition, the instrument has to only affect the outcome through
the treatment, but via no other route. In this way, the causal chain
is established and only a partial causal effect of the treatment that
has not been contaminated by the confounder effects will be used
to estimate the treatment effect to the outcome (e.g., Baiocchi
et al., 2014). This partial treatment effect is often called the Local
Average Treatment Effect (LATE) (Angrist et al., 1996) and is
often the center of research interest in the causal model.

There have been methodological advances to incorporate
InsVs (hereafter called InsV methods), such as two-stage least
squares (2SLS) estimator (Hägglund, 1982; Jöreskog, 1983;
Angrist and Imbens, 1995; Bound et al., 1995; Acemoglu and
Angrist, 1999; Breierova and Duflo, 2004; Hudson and Sessions,
2011; Angrist and Pischke, 2014) and maximum likelihood
estimator (Mariano and McDonald, 1979; Bollen et al., 2007;
Maydeu-Olivares et al., 2019), as well as applications of these
methods in empirical studies (e.g., Currie and Yelowitz, 2000;
Revelli, 2002; Miguel et al., 2004; Rassen et al., 2009). Crespo-
Tenorio andMontgomery (2013) proposed a Bayesian method to
incorporate InsVs to improve estimation, particularly with weak
instruments and small samples. There have also been Bayesian
approaches to study InsVmethods with various types of outcome
variables (Burgess and Thompson, 2012; Li and Lu, 2015).
However, as far as we are aware, the number of software packages
available to help implement the InsV methods is limited. A
common choice for researchers using InsV methods is the InsV
feature in Stata (StataCorp, 2017). An equivalent option is the
AER package in R (Kleiber et al., 2018). The sem package in R
has a side ability to incorporate InsVs in the model by calling
the AER package. The lavaan package (Rosseel, 2012) allows
users to incorporate InsVs in the structural equation modeling
framework. All these software programs or packages adopt the
InsV methods from the frequentist perspective and seldom deal
with contaminated (e.g., non-normal or missing) data.

Recently, a Bayesian robust two-stage causal model with InsVs
was proposed to account for selection bias and simultaneously
handle the non-normal and/or missing data in one model and
provide reliable parameter estimates (Shi and Tong, accepted). In
the presence of omitted confounders, the regression coefficient
estimates will be biased. Regression coefficient estimates can
be biased when there are non-normal or missing data. In
the simultaneous presence of omitted confounders and non-
normal or missing data, the bias in regression coefficients can
get worse, which may eventually have an impact on selection
bias. In the proposed method, InsVs were carefully chosen
to disentangle the partial treatment effect of research interests
or the LATE. By estimating the LATE, the generalizability of
the study (i.e., external validity) was traded for an improved

consistent estimate (i.e., internal validity) of the treatment
effects. Furthermore, robust methods based on Student’s t
distributions were introduced to model data containing outliers.
Multiple imputation techniques were used to handle ignorable
missing data. For non-ignorable missing data, an added-on
selection model was applied so that the missingness in the
outcome variable was explained via a link function. Bayesian
methods were used for the estimation. The conventional 2SLS
model was also applied to the same data and it was found
that Bayesian methods performed as equally well as the 2SLS
model under ideal data conditions (i.e., normally distributed
and complete). Monte Carlo simulation studies showed that
the proposed method outperformed conventional frequentist
approaches under contaminated data conditions. Particularly, the
robust models outperformed the corresponding normal-based
models for data containing outliers. When data are ignorable
missing, the two-stage Bayesian approach can estimate the LATE
well. For the non-ignorable missing data, an added-on selection
model performed much better than its non-selection counterpart
when estimating the LATE.

This new modeling technique can be applied in a more
widespread manner to empirical studies than traditional InsV
methods. In addition to addressing selection bias, the model
simultaneously handles data containing outliers and missing
values, which are commonly seen in social and behavioral
research. That being said, this new model may not be easily
applicable as it incorporates several advanced techniques in
one model. On top of that, Bayesian methods are used, which
may push away potential users who are more comfortable with
frequentist approaches. In this endeavor, we recently developed
an R package to facilitate the application of the Bayesian robust
two-stage causal model with InsVs. The package is used for
the Analysis of the LATE (Local Average Treatment Effect)
with Missing Or\and Nonnormal Data, named as ALMOND. In
summary, the package adopts a Bayesian approach to incorporate
InsVs using a robust two-stage causal modeling framework to
estimate the LATE and can simultaneously address the issues
of non-normal and missing data. Bayesian estimation methods
have many advantages, e.g., handling both ignorable and non-
ignorable missing data relatively easily, being more precise
than frequentist estimations when the sample size is small,
and providing reliable standard error estimates (Shi and Tong,
2018), etc. The ALMOND package fills the methodology gap by
adding the Bayesian approach to existing software or packages
that use InsVs to address the selection bias. The package is
also more powerful than existing software programs as it can
provide reliable standard errors for non-normal data containing
missing values. Current Bayesian software or packages either
have users write their own Bayesian models (e.g., Plummer
et al., 2003; Lunn et al., 2009) from scratch or automatically fit
certain Bayesian models for the users (e.g., Merkle and Rosseel,
2018). Either approach has its own flaw as writing one’s Bayesian
model may make the application less accessible to a general
audience, whereas fitting a default Bayesian model will be less
flexible to users who are more advanced with Bayesian methods.
The ALMOND package has the flexibility of doing both options,
which can well satisfy the needs of a broader audience from

Frontiers in Psychology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 169

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Shi et al. A Tutorial With the ALMOND Package in R

applied researchers to Bayesianmethodologists. In this article, we
provide a tutorial for this package.

The article is organized as follows. In the subsequent section,
the robust two-stage causal modeling with missing data is briefly
introduced. Then a detailed decomposition of the package is
discussed. The following section illustrates the application of
the Bayesian two-stage causal models to two empirical examples
using the ALMOND package. The article concludes with a
summary and discussion of the package.

1. BAYESIAN ROBUST TWO-STAGE
CAUSAL MODELING WITH MISSING DATA

A two-stage modeling procedure is used to incorporate InsVs.
Let Xi and Yi be the treatment and the outcome for individual
i (i = 1, . . . ,N), respectively, and Zi = (Zi1, . . . ,ZiJ)

′ be a
vector of InsVs. N is the sample size and J is the total number
of instrumental variables. In the first stage of the model, the
InsVs Z are used to predict the treatment X. In other words,
the portion of variations in the treatment X is identified and
estimated by the InsVs Z; then, the second stage relies on the
estimated exogenous proportion of treatment variations in the
form of the predicted treatment values to estimate the treatment
effect on the outcome Y .

A Bayesian robust two-stage causal modeling approach has
been recently proposed (Shi and Tong, accepted) and the
framework has two general types of linear models, which
accommodate the continuous and categorical (i.e., dichotomous)
treatment variables, respectively. For continuous treatment
variables, a mathematical form of the general two-stage causal
model is represented as:

Xi = π10 + π11Zi + e1i, (1)

Yi = π20 + π21X̂i + e2i. (2)

In the first stage, π10 and π11 = (π11, . . . ,π1J)
′ are the intercept

and regression coefficients, respectively, for the linear model
where the treatment X is regressed on the InsVs Z; in the second
stage, π20 and π21 are the intercept and slope, respectively, for the
linear model where the outcome Y is regressed on the predicted
treatment values of X̂.π11 is the causal effect of the InsVsZ on the
treatment X; and π21 is the treatment effect on the outcome Y for
a subset of participants whose treatment effect has been extracted
and explained by the InsVs Z. Traditionally, the residuals e1i and
e2i, are assumed to be normally distributed as e1i ∼ N(0, σ 2

e1) and
e2i ∼ N(0, σ 2

e2), where e1i and e2i are residuals from the general
two-stage causal model.
When the treatment variable is dichotomous, a generalized two-
stage causal model can be expressed as:

Xi ∼ Bernoulli(qi), (3)

logit(qi) = π10 + π11Zi, (4)

Yi = π20 + π21X̂i + ei. (5)

where π10 and π11 = (π11, . . . ,π1J)
′ are the intercept and

regression coefficients, respectively, for a logistic regression

model where the logia of the probability that the participant
is in the treatment group is regressed on the InsVs Z. The
treatment variable Xi follows a Bernoulli distribution with qi
as the conditional probability that Xi = 1 (participant being
in the treatment group), and 1 − qi as the probability that
Xi = 0 (participant being in the control group). In traditional
generalized two-stage causal models, the residual ei at the second
stage is assumed to be normally distributed as ei ∼ N(0, σ 2),
where ei is the residual from the generalized two-stage causal
model. Note that covariates can also be added and controlled for
in the second stage.

Depending on whether the outcome data are normally
distributed or not, the traditional two-stage causal models can
be extended to robust models by assuming the error term in
stage two follows Student’s t distributions. Therefore, when the
treatment variable is continuous, there are two types of models:
the cont-normal-based model (M1) where errors are normally
distributed at the second stage (e2i ∼ N(0, σ 2

e2)) and the cont-
robust model (M2) with t distributed errors at the second stage
(e2i ∼ t(0, σ 2

e2, ν)), where ν is the degree of freedom for the
Student’s t distribution. Although the two models M1 and M2
have the same structure, they are different distributional models.
Similarly, when the treatment is categorical, there are also two
types of models: the cat-normal-based model (M3) where ei ∼

N(0, σ 2), and the cat-robust model (M4) where ei ∼ t(0, σ 2, ν),
and ν is the degree of freedom for the Student’s t distribution.

The two-stage causal modeling can also handle missing data
which are almost inevitable in practice. Model estimation with
missing data can be conducted relatively easily in the Bayesian
framework. When the missingness is ignorable (i.e., missing
completely at random or missing at random), missing values
are handled using multiple imputation techniques. When the
missingness is non-ignorable (missing not at random), a selection
model is applied. A probit link function is added to the second
stage of themodel so that themissingness in the outcome variable
is explained by the link function. For continuous treatment
variables, selection models can be added to the traditional two-
stage model and the robust model using t distributions, denoted
as cont-normal-selection model (M5) and con-robust-selection
model (M6), respectively. For categorical treatment variables, two
added-on selection models are also proposed, denoted as cat-
normal-selection model (M7), and cat-robust-selection model
(M8). Table 1 presents an overview of the model types and the
corresponding data types that each model is suited for.

2. OVERVIEW OF THE ALMOND PACKAGE

The ALMOND package has been developed and can be used to
estimate the eight models (M1-M8) described above. Each model
can be directly applied with a function in the ALMOND package.
The package uses the R2OpenBUGS package in R to call the
open-source Bayesian software OpenBUGS (Thomas et al., 2006)
to conduct the Bayesian analyses. End-users need to have both
R and OpenBUGS installed for the analysis. Results mimic what
are reported from OpenBUGS. This section presents an overview
of the package and introduces the markov chain Monte Carlo
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TABLE 1 | Taxonomy of models.

Types of the model Types of outcome data

Normally distributed Complete Having outliers Ignorable missing Non-ignorable missing

Cont-normal model YES YES NO YES NO

Cont-robust model YES YES YES YES NO

Cont-normal-selection model YES YES NO YES YES

Cont-robust-selection model YES YES YES YES YES

Cat-normal model YES YES NO YES NO

Cat-robust model YES YES YES YES NO

Cat-normal-selection model YES YES NO YES YES

Cat-robust-selection model YES YES YES YES YES

(MCMC) algorithm used in the package. This section illustrates
the application of the ALMOND package, using two empirical
examples from the existing literature. The ALMOND package
can be installed in R using the devtools package (Wickham and
Chang, 2016) since the source code is available on GitHub. Thus,
the first step is to load the devtools package, and then install the
ALMOND package using the install_github() function:

l i b r a r y ( d e v t o o l s )
d e v t o o l s : : i n s t a l l _ g i t h u b ( ’ d i n g j s h i /ALMOND’ )

2.1. Components of the Package
Each of the eight models mentioned in the previous section has a
corresponding function to represent. Specifically, for continuous
treatment variables, Models M1, M2, M5, and M6, representing
the cont-normal-based model, the cont-robust model, the cont-
normal-selection model and the cont-robust-selection model,
respectively, can be programmed using the functions ts.nnormal,
ts.nrobust, ts.nnormal.s and ts.nrobust.s; similarly, for categorical
treatment variables, Models M3, M4, M7, and M8 have the
corresponding functions gts.nnormal, gts.nrobust, gts.nnormal.s
and gts.nrobust.s to represent the cat-normal-based model, the
cat-robust model, the cat-normal-selection model and the cat-
robust-selection model, respectively.

Each of the model functions has multiple arguments, and
only the first two arguments are required for the non-selection
models. An additional missingness indicator argument is needed
if an added-on selection model is applied. Details about the
Bayesian methods can be flexibly tailored in other optional
arguments of the model functions. An argument breakdown is
illustrated below.

1. Required arguments.

• The formula of the model. The model formula comprises
three parts: the outcome variable, the independent
variables, and the InsVs. In the formula, a tilde (~) and a
vertical slash (|) are used to connect the three parts:

outcome ∼ independent variables|InsVs.

The formula shows that the outcome is modeled from
two sources of variations: the independent variables to the
left of the vertical slash and the InsVs to the right of

the vertical slash. The numbers of independent variables
and InsVs are at least one for each and theoretically,
have no upper limits. The outcome can only contain one
variable. Multiple variables can be added as independent
variables and InsVs, connected by the plus (+) sign. In the
independent variables part, the causal treatment variable is
always the first element and any variables added after the
first element are covariates at the second stage of the causal
model. The package does not currently have the flexibility
to accommodate multiple causal treatment variables or the
multivariate causal analysis. In the InsVs part, all elements
are treated as the InsVs from the first stage, all together
predicting the estimated treatment effect. For a detailed
explanation of the method, see Shi and Tong (accepted).

• The data. Datasets must be in the form of a data frame.
• The missingness indicator (for added-on selection models

only). The m.ind argument is used to identify the
missingness indicator variable in the new data and is
only required when the added-on selection model is used.
For other models, this argument is not needed. When
the added-on selection model is applied, users need to
create a new variable and add it to the original data to
indicate the missingness status of the outcome variable. The
missingness indicator is a binary variable. It equals 1 if the
outcome value is missing, and 0 otherwise.

2. Optional arguments.

• The ALMOND package has the flexibility to allow users
to specify any key elements of their interest in Bayesian
statistics, including priors distributions, starting values,
number of Markov chains, length of burn-in periods, etc.
Other optional arguments include reporting the Deviance
Information Criterion (DIC) and technique details of the
error message.

• Prior distributions. The prior arguments specify the prior
distributions and include b0 and B0, g0 and G0, u0 and U0
and e0 and E0. The priors for the regression coefficients
at the first and second stages of the model are normal
distributions with b0, B0 and g0, G0 representing the
location and precision hyperparameters, respectively. The
priors for the error variances at the first and second stages
of the model are inverse gamma distributions with u0, U0,
and e0, E0 representing shape and scale hyperparameters,
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respectively. The four hyperparameters for the priors of
the regression coefficients (b0, B0, g0, and G0) can be
specified as vectors (if there are multiple predictors at the
two stages and priors for the regression coefficients are
designed to be different), or one numerical value (if priors
for all the regression coefficients are designed to be the
same). For example, for a model with one treatment (X1),
two additional covariates (X2-X3) and two InsVs (Z1-Z2),
the prior argument should be specified using the logic such
as: b0 = c(0,0.5), B0 = c(1000,10000), g0 = c(0, 0.4, 0.7), G0
= c(100,1000,10000).

• The basic model uses non-informative priors for all model
parameters. If no prior is specified in the function, the
model will be estimated with non-informative priors as
default. We encourage users to use informative priors
or the data dependent priors (i.e., using the maximum
likelihood estimates as the hyperparameters) to obtain
more reliable parameter estimates (McNeish, 2016; Shi
and Tong, 2017a). The default priors in the package are
data-dependent priors. In addition, the numerical values
of the hyperparameters can be specified using the prior
arguments. If users want to use other prior distributions
rather than normal or inverse gamma distributions, see the
advanced feature in the argument that is explained in the
public housing voucher program example (Example 2) of
the article.

• Starting values. The default starting values for the
parameters with the Bayesian algorithm is the frequentist
estimates from conventional two-stage-least-squares
models (Angrist and Imbens, 1995). Users are encouraged
to specify other reasonable or multiple starting values
(accompanied by multiple chains) of their choice.

• Other details for Bayesian methods. Users have the
flexibility to specify the number of Markov chains, the
total number of iterations per chain, the length of the
burn-in period and the thinning rate. The default number
of Markov chains is one. The default total iterations per
chain are 10,000 for non-selection models, and 50,000 for
added-on selection models. The default length of burn-
in (i.e., number of iterations to discard at the beginning)
is half of the number of stated iterations, meaning to
discard the first half of iterations, and the default thinning
rate is 1.

• Bayesian model fit index. DIC is used as the fit index in
the two-stage Bayesian causal modeling and is reported as
default.

• Model convergence. The output lays the groundwork
for reporting Bayesian model convergence. For example,
when more than one chain is used, the potential scale
reduction factor (Gelman and Rubin, 1992) can be
requested by specifying output$summary[,”Rhat”]. Other
model convergence measures such as the Geweke statistics
(Geweke, 1992) can be requested using the coda package
(Plummer et al., 2006), which has been imported in
ALMOND.

• Model debugging phase. By default, debug=FALSE in the
function means not to report the technical details. The
debug=TRUE is recommended to be stated when an error

message appears, so users can use the information to debug
their codes.

3. A special feature of the package.
A unique advantage of the ALMOND package is that it

allows users to either directly apply the models from the
package or specify their own Bayesian models from scratch.
It is not uncommon that users may want to assign prior
distributions of their own preference rather than using
the default distributions; users may also be interested in
applying other robust models not specified in the package
[e.g., fitting a robust model at the first stage (e.g., Shi and
Tong, 2017b)]. The advanced feature of the ALMOND
package has been designed especially for these types of
scenarios, in that users can build their Bayesian models
from scratch. In particular, the advanced argument together
with the adv.model argument is designed for advanced
users to self-define their model of interest. Specifically, the
advanced argument serves as a switch to the advanced
feature, when advanced=TRUE is specified, the switch is on
and users can write their own Bayesian model and pass it
to the adv.model argument. The public housing voucher
program example (Example 2) illustrates the application of
the advanced feature.

This special feature of the package accommodates the
need for a wide range of Bayesian users, from those who
are more advanced to those who are less familiar with
Bayesian methods and programming. On one hand, the
ALMONDpackage allows users to write their own Bayesian
functions and distributions, like popular Bayesian software
programs such as BUGS (Spiegelhalter et al., 2003) and
JAGS (Plummer et al., 2003). This could be a merit for
advanced Bayesian users. On the other hand, users who
are less familiar with Bayesian programming may find it
difficult to take advantage of the above-mentioned Bayesian
software and apply Bayesian methods. The ALMOND
package conveniently fits the Bayesian robust modeling
framework for them and handles the outliers and missing
values in the empirical data. A detailed example of both
approaches is illustrated in Example 2.

2.2. Gibbs Sampling Algorithm for the
Computation
In the ALMOND package, the Gibbs sampling algorithm is
used to obtain the parameter estimates for the two-stage causal
model with InsVs. In particular, data augmentation methods
are implemented. The estimation steps of the Gibbs sampling
algorithm with data augmentation for the cont-robust model
with missing data are given below. Gibbs sampling algorithms
for other models are similar. Shi and Tong (accepted) provided a
detailed derivation of the posterior distributions.

1. Start with initial values π
(0)
1 , π

(0)
2 , σ

2(0)
e1 , σ

2(0)
e2 , ν

(0), ω
(0)
i ,

y
(0)
mis where π

(0)
1 = (π (0)

10 ,π
(0)
11 )

′ and π
(0)
2 = (π (0)

20 ,π
(0)
21 )

′.

2. Assume at the jth iteration, we have π
(j)
1 , π

(j)
2 , σ

2(j)
e1 , σ

2(j)
e2 ,

ν
(j), ω

(j)
i , y

(j)
i,mis, where π

(j)
1 = (π

(j)
10 ,π

(j)
11)

′ and π
(j)
2 =

(π
(j)
20 ,π

(j)
21 )

′.
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3. At the (j+ 1)th iteration,

3.1. Sample π
(j+1)
1 from p(π1|σ

2(j)
e1 , xi,Zi, i = 1, . . . ,N);

3.2. Sample σ
2(j+1)
e1 from p(σ 2

e1|π
(j+1)
1 , xi,Zi, i = 1, . . . ,N);

3.3. Sample y
(j+1)
i,mis from p(yi,mis,|π

(j)
2 , σ

2(j)
e2 , x̂i, yi,obs,

i = 1, . . . ,N);

3.4. Sample σ
2(j+1)
e2 from p(σ 2

e2|π
(j)
2 , x̂i,ω

(j)
i , yi,obs, y

(j)
i,mis,

i = 1, . . . ,N);

3.5. Sample ν
(j+1) from p(ν|ω

(j)
i , i = 1, . . . ,N);

3.6. Sample ω
(j+1)
i from p(ωi|ν

(j+1), σ
2(j+1)
e2 ,π

(j)
2 , x̂i, y

(j+1)
i,mis , yi,obs,

i = 1, . . . ,N);

3.7. Sample π
(j+1)
2 from p(π2|ω

(j+1)
i , σ

2(j+1)
e2 , x̂i, y

(j+1)
i,mis , yi,obs,

i = 1, . . . ,N).
4. Repeat Step 3.

3. APPLICATIONS OF THE ALMOND
PACKAGE

3.1. Example 1–Early Childhood Reading
Achievement
The first example is motivated by a study on the effect of
children’s relative age on early childhood reading achievement.
Zhong and Hoxby (2012) used the conventional frequentist
two-stage least squares (2SLS) model approach to examine
the relative age effect, using the Early Childhood Longitudinal
Study—Kindergarten Cohort (ECLS-K) data. In Zhong and
Hoxby (2012)’s original work, pairwise deletion was used to
handle missing data and the study assumed that the outcome
data were normally distributed. Answering the same research
question, Shi and Tong (accepted) applied a proposed Bayesian
robust two-stage causal modeling technique to deal with missing
data and potential outliers in the ECLS-K data. This example
provides a tutorial to the ALMOND package for implementing
the Bayesian robust two-stage causal modeling techniques. A
subset of ECLS-K data is built in the package.

ECLS-K is a large, nationally representative survey that tracks
children from kindergarten through the eighth grade. A subset of
the ECLS-K data is available in the package and can be read in
as data(subECLSK). The dataset contains missing values and few
outliers. To replicate previous studies, all variables of interest are
kept the same as in the original studies. Specifically, the outcome
variable of the study is the reading scores from the third grade.
The treatment variable/predictor is children’s relative age (i.e., the
difference between a child’s individual age and the median age
of all children in the same grade) measured in months. Because
relative age could be endogenous to parents’ observations of their
children (Zhong and Hoxby, 2012), and merely using children’s
relative age to predict the reading outcome as in conventional
linear models may lead to selection bias, because of potentially
omitted confounding factors (e.g., one’s intellectual maturity
which may affect the outcome—academic achievement but is
likely to correlate with the treatment—one’s relative age). One
solution is to incorporate an InsV which is correlated with
the causal treatment but has no direct effect on the outcome
variable so that the confounding effects are extracted by the

InsVs. Authors of the original study found a positive effect from
kindergarten through grade five in reading (Zhong and Hoxby,
2012), and that an ideal InsV could be the predicted relative
entrance age (interaction between a child’s birthday and the state-
level cut-off date for the school enrollment), as this variable is
highly correlated with the actual relative age, but uncorrelated
with the causal outcome itself or other unobserved determinants
of academic achievements such as maturity or aptitude (Allhusen
et al., 2007). With the inclusion of the predicted relative entrance
age as the InsV, the local average treatment effect (LATE) is
the causal effect of the early childhood relative age on reading
achievement for children who enroll in the same year that meets
the state-level requirements.

The example dataset has a continuous treatment variable and
contains 600 participants. The missingness rate in the outcome
reading score is 20%. All other variables have complete data. Few
outliers are in the outcome variable. The cont-normal-selection
model (M5) is appropriate to apply here and the ts.nnormal.s()
function in the ALMOND package is used. Following Zhong
and Hoxby (2012), the demographic information including
gender, race, socio-economic status, the number of siblings,
and parental education levels are included in the analysis as
covariates to control other potential confounding effects. Because
demographic variables are covariates exclusively for the causal
relations, but not for the relations between the InsVs and the
treatment variables, the demographic covariates are included
only to the second stage.

The added-on selection model is used in this example. The
outcome variable is the reading scores and the corresponding
missingness indicator variable for the reading outcome
data, mis.ind.read is stated using the m.ind argument, as
m.ind=subECLSK$mis.ind.read. Because the added-on selection
model is relatively complicated as it handles the non-ignorable
missingness in the outcome variable, a longer Markov chain is
usually preferred. The default burnin length is 50,000 for the
added-on selection model. In this example, a Markov chain of
100,000 with the first 60,000 iterations as the burn-in period is
requested. The code for this example is illustrated below. The
data-dependent priors (DDP) are used as the default priors in
the analysis. Specifically, parameter estimates of the coefficients
at both stages and the associated standard errors (SEs) are first
estimated by the traditional frequentist two-stage ordinary least
squares model (2SLS, Angrist and Imbens, 1995). These estimates
and the associated SEs are then used as the hyperparameters
in the prior specifications of the model. In this way, prior
specifications in the Bayesian analysis are more informative.

ou tpu t= t s . nnormal . s ( r e ad ing IRT~ r e lAge+
gender+ r a c e + s e s +numsib+pa r en t edu | PredEnt ,
d a t a =sub ECLSK , m. ind = subECLSK$mis . ind .
read , n . burn in = 60000 , n . i t e r =100000)

Geweke diagnostic is used to assess the model convergence.
Geweke z-score is 1.18 and shows convergence of the
Markov chains. Traceplot of the LATE estimate is also
presented in Figure 1. Both geweke z statistic and traceplot
are requested from the coda package with corresponding codes
illustrated below.
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FIGURE 1 | Traceplot of the LATE estimate.

t r a c e p l o t ( a s .mcmc . l i s t ( ou tpu t ) [ [ 1 ] ] [ , 5 ] )
geweke . d i a g ( a s .mcmc . l i s t ( ou tpu t ) [ [ 1 ] ] [ , 5 ] )

3.1.1. Results of the Reading Ability Study
Parameter estimates, their standard errors and 95% credible
intervals of the cont-normal-selection model are reported in
Table 2. The s2.slope parameter is also the LATE, often the
parameter of interest in a study. The LATE estimate means that
for a one unit increase in the relative age of kids who meet
the predicted entrance age requirement, their reading score is
expected to increase 9.5 points, holding other variables constant.
The average reading score for all kids who meet the predicted
entrance age requirement is 105.7 points, based on the intercept
estimate at stage 2. The intercept and slope estimates at the first
stage reflect the relation between the InsVs (the predicted relative
entrance age) and the causal treatment (the relative age of school
children). In other words, for a child with a one unit increase
in the predicted relative entrance age, the relative age is 0.116
higher. The number is significant but not large in quantitaty,
as the predictive relative entrance age is closely correlated with
the relative age. The remaining estimates are the coefficient
estimates of the covariates and the error variance estimates at
both stages.

3.2. Example 2–Public Housing Voucher
Program
This example investigates the effect that receiving and living
in a larger housing unit as part of a public housing voucher
program has on improving participants’ housing qualities. The
participation status of the voucher program is a dichotomous
data and a generalized Bayesian two-stage causal model is used
in this example. A similar research question has been examined
by Currie and Yelowitz (2000). In Currie and Yelowitz (2000)’s
studies, potential selection bias occurs as families participating
in the voucher programs trade physical housing amenities for
rental payment reductions which results in negative effects

TABLE 2 | Parameter estimates for early childhood reading achievement.

Est. S.E. CI.L CI.U

stage1.intercept −0.100 0.300 −0.600 0.500

stage1.slope 0.116 0.038 0.047 0.193

stage2.intercept 105.7 6.600 91.100 117.100

LATE 9.500 7.400 2.600 31.400

gender.coefficient 4.503 1.702 1.203 7.900

race.coefficient −1.070 0.473 −1.998 −0.141

ses.coefficient −1.421 0.739 −2.874 0.027

nsib.coefficient −1.341 0.858 −3.020 0.348

parentEdu.coefficient 15.260 2.155 11.020 19.490

stage1.variance1 0.087 0.005 0.077 0.097

stage2.variance2 0.003 1.91E-04 0.003 0.003

1. Est., Estimate; S.E., Standard Error; CI.L, 95% Lower credible interval; CI.U, 95%Upper

credible interval.

2. DIC for this model is 7936.

for the housing qualities, and an InsV is necessary. Because
previous theories have supported that a household having the sex
decomposition of an extra kid (i.e., having at least one girl and
one boy) is entitled to a larger housing unit as they often don’t
share bedrooms, this example chooses whether there is an extra
sex decomposition kid in the household as an instrument (1 if
yes and 0 otherwise). The study investigates the partial treatment
effect of the public housing voucher program on participants who
have one girl and one boy (i.e., having sex decomposition) in the
household. The outcome variable is the housing quality measured
as residents’ housing ratings. The causal treatment of interest is
the participation status in the public housing voucher program
(1 if participated and 0 otherwise).

Data are simulated based on the descriptive statistics in Currie
and Yelowitz (2000)’s study. The simulated data can be read in
as data(simVoucher) in the ALMOND package. For illustration
purposes, gender and marital status of the household head are
used as covariates in this example. The boxplot of the outcome
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housing quality (see Figure 2) shows evidence of extreme values
and extreme values could be potential outliers. A generalized
cat-robust model (M4) is fitted to the data and the gts.nrobust()
function from the ALMOND package is used. The model can
be specified using either the basic built-in feature as described
in Example 1, or the advanced user-defined feature which allows
more flexibility to users. This example illustrates the use of the
two features, with an emphasis on the advanced feature.

3.2.1. The Basic Built-In Feature
The application of the basic built-in feature follows a similar
logic to what was described in Example 1. Users only need to
place variables in the corresponding formula argument and read
in the data, and the model functions will take care of the rest
model specifications. Other arguments can be left as optional.
Under certain specifications, results from the basic and advanced
features should be the same. The code for the basic feature is
provided below. In the example code, the rating of the housing
qualities is the outcome variable and is placed on the left side
of the tilde (~) symbol in the model specification argument; the
treatment and other covariates are placed on the right of the tilde
(~) symbol and to the left of the verticle (|) symbol. The variable
listed to the right of the verticle (|) symbol is the InsV, which is
whether there is an extra bedroom in the participated household.
Note that there could be multiple InsVs in a study, which could
be reflected in the model specification argument, with all InsVs
connected by the addition (+) symbol on the right of the verticle
(|). In this example, there is one InsV.

ou tpu t= g t s . n robu s t ( hmRating~voucher
+headFemale+headMarr ied | ex t r aBed ,
d a t a=simVoucher )

The output serves as the basis for further Bayesian analysis,
such as making visualizations, conducting MCMC diagnostics
or computing information for posterior distributions. Readers
can save the output as the MCMC object using the function
output.mcmc = as.mcmc.list(output) and implement further
Bayesian analysis as necessary. Note that a generalized causal
model can be applied only when the treatment variable is binary
with the basic built-in feature. An error message will appear if the
categorical treatment variable has more than two levels. If users
wish to analyze categorical but not binary data, they can consider
using the advanced user-defined feature as illustrated below.

3.2.2. The Advanced User-Defined Feature
The basic feature limits the treatment data to be continuous
or binary, as well as the priors of the parameters to follow

FIGURE 2 | Boxplot of the housing quality.

certain types of distributions (e.g., normal or inverse gamma).
The advanced feature gives users the flexibility to specify any
model (e.g., a multinomial logistic model in the presence of the
nominal outcome) and any prior distributions. Users can self-
define the model part using the OpenBUGS language (Lunn
et al., 2009). The other parts (e.g., starting values, number
of chains) in the function remain the same as those in the
basic feature. Specifically, the advanced=TRUE and adv.model
arguments serve as the “twin” arguments to turn on the advanced
user-defined feature. The advanced=TRUE argument informs
the program that the user will self-define its own model, and
adv.model argument calls the name of the function that the user
previously defined. There will be three parts in the self-defined
adv.model argument. A breakdown of each part in the argument
is illustrated in details as below.

Three parts consist of the self-defined adv.model argument –
the model part, the prior part and the parameter reformatting
part. The following example uses the advanced feature to re-do
the same analysis illustrated from the basic feature.

my . model<− f u n c t i o n ( ) {
f o r ( i i n 1 :N) {

l o g i t ( p [ i ] ) <− b e t a 0 + b e t a 1 ∗ z [ i ]
x [ i ]~ dbern ( p [ i ] )
muY[ i ] <− gamma0 + gamma1∗p [ i ] + gamma2
∗x1 [ i ] + gamma3∗x2 [ i ]

y [ i ]~ d t (muY[ i ] , p re . u2 , d f )
}

b e t a 0~dnorm (0 , 1 E−6)
b e t a 1~dnorm (0 , 1 E−6)
gamma0~dnorm (0 , 1 E−6)
gamma1~dnorm (0 , 1 E−6)
gamma2~dnorm (0 , 1 E−6)
gamma3~dnorm (0 , 1 E−6)

pre . u2~dgamma ( . 0 0 1 , . 0 0 1 )

d f~dun i f ( 0 , 1 0 0 )

s1 . i n t e r c e p t <− b e t a 0
s1 . s l o p e 1 <− b e t a 1
s2 . i n t e r c e p t <− gamma0
s2 . s l o p e 1 <− gamma1
s2 . s l o p e 2 <− gamma2
s2 . s l o p e 3 <− gamma3
d f . e s t <− d f
v a r . e . s2 <− 1 / pre . u2

}

First, users define their own model function and assign it a name
(e.g., my.model). Going into the function, users specify the model
and use the tilde (~) symbol to represent the distribution of the
data. The example uses a logia function to model the binary
treatment variable and assumes a Student’s t distribution for
the outcome variable as part of the robust procedure. The data
distributions are described with corresponding hyperparameters
as below.

x~dbern ( p )
y~dt (muY, pre . u2 , d f )
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Next, prior distributions are defined for model parameters. In the
example, non-informative priors are specified for each parameter,
where regression coefficients from both stages follow normal
distributions with large variances, and error variance parameters
follow the inverse gamma distribution. Note that there is an
additional parameter estimate in the cat-robust model (M4) - the
degrees of freedom of the Student’s t distribution. The degrees
of freedom can be fixed a priori or estimated from the model.
Users have the flexibility to either assign an informative prior to
the function argument or specify the advanced model of their
own. Finally, in the last part users reformat the names of the
parameters that will appear in final results.

This self-defined model is used as an advanced feature in the
original gts.nrobust() function. The remaining specifications are
the same as those in the basic feature.

g t s . n robu s t ( hmRating~voucher+headFemale+
headMarr ied | ex t r aBed ,
d a t a=simVoucher , advanced=TRUE , adv . model=
my . model )

Both illustrations for the basic and advanced features in Example
2 are doing the same analysis. Note that although flat priors (e.g.,
beta0 ~ dnorm(0,1E-6)) are used in the example code, authors
always have the flexibility to specify a non-informative prior with
less variance [e.g., beta0 ~ dnorm(0,1E-2)]. One big advantage
of the ALMOND package is that users can flexibily specify a flat
prior or a non-informative prior either from the advanced feature
(as in the illustrated code above) or even in the basic feature. For
example, if users desire to specify a non-informative prior for
the LATE parameter (e.g., gamma1) from the basic feature, the
corresponding code would be as below, where the argument G0
represents a vector of variance hyperparameters for the priors for
the second-stage coefficients.

ou tpu t= g t s . n robu s t ( hmRating~voucher+
headFemale+headMarr ied | ex t r aBed , G0=c (1 e−06 ,
1e−02 ,1 e−06 ,1 e−06) , d a t a=simVoucher )

The parameter estimates, their standard errors and 95% credible
intervals of the cat-robust model are presented in Table 3. From
the LATE parameter estimate, it was found that the voucher
program participants who have the sex decomposition (i.e.,
at least one girl and one boy) in the household are more
likely to have better housing qualities than the non-participants
who also have the sex decomposition in the household.
The second-stage intercept estimate shows that program non-
participants who have the sex decompostition in the household
have a baseline unit score of 6.6 for the housing quality.
Among households that have the sex decomposition, program
participants have 1.20 unit higher housing quality score than the
non-participants. Covariates of gender and marital status do not
have significant effects of affecting program participation on the
housing qualities.

4. SUMMARY

Selection bias is a common and practical challenge in
observational studies and quasi-experimental designs for
causal inference. A Bayesian robust two-stage causal modeling

TABLE 3 | Parameter estimates for the voucher program effect.

Est. S.E. CI.L CI.U

stage1.intercept 1.80 0.10 1.70 1.90

stage1.slope 2.00 0.20 1.60 2.40

stage2.intercept 6.60 0.20 6.20 7.00

LATE 1.20 0.20 0.80 1.60

gender.coefficient –0.10 0.10 –0.30 0.10

marital status.coefficient 0.10 0.10 0.00 0.30

stage2.variance 4.20 0.10 3.90 4.50

df.est 34.50 7.90 17.80 46.70

1. Est., Estimate; S.E., Standard Error; CI.L, 95% Lower credible interval; CI.U, 95%Upper

credible interval.

2. DIC for this model is 9497.

technique was proposed to address the issue of selection,
which simultaneously accommodates the non-normality of the
data, handles ignorable and non-ignorable missing data, and
provides correct SE estimates for the partial treatment effect
estimation, while still performs well under ideal situations
(i.e., data are normally distributed and completely observed)
(Shi and Tong, accepted). The ALMOND package in R is
developed to directly apply this Bayesian robust two-stage
causal modeling approach. Previous causal studies have focused
mostly on categorical treatment variables, the ALMOND
package can be used for both categorical and continuous
treatment variables.

The ALMOND package has several distinct advantages. First,
the package adopts a Bayesian perspective to mitigate selection
bias. Most current causal inference software uses a frequentist
approach, which hardly handles non-normal data or missing
data, and has the potential problem of obtaining unreliable
standard error estimates. These issues can be simultaneously
addressed in one model using the Bayesian modeling framework
in the ALMOND package. Second, the package has a flexible
option for users to either directly apply Bayesian robust
two-stage causal models or write their own Bayesian models
from scratch. Therefore a broad range of audiences with
various statistical backgrounds and programming knowledge
can benefit from using the package. The ALMOND package
fills the methodology gap by adding the Bayesian approach to
existing software. The package is beneficial and accessible to
a broad range of methodologists and applied researchers in
social and psychological studies, which eventually help advance
the field of psychology and statistics. For this pursuit, here
we provide a tutorial for the newly developed R package to
facilitate the comprehension and application of the Bayesian
robust two-stage causal model with InsVs. Two examples using
simulated data based on existing empirical research literature
are used as illustrations of applying the models using the
ALMOND package.
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