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Abstract: Gut microbiota dysbiosis is a common feature in colorectal cancer (CRC) and inflammatory
bowel diseases (IBD). Adoption of the Mediterranean diet (MD) has been proposed as a therapeutic
approach for the prevention of multiple diseases, and one of its mechanisms of action is the modula-
tion of the microbiota. We aimed to determine whether MD can be used as a preventive measure
against cancer and inflammation-related diseases of the gut, based on its capacity to modulate the
local microbiota. A joint meta-analysis of publicly available 16S data derived from subjects following
MD or other diets and from patients with CRC, IBD, or other gut-related diseases was conducted.
We observed that the microbiota associated with MD was enriched in bacteria that promote an
anti-inflammatory environment but low in taxa with pro-inflammatory properties capable of altering
intestinal barrier functions. We found an opposite trend in patients with intestinal diseases, including
cancer. Some of these differences were maintained even when MD was compared to healthy controls
without a defined diet. Our findings highlight the unique effects of MD on the gut microbiota and
suggest that integrating MD principles into a person’s lifestyle may serve as a preventive method
against cancer and other gut-related diseases.

Keywords: microbiota; 16S; meta-analysis; Mediterranean diet; inflammation; adenoma; colorectal
cancer

1. Introduction

The increased incidence and mortality of many cancers observed in the last few
decades has been in part attributed to the modern and heavily industrialized lifestyle [1,2],
characterized by environmental pollution, stress, sedentarism, and a diet dominated
by pre-processed foods rich in fat, salt, meat, refined flour and sugar, and little to no
fresh vegetables, fruits and nuts, such as the so-called Western-type or Westernized diet
(WD) [3–5].

Lifestyle-changing therapeutic application of healthier dietary patterns has been
considered effective, non-invasive, and long-lasting [6–8], and several diets have been
proposed for the treatment or prevention of different diseases. One of the most widely used
is the Mediterranean diet (MD). This term encompasses a series of dietary patterns used
in countries of the Mediterranean coast, with shared common premises including high
consumption of fresh vegetables, fruits, nuts, grains, legumes and olive oil, moderate to
high consumption of fish, moderate consumption of dairy and wine, and low intake of meat
and sweets [9]. The benefits of MD have recently been suggested on several pathologies,
including cancer [10–13].

The modern Paleolithic diet (PD) is a different approach characterized by a high intake
of vegetables, fruits, nuts, eggs, fish and meat, minimizing that of grains, cereals, legumes,
dairy products, and processed foods [14]. Recently, it has sparked increasing interest due
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to its alleged beneficial effects on the prevention and treatment of diabetes, cancer, and
cardiovascular diseases [15–18].

In terms of microbiota composition, both MD and PD reduce the consumption of
simple sugars, animal fats, and processed foods compared to WD, and this alone is known
to have a potentially beneficial impact on microbiota and health [19–22]. However, MD
differs from PD by including carbohydrate sources such as grains and legumes, which PD
excludes, and by reducing the intake of animal-based protein, which has also been shown
to influence the microbiota composition [23–26].

It has been postulated that many of the effects of dietary interventions are driven
by the microbiota. Dietary components can shape the composition of the gut microbiota
and modulate its metabolism [27], which in turn will affect the production of beneficial
metabolites such as short-chain fatty acids (SCFA) and potentially toxic compounds such
as procarcinogen trimethylamine (TMA), or also modulate the metabolism and immune
response at the systemic and local level [28–32]. Under normal conditions, the microbiota
provides metabolic pathways that interact and complement the host metabolism, helping
to maintain normal organ function and nutrition while limiting the activity of pathogens.

Contrary to this normal state, the term dysbiosis refers to an imbalance in the compo-
sition and metabolism of the microbiota that has been associated with pro-inflammatory
conditions and therefore has been suggested to contribute to the pathogenesis of various
diseases, ranging from psychiatric diseases to metabolic disorders and cancer [31,33,34].
This imbalance and associated inflammation is often attributed to WD [3,4], and it plays an
important role in the pathogenesis of inflammatory bowel diseases (IBD) such as Crohn’s
disease (CD) and ulcerative colitis (UC) as well as colorectal cancer (CRC) [35–37]. Impor-
tantly, in recent years, the incidence of all these diseases has increased in industrialized
and newly industrialized countries [38,39].

Trying to define and describe the complex relations between diet, microbiota, and
disease, several cross-sectional and interventional studies describing the microbiota as-
sociated with specific dietary patterns or diseases have been conducted. No attempt has
yet been made to cross data from diet and disease studies to identify common or specific
bacterial populations that could be proposed for preventing gut-related diseases.

We performed a joint meta-analysis of 16S RNA data from subjects on diets such as
MD, PD, or WD, and patients with intestinal diseases related to inflammation or cancer.
We aimed to determine whether the microbiota composition linked to any of the diets may
justify a possible preventive or therapeutic use of the diet. This is by finding the bacteria
differently represented in each diet or disease and evaluating their reported health benefits
or pathogenic functions.

2. Materials and Methods
2.1. Data Acquisition and Inclusion Criteria

The 16S rRNA gene datasets included in the meta-analysis are publicly available and
were identified through a literature search in NCBI PubMed [40] and in the Sequence
Read Archive [41]. Search terms were “gut microbiota” or “16s” together with one of the
following: “colitis”, “IBD”, “Crohn’s disease”, “colorectal cancer”, “colon cancer”, “colon
adenoma”, “adenoma”, “colon polyp”, “Mediterranean diet”, “Western diet”, “Westernized
diet”, “paleolithic diet”, “fodmap”, and “ketogenic diet”. The search was limited to articles
published from January 2008 to July 2020. When the study did not include a public
availability statement, the corresponding author was contacted to ask for access to the data,
but we did not include any studies that required additional ethics committee approvals or
authorizations for access (e.g., controlled dbGaP studies). Inclusion criteria for all included
datasets were as follows:

1. Cross-sectional studies or dietary interventions with MD, PD, or WD, or case-control
studies of intestinal diseases such as colorectal cancer (CRC), colon adenoma (CA),
colon polyposis (CP), ulcerative colitis (UC), and Crohn’s disease (CD). May include
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or not healthy subjects (HC), healthy familiars of IBD subjects (FC), or subjects at risk
of developing CRC (RS).

2. Available 16s rRNA gene sequences derived from human feces with associated quality
scores and metadata.

3. Samples obtained when subjects or patients were not under drug treatments.
4. Data from at least 10 patients, subjects following a defined diet or healthy subjects

with a minimum of 6000 reads each.

2.2. Study Groups

Subjects from the obtained databases were assigned to different groups, defined
according to the subject’s dietary pattern and (or) diagnosed gastrointestinal disease. Either
cross-sectional or interventional studies on MD, PD, and WD diets were included in the
analysis. Diet composition and the main hallmarks of each diet were obtained directly
from the included publications. WD featured a low content of fiber, fruits, and vegetables
contrasted by a high consumption of refined carbohydrates and saturated fats [42]. PD
was characterized by the consumption of vegetables, fruits, seeds, lean meat, eggs, and
fish, the reduction of salt and refined sugars, and the exclusion of grains, pulses, and dairy
products [43]. Adherence to MD was defined with validated scores [44,45].

Case-control cross-sectional studies and pre-treatment data from clinical trial reports
on CRC, CA, CP, UC, and CD were included; guidelines for the diagnosis of all diseases
are reported in the corresponding study. HC, FC, and RS subjects were obtained when
available in any of the included studies, none of them followed any specific or controlled
diet. HC and FC subjects were all healthy, RS subjects were defined as at risk of developing
CRC after colonoscopy, had previous personal or familiar history of CRC, or presented
obesity (BMI ≥ 30, Table S2). None of the subjects in the HC, FC, or RS groups followed a
defined diet. Additional studies [27,46–48] were included with the intention of increasing
the number of control subjects.

2.3. Data Analysis and Statistics

Raw sequences were processed and analyzed in QIIME 1.9.1 [49]. Sequences were
quality filtered with Trimmomatic [50] by truncating when the average quality in a four-
base sliding window dropped below Q < 25. Surviving high-quality reads were sorted
with 99% similarity into operational taxonomy units (OTUs) with uclust [51] and aligned
against the Greengenes 13.8 database with 97% similarity using PyNAST [52,53]. Chimeric
sequences were detected with ChimeraSlayer [54] and excluded from downstream analysis.
This stringent processing and analysis resulted in several processed samples not meeting
the initial inclusion criteria; therefore, samples with less than 6000 surviving reads and
datasets with less than 10 subjects per group were dropped. OTUs with less than 10 reads
were also discarded for further analyses.

All data were analyzed together and with the same parameters. Taxonomy assignment
was performed with a widely used and trusted reference database covering all included
variant regions of the 16s rRNA gene [53]. Sequences that failed to align to the database
were not considered. Alpha diversity was assessed using Chao1 metric, total observed
OTUs, and the Shannon diversity index. Significance of the test was determined with a non-
parametric T-test, and p-values were corrected with the false discovery rate (FDR) method
(Tables S1 and S2). Only comparisons presenting p < 0.001 were considered significant.
Beta diversity was estimated using Unifrac distance metrics [55]. Jackknife-supported
Principal Coordinates Analyses (PCoA) were performed with QIIME and visualized with
Past 4.03 [56] (Figures S3–S6). The significance of PCoA data separation was verified with
a permutation test with pseudo-F ratios (function ADONIS) and an analysis of similarities
(function ANOSIM) (Tables S3 and S4).

OTU representation was summarized at the phylum, family, and genus levels follow-
ing the QIIME pipeline (Tables S5–S7); only fully annotated OTUs were considered for
analysis. Fold change was calculated in all instances using the abundance of group HC as a
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reference. The Wilcoxon rank sum test was used to assess differentially represented OTUs;
p-values were corrected for FDR and considered statistically significant when p < 0.01
(Tables S6 and S8). All statistical analyses were performed in QIIME.

3. Results

A total of 168 clinical or observational studies on diet or gut diseases-associated
microbiota, 42 of which included 16S rRNA analysis, were initially identified. Datasets
corresponding to 26 studies were available; two of them were discarded, as samples were
not sufficiently annotated. Another seven studies did not reach the minimum threshold of
10 samples with at least 6000 quality-checked reads and were discarded.

The remaining 17 studies were included in the meta-analysis. Included datasets
comprised 1931 human fecal samples for a total of 157,425,716 reads; 80.9% of the samples
(1563) and 95.7% of reads (150656411) survived the quality check and were used for the
analyses. Samples were assigned to eleven different groups (Table 1 and Table S1).

Table 1. Groups included in the meta-analysis.

Group 1 Diet Disease Status Subjects Description Studies

HC Undefined No disease 196 Healthy subjects non-related to patients [27,47,48,57–59]
FC Undefined No disease 54 Healthy familiars of IBD patients [60]
RS Undefined No disease 214 Subjects at risk of CRC 2 [44,57,61–63]

WD Western-type No disease 38 Diet subjects. Healthy [42]
PD Modern Paleolithic No disease 15 Diet subjects. Healthy [43]
MD Mediterranean No disease 123 Diet subjects. Healthy [61,62,64]
CP Undefined Colon polyposis 23 Patients [63]
CA Undefined Colorectal adenoma 662 Patients [57,63,65–67]

CRC Undefined Colorectal cancer 155 Patients [57,65,66]
UC Undefined Ulcerative colitis 38 Patients [59,60]
CD Undefined Crohn’s disease 45 Patients [58–60]

1 Groups: Healthy subjects (HC) and healthy familiars of IBD patients (FC). Subjects at risk of developing colorectal cancer (RS), patients
with colon polyps (CP), colon adenoma (CA), colorectal cancer (CRC), Crohn’s disease (CD), and ulcerative colitis patients (UC). Subjects
following a Mediterranean (MD), modern Paleolithic (PD) or Western-like diet (WD). 2 Further criteria information in Table S2.

3.1. Alpha and Beta Diversity

Alpha diversity presented no significant differences (p < 0.001) between either diet
and disease groups or respect to the HC controls (Figures S1 and S2, Table S3).

Beta diversity components of groups HC, FC, and RS, observed in PCoA, presented
no significant separation. Instead, MD distanced from WD, PD, HC, and RS groups.
Likewise, CRC and CA formed separated clusters, which were partially segregated from
RS and HC. UC and CD clustered together but remained separated from HC and FC. MD
also segregated when confronted to CA, CRC, UC, and CD. In all cases, the separation
was more evident with unweighted data, which only take into account the presence of
OTUs, compared to weighted data, which consider both the presence and abundance of
OTUs. (Figure 1, Figures S3–S8, Table S4). These distributions suggest that the microbiota
composition of the subjects following MD is different from diseases and controls, and this
effect is not shared by the other diets.

3.2. Microbiota Composition Analysis

Average proportional composition of all groups by phyla and genera can be found
in Figure 2 and Tables 2 and 3; only significant differences (p < 0.01) were discussed
(Tables S5–S7).
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Figure 1. Analysis of bacteria community components. Principal coordinates analysis of Unifrac distances for the different
groups. Ellipses indicate 95% confidence intervals. Groups: Healthy subjects (HC), subjects at risk of developing colorectal
cancer (RS), healthy familiars of IBD patients (FC). Patients with colon polyps (CP), colon adenoma (CA), colorectal cancer
(CRC), Crohn’s disease (CD), and ulcerative colitis (UC). Subjects following a Mediterranean (MD), modern Paleolithic (PD),
or Western-like diet (WD).

Table 2. Average OTU composition (%) of the different groups at phylum level.

Phylum 1 HC RS FC MD PD WD CP CA CRC IBD

Firmicutes 58.9506 52.9856 50.5467 60.7094 62.6186 68.4219 43.9497 60.7098 57.1596 57.2953
Bacteroidetes 27.2735 33.3556 44.5428 23.4625 27.3412 15.0817 50.2231 27.0028 23.5202 30.5508
Proteobacteria 3.4721 4.7896 1.1461 3.3301 4.4188 1.6484 3.8428 6.5936 9.7906 3.8073
Actinobacteria 6.5486 5.6996 1.7042 8.7902 3.6509 11.9093 0.6523 1.2800 1.1112 6.7657

Verrucomicrobia 2.6702 2.5748 1.2910 3.1041 1.4947 0.9764 0.0091 2.5214 3.9575 0.8956
Euryarchaeota 0.5848 0.2252 0.2990 0.0847 0.0536 0.4117 0 1.0877 1.7885 0.0168
Fusobacteria 0.0146 0.0197 0.0029 0.0025 0.0042 0.0848 0.0117 0.2145 2.0454 0.2526
Tenericutes 0.3459 0.1043 0.3512 0.0482 0.2094 0.7785 0.0971 0.3692 0.2732 0.0329

Cyanobacteria 0.0581 0.1052 0.1002 0.2465 0.1488 0.2541 0.0536 0.0625 0.0579 0.0284
Synergistetes 0.0098 0.0513 0.0014 0.0441 0.007 0.0041 0.4129 0.0848 0.1576 0.0005
Chloroflexi 0.0024 0.0342 0.0008 0.0047 0 0.0179 0.4694 0.03 0.0011 0.0007

TM7 0.0083 0.0191 0.0055 0.0653 0.007 0.0039 0.0013 0.0033 0.0014 0.0210

Groups: Healthy subjects (HC), subjects at risk of developing colorectal cancer (RS), and healthy familiars of IBD patients (FC), Subjects
following a Mediterranean (MD), modern Paleolithic (PD) or Western-like diet (WD). Patients with colon polyps (CP), colon adenoma (CA),
colorectal cancer (CRC), and inflammatory bowel diseases (IBD). 1 Phyla with an average relative abundance > 0.01%.
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Figure 2. Microbiota composition of the different groups. Relative abundance of the most represented (A) phyla and
(B) families. Groups: Healthy subjects (HC), subjects at risk of developing colorectal cancer (RS), healthy familiars of IBD
patients (FC). Subjects following a Mediterranean (MD), modern Paleolithic (PD), or Western-like diet (WD). Patients with
colon polyps (CP), colon adenoma (CA), colorectal cancer (CRC), Crohn’s disease (CD), and ulcerative colitis patients (UC).

Table 3. Average OTU composition (%) of the different groups at family level.

Family 1 HC RS FC MD PD WD CP CA CRC IBD

Bacteroidaceae 20.0833 21.4943 34.1572 15.4143 15.5215 10.1769 28.9815 23.0839 15.5119 17.7059
Ruminococcaceae 19.1884 19.3032 17.7934 23.7961 26.1617 15.8293 17.3777 21.0300 17.0954 12.9261
Lachnospiraceae 23.0466 13.8709 19.8088 16.7415 13.7672 25.2004 14.8706 19.0354 21.5969 32.3826
Prevotellaceae 3.4126 6.4874 2.9435 3.3205 7.9948 0.9122 7.1719 2.1619 2.4454 0.5454

Verrucomicrobiaceae 2.5702 2.5748 1.3390 3.1041 1.4059 1.0218 0.0091 2.6860 4.7985 1.4723
Enterobacteriaceae 1.8800 2.3051 0.1756 1.4505 1.5145 0.9643 2.8031 3.1807 4.6496 2.8912

Rikenellaceae 1.2078 2.3913 3.3995 0.9956 0.6892 1.3703 1.5607 3.7645 1.3509 1.4844
Veillonellaceae 1.3149 2.6069 1.5675 3.3201 3.1355 0.9408 1.4446 2.0480 3.2348 3.0156

Erysipelotrichaceae 1.3873 2.9033 1.6074 3.5306 2.7406 3.0238 2.0810 2.1707 1.2688 1.9607
Clostridiaceae 2.1895 1.5247 1.5840 1.8002 2.9558 10.5602 2.4377 1.8124 2.0468 3.6841

Bifidobacteriaceae 2.4882 3.0881 1.4775 3.8193 0.9905 8.5908 0.1076 0.7255 0.6851 4.1287
Porphyromonadaceae 1.4686 1.9259 2.1814 1.3922 0.6344 0.5258 1.9845 2.1017 2.6539 0.7964

Coriobacteriaceae 2.2984 2.8772 0.1868 4.8781 2.4784 3.3779 0.3076 0.4466 0.5358 3.5795
Streptococcaceae 0.7604 1.1587 0.1391 1.1514 1.6407 1.5708 0.8787 0.8000 1.3647 2.4764
[Barnesiellaceae] 0.8793 1.0808 0.7642 0.4972 0.5040 0.4677 0.4404 0.8730 0.4621 0.1233

[Paraprevotellaceae] 0.4943 0.8159 0.3284 0.8542 0.8998 0.6662 3.1720 0.7737 0.6244 0.0257
S24–7 0.6452 0.8367 0.4641 0.5315 0.2762 0.3106 0.6800 0.5968 0.9590 0.1841

Methanobacteriaceae 0.6146 0.2509 0.2882 0.0847 0.0512 0.4403 0 0.6862 1.5798 0.0292
Alcaligenaceae 0.6979 0.8799 0.5232 0.2415 0.6768 0.2323 0.1827 0.2702 0.2863 0.3770
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Table 3. Cont.

Family 1 HC RS FC MD PD WD CP CA CRC IBD

[Odoribacteraceae] 0.5183 0.2700 0.1939 0.2048 0.3140 0.2704 0.1536 0.2848 0.3808 0.0449
Desulfovibrionaceae 0.2213 0.4774 0.1547 0.2684 0.2958 0.1048 0.1304 0.2288 0.3753 0.1004

Peptostreptococcaceae 0.2905 0.3369 0.0330 0.3157 0.2815 0.2195 0.5588 0.1831 0.4749 0.5393
Christensenellaceae 0.2410 0.1657 0.2954 0.1624 0.5880 0.0704 0.1304 0.2189 0.7917 0.0163
Sphingomonadaceae 0.0051 0.0001 0.0001 0.0007 0 0.1645 0.0001 0.3026 1.3384 0.0001

Lactobacillaceae 0.2327 0.0474 0.0032 0.3848 0.0170 0.1321 0.3623 0.1945 0.3568 0.4582
Fusobacteriaceae 0.0173 0.0191 0.0035 0.0020 0.0040 0.0519 0.0030 0.2023 1.1520 0.2526

Groups: Healthy subjects (HC), subjects at risk of developing colorectal cancer (RS), and healthy familiars of IBD patients (FC), Subjects
following a Mediterranean (MD), modern Paleolithic (PD), or Western-like diet (WD). Patients with colon polyps (CP), colon adenoma
(CA), colorectal cancer (CRC), and inflammatory bowel diseases (IBD). 1 Families with an average relative abundance > 0.01%.

Comparison between groups showed that MD-induced microbiota is different from
that of the other diets, the controls without a defined dietary pattern (HC), and the RS
group (Tables 2 and 3, Figure 2).

Out of the 12 most abundant phyla, nine were differently represented in MD com-
pared to WD and four were differently represented in MD compared to PD (Table S5).
The high data variability of the PD group reduced the significance of its differences with
other groups. Still, MD differed from both PD and WD by an increase in Verrucomicrobia
(p = 0.0099 and p = 5.6 × 10−6 respectively), and from WD alone by a higher representa-
tion of Bacteroidetes (p = 7.9 × 10−7) and lower Firmicutes (p = 0.0002), Euryarchaeota
(p = 0.0003) and Fusobacteria (p = 2.4 × 10−10), among other phyla. MD also presented
nine differently represented phyla to RS and FC, and seven to HC, including a lower
representation of Fusobacteria (p = 0.0027, p = 0.0051 and p = 0.0002 respectively) and
higher of Verrucomicrobia and Actinobacteria (p < 0.0001 for all).

Among diseases, the CRC group distinguished from CA and CP by a higher presence
of Proteobacteria, Fusobacteria, Euryarchaeota, and Verrucomicrobia (p < 0.0001 for all).
The representation of these phyla was also higher in CRC than in HC (Proteobacteria
p = 0.005, Fusobacteria p = 0.0051, Euryarchaeota p = 0.005 and Verrucomicrobia p = 0.0082),
RS (p < 0.0001 for all). Chronic inflammation-related UC and CD did not present statistically
significant differences between them at any taxonomic level (Tables S5–S7); therefore, the
two groups were merged for further comparison (IBD group). The IBD group presented
seven differently represented phyla than HC among the 12 most abundant, but only three
to FC, with a higher proportion of Firmicutes (p = 0.0002 and p = 2.5 × 10−5 respectively)
and Actinobacteria (p = 0.002 and p = 0.0006) against both, and also higher Fusobacteria
(p = 0.002) and lower Verrucomicrobia (p = 0.0002) compared to HC alone. The number of
differentially represented phyla among the 12 most abundant in MD compared to CA and
CRC was nine and ten respectively, with MD presenting higher Actinobacteria and lower
Proteobacteria and Fusobacteria compared to both (p < 0.0001 for all). Differently, MD
showed a higher proportion of Verrucomicrobia than CA (p = 3.5 × 10−14) but lower than
CRC (p = 7.3 × 10−22). Likewise, compared to IBD, MD had nine differentially represented
phyla, including a higher proportion of Actinobacteria (p = 0.0001) and Verrucomicrobia
(p = 4.9 × 10−5), and lower of Proteobacteria (p = 0.0003) and Fusobacteria (p = 2.6 × 10−12).

Some of the phyla described showed progressive increases or decreases in their relative
abundance from subjects in the healthy, at-risk, and cancer-related groups, placing MD
furthest from CRC (Figure 3).

The differences observed in some phyla were also present at genus levels. Actinobac-
teria phylum is composed by several genera differently represented between groups, being
the most abundant Bifidobacterium, Collinsella, Adlercreutzia, and a non-annotated OTU
within family Coriobacteriace (Figure 4). Adlercreutzia was higher in MD with respect to HC,
RS, CA, CRC, and IBD (p = 0.0011, p = 0.0024, p = 0.0003, p = 0.0002 and p = 0.007, respec-
tively), while Collinsella was increased in IBD compared to HC, FC, and MD (p = 1.3 × 10−6,
p = 0.0074 and p = 0.0086, respectively). Finally, Bifidobacterium was decreased in CRC
compared to HC, RS, and MD (p = 0.0005, p = 2.5 × 10−5 and p = 1.5 × 10−18, respectively).
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Figure 3. Phyla progressively increased or decreased from subjects in the Mediterranean diet (MD), healthy subjects (HC),
subjects at risk of developing colorectal cancer (RS), colon adenoma (CA), and colorectal cancer patients (CRC) groups.
Mean log10 fold change was calculated using the relative abundance in the HC group as a reference. Significant differences
between MD and HC, HC and RS, RS and CA, and CA and CRC (FDR < 0.01) were found for all phyla except for CA and
CRC comparison in TM7 (FDR = 0.96) (Table S5). Euryarchaeota and TM7 presented changes in relative abundance between
HC and RS that do not follow the general trend; however, CA was increased in the former phyla and decreased in the latter
when compared to both HC and RS.
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Figure 4. Actinobacteria composition at the genus level. Relative abundance corresponds to the
average percentual fraction of reads in the group representing each OTU. Groups: Subjects following
a Mediterranean diet (MD), healthy subjects (HC), subjects at risk of developing colorectal cancer (RS).
Patients with colon adenoma (CA), colorectal cancer (CRC), or inflammatory bowel diseases (IBD).
* Genus or genera unannotated in the reference database. ** Less abundant genera and sequences
that could not be classified at the genus level.

Analysis of genera also showed differences between groups that were not evident at
the family level. The [Ruminococcus] genus from Lachnospiraceae was less represented in
MD compared to HC (p = 3.6 × 10−21), FC (p = 1.5 × 10−9), and RS (p = 1.2 × 10−7), while it
was increased in both IBD (p = 0.0097) and CRC (p = 4.4 × 10−5) against HC. Veillonellaceae
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is mainly constituted by the genera Dialister, Veillonella, and Phascolarctobacterium, which
were the most abundant in MD, IBD, and CRC respectively (Figure 5).
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Figure 5. Lachnospiraceae and Veillonellaceae composition at genus level. Relative abundance corresponds to the average
percentual fraction of reads in the group representing each OTU. Groups: Subjects following a Mediterranean diet (MD),
healthy subjects (HC), subjects at risk of developing colorectal cancer (RS). Patients with colon adenoma (CA), colorectal
cancer (CRC), or inflammatory bowel diseases (IBD). * Genus or genera unannotated in the reference database. ** Less
abundant genera and sequences that could not be classified at the genus level.

Other phyla such as Verrucomicrobia, Euryarchaeota, and Fusobacteria were preva-
lently constituted by a single genus: Akkermansia, Methanobrevibacter, and Fusobacterium,
respectively (Tables S5–S7).

4. Discussion

The Mediterranean diet is widely accepted as part of a healthy lifestyle. Several
studies, including those from our meta-analysis, show that the microbiota of MD subjects is
enriched in bacteria with beneficial properties that help in maintaining gut barrier function
and reducing inflammation. Instead, pathogenic bacteria with pro-inflammatory properties,
which can impair the epithelial barrier function and produce toxic metabolites, are poorly
represented. The gut microbiota of IBD, adenoma, and CRC shows an unbalanced bacterial
composition that contributes to disease progression. We investigated if the bacterial
population induced by MD may have preventive properties against these diseases.

Beta diversity analysis confirmed that microbiota associated to MD was different
from that of the disease and control groups, and this was not observed with the other
diets. Analysis of differently represented OTUs between groups found bacteria with a
tendency to increase or decrease along an axis formed by MD–HC–RS–CA–CRC groups.
In agreement with the hypothesis of microbiota components accompanying the formation
of adenomas and the development of CRC, phyla with pro-inflammatory properties such
as Proteobacteria and Euryarchaeota increased along the axis. A similar trend was also
observed for Fusobacteria, which are known to promote colorectal carcinogenesis. In
contrast, Actinobacteria, which include SCFA producers with anti-inflammatory properties,
decreased (Figure 3).

The limited number of studies available on PD, WD, and CP resulted in the high
variability and lack of statistical significance on these groups, and they did not consistently
fit the axis. No statistical difference was found between PD and HC at the phylum level.
Instead, WD presented a high variability and may be considered part of the axis in some
cases, such as Fusobacteria, but not in others, such as Actinobacteria (Table S5). CP was
found many times at similar levels to HC and RS, for example, in Proteobacteria and
Fusobacteria. The IBD group, made up of subjects obtained from three different studies,
had characteristics that could be considered intermediate between HC and CRC, because
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in most cases, it presented abundance levels similar to the first, as in Actinobacteria, or to
the latter, as in Fusobacteria.

The Proteobacteria phylum is a marker of gut dysbiosis [68], and one of the phyla
increased along the axis. It has been associated with a high-fat diet and obesity in mice [69],
with consumption of animal fat [70], and most importantly, with a colonic mucosa more
easily penetrated by other bacteria [71]. This may explain the low abundance observed in
MD, where animal fat consumption is greatly diminished, but not in PD, which includes
several animal-derived products. Still, Proteobacteria is the most differently represented
phyla between MD and PD (p = 8 × 10−5) and coincidently also between MD and HC
(p = 2.6 × 10−20) (Table S5). The decrease of Proteobacteria in PD compared to HC was
not significant (p = 1). The increasing trend along the axis is found further down at
the family level, driven by Enterobacteriaceae, whose enrichment in the gut is favored by
inflammation [72]. This family has previously been found increased in patients with
CRC and IBD [73,74] and is a proposed marker of epithelial dysfunction [75]. Other
families within Proteobacteria are also decreased in MD compared to controls and diseases,
including Sphingomonadaceae and Helicobacteraceae. Sphingomonadaceae’s most abundant
genus, Sphingomonas, was found increased in IBD patients and is associated with CD
recurrence [76,77], and it increased in colitis-associated CRC patients as well [78]. The
Helicobacteraceae family includes the pathogen Helicobacter pylori, whose prevalence is
increased in patients with gastric cancer [79]. This bacterium promotes its pathogenesis by
inducing chronic inflammation, accumulation of mutations, and aberrant DNA methylation
in the gastric mucosa through the expression of different virulence factors [80–82]. It is also
found increased in CA and CRC patients [83], and its participation in CRC development
has been suggested [84,85].

The most abundant Fusobacteria species, Fusobacterium nucleatum, is a pathogen in-
creased in IBD and CRC [86–88]. Fusobacterium suppresses the immune cell response in the
gut while also promoting a pro-inflammatory and tumorigenic environment. It produces
the virulence factor FadA, which is capable of binding E-cadherin and activating beta-
catenin [89], and Fap2, which can inhibit NK and T cell activity [90]. It also recruits several
tumor-promoting cells, such as myeloid-derived suppressor cells and tumor-associated
neutrophils and macrophages [91]. F. nucleatum promotes the destruction of the mucosal
barrier by activating the endoplasmic reticulum stress pathway [92], and it has been as-
sociated with accelerated DNA methylation in the mucosa of UC patients [93]. The low
abundance of Fusobacterium in MD may be associated with augmented dietary fiber and
reduced fat consumption, as reported by studies on similar dietary patterns [94,95]. The
reduction in abundance of a pathogen with such a significant role in cancer is indicative
of the potential preventive function of the MD diet. Fusobacteria was also the most sig-
nificant differently represented phylum between MD and WD (p = 2.4 × 10−10), and its
greater representation in the latter when compared to HC may be indicative of a dietary
adverse effect.

The only archaea phylum in the meta-analysis, Euryarchaeota, also increased along
the MD–HC–RS–CA–CRC axis, except for RS (Figure 3). Euryarchaeota’s main compo-
nent, Methanobrevibacter smithii, is the dominant archaea species in the human gut, and
its abundance correlates with the activation of several pro-inflammatory pathways in
multiple sclerosis [96]. It is increased in CA and CRC patients [97] and decreased in
obese individuals [98], which may explain the reduction observed in RS, which is a group
defined by obesity and other commonly related clinical markers. According to the liter-
ature, Methanobrevibacter presented a low abundance in MD subjects [99]. The presence
of Methanobrevibacter has been associated with the consumption of dietary fiber [100], but
dairy products, which are consumed with moderation in MD, are also possible sources of
M. smithii [101]. A similar low representation was found for PD, although the decrease was
non-significant compared to HC.

An abundance of Actinobacteria has been associated with the consumption of dietary
fiber and production of SCFAs [102,103]. These anti-inflammatory compounds are a source
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of energy for epithelial cells and help maintain the stability of the gut barrier [28,104].
Bifidobacterium and Adlercreutzia, two commensals with anti-inflammatory properties that
are used as probiotics [105,106], were the most abundant Actinobacteria genera in MD
(Figure 4). The most common Adlercreutzia species is A. equolifasciens, which can produce
the anti-inflammatory molecule equol [106,107]. Equol-producing microbiota is found in
59% of vegetarians compared to 25% in non-vegetarians [108]. The increase in vegetables
consumption, together with the inclusion of omega 3-rich fat, which has also been related
to an increase in Adlercreutzia [109], may explain its abundance in MD. We also found an
increase of Actinobacteria in IBD subjects compared to FC and HC, confirming previous
reports [110], but the increase was driven by the genera Bifidobacterium and Collinsella, and
not by Adlercreutzia (Figure 4). Both Collinsella and Adlercreutzia are found in the Coriobacte-
riaceae family, but the bile-tolerant Collinsella has been linked to pro-inflammatory diseases,
obesity, and low fiber consumption [111–113]. Another Actinobacteria genus increased
in MD was Slackia, which was previously found increased after an intervention with a
modified Mediterranean-ketogenic diet [114], and it includes species such as S. equolifa-
sciens and S. isoflavoniconvertens, which are capable of producing equol [115,116] but also
the opportunistic S. exigua [117]. Actinobacteria phylum was found to be increased in the
WD group compared to HC and PD, and indeed, this was the most differently represented
phylum between PD and WD, but the increase was not significant compared to MD. At
the genus level, WD had the second highest abundance of Collinsella, higher than MD, HC,
and even RS, and only below that of the IBD group.

Another phylum that decreased along the MD–HC–RS–CA–CRC axis is TM7, which is
currently known as candidatus Saccharibacteria, as it seems to consume mainly sugars [118],
but studies on its potential role and activity are scarce. They are obligate epibionts/parasites
of other bacteria, and their increase has been reported in the context of IBD [119], although
the first successfully cultured strain repressed the expression of inflammatory TNF-alpha
induced by its host [120]. Unfortunately, the lack of information on this phylum does not
offer a possible explanation for its apparent increase in MD subjects.

The low fat and high dietary fiber content typical of MD foster an environment that
favors the growth of anti-inflammatory bacteria and hinders that of pro-inflammatory and
pathogenic bacteria. This is also evident when MD is compared to HC and highlights its
beneficial effect on gut health.

Other phyla that did not follow the axis are also modulated by diet components
typical of MD, but differences are observed at lower taxonomic levels. This was the case
for families and genera within Firmicutes, including Ruminococcaceae, which had increased
in MD and PD compared to all the other groups (Table 3). Several species of butyrate-
producing bacteria are found within this family [121], and its abundance in MD and PD is
most likely linked to the high consumption of dietary fiber, from which SCFAs are derived.

Two other Firmicutes families with both pro-inflammatory and anti-inflammatory
components, Lachnospiraceae and Veillonellaceae, had differences at the genus level. Lach-
nospiraceae was lower in the MD group than in IBD and CRC (Figure 5). Regarding the
genera included in this family, [Ruminoccocus], it was increased in IBD and CRC. These
mucolytic bacteria have been found increased in IBD subjects, and one of its species,
R. gnavus, synthesizes a pro-inflammatory polysaccharide [122–124]. Instead, butyrate
producers with local anti-inflammatory effect, belonging to Roseburia, are depleted in both
IBD and CRC [125–127]. MD and also PD were enriched in genera with anti-inflammatory
properties, including Coprococcus, which can produce indole-propionic acid, which is a
tryptophan-derived metabolite with antimycobacterial, antioxidant, and anti-inflammatory
activities [128,129]. Furthermore, Dorea was increased in MD, while PD was enriched in
Lachnospira. Both genera include some SCFA-producing pectin fermenters and are asso-
ciated with vegetarian and vegan diets [130–132], but they have also been reported to
increase in obese subjects [133,134]. Blautia is a butyrate producer inversely related to
intestinal inflammation [135] but was nevertheless found increased in IBD.
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The family Veillonellaceae was increased in MD, CRC, and IBD compared to HC. The in-
crease in MD was mainly driven by the genus Dialister, in CRC by Phascolarctobacterium, and
in IBD by Veillonella (Figure 4). Bacteria belonging to these genera are capable of converting
succinate and lactate into propionate [136–139]. Succinate and lactate are metabolites
abundant in the tumor microenvironment, have pro-inflammatory properties, and partic-
ipate in the activation of tumor-associated macrophages [140,141]. Lactate is also found
increased in IBD patients and correlates with disease severity [142]. Dialister abundance is
negatively correlated with total carbohydrates and starch ingestion [143] but is increased
by the ingestion of dietary fiber [144,145], which would explain the increase in MD. Im-
portantly, a higher anti-inflammatory response driven by the inclusion of whole grains
in the diet was observed in subjects with increased proportions of Dialister [145]. Phasco-
larctobacterium increased in CRC and decreased in IBD. Its abundance has been associated
with lower circulating levels of inflammatory markers [146], and the decrease observed
in IBD has already been reported in patients and linked to colon inflammation [147]. An
increase in Phascolarctobacterium was reported in CRC patients, particularly early-stage
patients [148,149], and interestingly, both succinate and lactate are overrepresented in their
fecal metabolome [149]. Therefore, its increase in CRC may be related to the augmented
succinate and lactate availability and not necessarily to the gut microbiota health or the
local inflammation status. The genus Veillonella, which was increased in IBD (Figure 4), in-
cludes the species V. parvula, which expresses a lipopolysaccharide with pro-inflammatory
activity [150] and induces strong expression of proinflammatory IL6 in vitro, inhibiting the
expression of potentially antitumoral IL12p70 induced by other bacteria [151]. Veillonella
was also increased and was positively correlated with pro-carcinogenic TMAO levels in
IBD patients, and it was further increased in Crohn’s patients with deep ulcers [152,153].

The less frequent Veillonellaceae genera Megasphaera, Acidaminococcus, and Mitsuokella
are also SCFA producers [154–156]. They all use amino acids as a carbon source and have
different affinities for them [157]. This observation could explain the different abundances
observed, as vegetable sources (soy, rice), which are increased in MD, have less lysine but
more histidine than animal sources (whey) [158]. For example, Megasphaera, which was
low in the MD group, grows well in the presence of lysine but not of histidine [157].

Another taxon of interest is the phylum Verrucomicrobia, mainly composed of the
genus Akkermansia, which we found increased in MD and decreased in IBD compared to RS,
HC, or FC, but also increased in CRC. The presence of this mucolytic bacterium is normally
associated with a healthy microbiota [159] and inversely related to inflammation [160]. The
increase observed in MD has not been reported before and may be related to the ingestion of
fiber, which has been shown to increase mucin expression in animal models [161,162]. The
decrease in Akkermansia abundance in IBD subjects and the increase in CRC had already
been reported [122,148,163]. Its high abundance in cancer is probably associated with
changes in mucins expression associated with CRC progression, including an upregulation
of MUC5AC and downregulation of MUC2 [164], and even the loss of its expression in
some patients [165]. Although a direct association between mucin types expression and
mucolytic bacteria abundance has not been demonstrated, an increase of Akkermansia has
been observed in Muc2-/- mice [166], and in the Winnie mice strain, which produces an
aberrant MUC2 [167]. Conversely, Akkermansia is decreased in in vitro culture assays with
MUC2 as the sole carbon source, while growth of [Ruminoccocus] species is favored [122].

For the phylum Bacteroidetes, we observed a decrease in the Prevotellaceae family and
its main genus Prevotella, in IBD, CA, and CRC compared to HC and MD. The decrease of
Prevotellaceae was previously reported in UC [168] and CRC patients [148]. Some species
have pro-inflammatory properties, while others have anti-inflammatory ones [169,170].
No differences were found for Bacteroidaceae, which is another Bacteroidetes family. Bac-
teroidaceae are mainly composed of the genus Bacteroides and include both benefic and
pathogenic species [171].

The observed differences between diets and patient groups suggest that MD may
have a potentially beneficial effect on the patient’s microbiota by increasing beneficial
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bacteria such as Akkermansia and Adlercreutzia or the Ruminococcaceae family, reducing at
the same time potential pathogenic pro-inflammatory bacteria such as Fusobacterium or
Proteobacteria. Despite the high variability of the data from WD and PD groups, few
conclusions could be reached. However, some of the observed effects of WD in microbiota,
such as the increases in Fusobacterium and Collinsella, suggest that this diet may be harmful
to patient’s health. For PD, we observed few differences that may be considered beneficial,
mainly increases in Ruminococaceae, Coprococcus, and Lachnospira. However, these changes
alone could hardly suggest a potential benefit or harm. In all cases, further testing would
be needed to confirm their potential therapeutic or harmful effect on patients.

Our study presented some limitations stemming from the limited availability of high-
quality 16S public data for certain diets or diseases, which made it difficult to balance the
number of subjects in each group, as well as their gender or age. This also led us to choose
to not perform analyses below the genus, due to the greater number of unidentified OTUs
at the species level compared to all other taxonomic levels. Furthermore, the data used
have provided us with valuable information on the bacterial composition but do not allow
evaluating their metabolic activity or evaluating other components of the microbiome such
as fungi or viruses.

5. Conclusions

We conducted a meta-analysis of diets and intestinal diseases related to inflammation
and cancer that highlights unique characteristics of the bacterial population associated
with MD. The microbiota of subjects following MD was enriched with beneficial bacteria
that promote an anti-inflammatory environment, which were instead reduced in IBD, CA,
and CRC groups. Conversely, taxa with pro-inflammatory properties that can alter the
gut barrier functions were reduced in MD and increased in IBD, CA, and CRC groups.
Among the modulated taxa, we reported for the first time an increase in Akkermansia and
a reduction in Fusobacterium in MD, even below the levels observed in healthy subjects
without a defined diet. Akkermansia is a marker of a healthy gut, and Fusobacterium is a
known pathogenic bacterium associated with cancer and IBD. Fusobacterium has also
a critical role in mediating CRC chemoresistance to oxaliplatin and fluorouracil (5-FU)
regimens by activating the autophagy pathway [172]. Our results suggest that MD’s effect
on the gut microbiota has the potential to prevent cancer and other inflammation-related
diseases of the gut.
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