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The role of phosphorus (P) in swine nutrition has been taken on new significance in recent years.
Methods to determine the available phosphorus (AP) content of swine feeds include relative bioavail-
ability (RBV), apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and
true total tract digestibility (TTTD). The RBV of P is determined by measuring bone ash or bone P, whereas
the ATTD of P is determined by calculating the difference between P intake and P excretion in feces.
Recent research has shown that the use of ATTD of P underestimates the AP due to the existence of
endogenous P in feces and digesta. The STTD can be calculated from ATTD by taking basal endogenous
phosphorus losses (EPL) into consideration. The basal EPL in pigs can be measured by feeding a P-free
diet. Values for STTD of P are believed to be additive in mixed diets but not for ATTD of P. The regression
method is a common approach to determine total EPL and TTTD of P, which measures the linear rela-
tionship between fecal P excretion and the dietary intake of total P. In addition, in vitro methods such as
the bionic enzymatic method are being increasingly utilized because they can be done quickly and
simply. Several dietary factors such as P and Ca concentrations, phytate, Ca to P ratio and vitamin D may
affect AP. This review summarizes the evolution of methods to measure AP and factors that can affect AP,
which may provide information to formulate swine diet more accurately. Moreover, the knowledge about
AP may help to reduce the P waste in swine production and thus decrease its impact on the environment.

© 2017, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phosphorus (P) is the second most abundant mineral in the
body following calcium (Ca), and is an essential macro element
which must be supplemented in diets fed to pigs (Zhang et al.,
2010). An excess or deficiency of P in the diet may induce dis-
eases such as rickets or osteomalacia (Bühler et al., 2010).

Most of the P in plants is bound to phytate which is poorly
digested by monogastric animals due to the lack of endogenous
phytase to break down phytate (Ajakaiye et al., 2003). As a result,
).
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the organic P in plant ingredients is commonly ignored when
determining the levels of available phosphorus (AP) in diets fed to
pigs (Ketaren et al., 1993). However, previous studies have indicated
that the P in plant ingredients such as wheat co-products is highly
digestible when included in diets fed to pigs (Kima et al., 2005;
Widyaratne and Zijlstra, 2007). Therefore, it is important to have
precise knowledge of the AP content of feed ingredients fed to
swine for economic and environmental considerations.
2. Methodology for determining phosphorus digestibility

2.1. Relative bioavailability of phosphorus

Traditionally, the AP was determined by measuring its relative
bioavailability (RBV). TheRBVof different P sources is determinedby
measuring bone strength, bone ash weight, or percentage bone ash
of pigs that are fed various sources of test P and comparing them
with the same bone parameters of pigs fed a standard P source
(Cromwell,1992). The RBV of a standard P source is normally given a
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value of 100%, and the bioavailability of test P is estimated as a
relative percentage to the standard P source using the slope ratio
method (Petersen et al., 2011). Gillis et al. (1954) was the first to
conduct an experiment to determine AP among different phosphate
sources using the slope ratio method. In that study, a basal diet was
formulated and graded percentages of the test ingredient were
added to the basal diet to provide diets containing graded concen-
trations of AP. Pigs were euthanized after being fed the test diets for
4 weeks. Gillis et al. (1954) assumed that there was a linear rela-
tionship between the AP in the standard P source and the P in the
test ingredient. The regression procedure was used to measure the
slope of the response criteria for pigs fed the test ingredient and the
standard P source. TheRBVwas then calculated using the ratio of the
slope of the test ingredient to the slope of the standard P source.

The slope ratio method works well if the objective of the
experiment is to compare the bioavailability of different P sources.
However, there are some disadvantages of this procedure. The RBV
method does not allow the calculation of the digestibility or the
quantities of P absorbed from a specific ingredient because the
digestibility of P in standardized phosphate sources is actually less
than 100% (Petersen and Stein, 2006). It has been shown that the
RBV of P in distillers dried grains with soluble (DDGS) over-
estimated the digestibility of P in DDGS, therefore, could not be
accurately calculated from values for the RBV of P (Baker et al.,
2013). Furthermore, the RBV of P among ingredients is not
believed to be additive in mixed diets fed to pigs.

2.2. Apparent total tract digestibility of phosphorus

Research has demonstrated that P is mainly digested in the
small intestine (Fan et al., 2000) and there were no significant
differences in AP measured at the ileum and over the entire
digestive tract (Fan et al., 2002). These findings have served as a
basis for an alternative method for estimating AP. This method,
apparent total tract digestibility (ATTD) of P is calculated as the
difference between P intake and P excretion in feces (Adhikari et al.,
2016). The total collection procedure and indicator procedure are
the most commonly used approaches to determine the ATTD of P. If
the total collection procedure is used, then the ATTD (%) of P in each
diet can be calculated according to the following equation (Almeida
and Stein, 2010): ATTD (%)¼ [(Pi � Pf)/Pi]� 100, where Pi is the total
P intake (g) in the collection period and Pf is the total fecal P output
(g) originating from the feed that is provided in the collection
period. If the indicator procedure is used, then the ATTD (%) of P in
each diet can be calculated according to the following equation (Wu
et al., 2008): ATTD (%)¼ {1� [(Im � Pc)/(Id� Pd)]}� 100, where Im is
the concentration of the digestibility marker in the assay diet (%, as-
fed basis), Pc is the P concentration in feces (%, as-fed basis), Pd is the
P concentration in the assay diet (%, as-fed basis) and Id is the
concentration of digestibility marker in feces (%, as-fed basis).

There are still some shortcomingswhen using values for ATTD of
P to estimate AP. The estimation of ATTD of P for the same feed
ingredient fed to pigs is variable among experiments (Bohlke et al.,
2005; Hill et al., 2009, Table 1). In addition, values for the ATTD of P
may not be additive in mixed diets (Almeida and Stein, 2010).

2.3. Standardized total tract digestibility of phosphorus

Endogenous P is constantly excreted from the pig's body (Fan
et al., 2001). The endogenous P mainly comes from saliva and in-
testinal cells, as well as pancreatic and bile secretions that enter the
digestive tract (Vitti and Da Silva Filho, 2010). However, values for
ATTD of P do not quantify the proportion of endogenous P in the
excreta (Almeida and Stein, 2010). It was observed that the ATTD of
P underestimated the true digestive utilization of P in soybeanmeal
(SBM) for pigs by 25% (Fan et al., 2001; Pettey et al., 2006).
Consequently, it is necessary to determine the extent of endoge-
nous phosphorus losses (EPL).

The endogenous P excretion can be divided into basal EPL and
total EPL (Fan et al., 2001). Basal EPL represent the minimum losses
of P from the pig's body, whereas total EPL represent both basal EPL
and EPL from the diet.

Three major approaches are available for determining EPL,
including the use of a P-free diet, the tracer dilution technique
using 32P-labeled phosphates and the regression method. The 32P-
tracer technique was reported to overestimate the EPL due to rapid
recycling of labeled nutrients within the gastrointestinal tract (Fan
et al., 2001). In addition, in terms of safe handling of radioactive
wastes, it is difficult to use tracer technique in whole-animal
experiments.

Basal EPL can be measured using a P-free diet (Adhikari et al.,
2015). The methodology for measuring basal EPL of P is similar to
that used for measuring basal endogenous amino acid losses in pigs
(Moter and Stein, 2004; Stein et al., 2005, 2007). A P-free diet
typically includes cornstarch, gelatin, sucrose, soybean oil, ground
limestone, vitamin-mineral premix, solka-floc, salt and an amino
acid mixture. Many studies have been conducted to determine the
basal EPL, and it has been proven that this value is constant in pigs
(Rojas and Stein, 2012; Rodríguez et al., 2013; Kim et al., 2014;
Maison et al., 2015). The standardized total tract digestibility
(STTD) of P is calculated by correcting the ATTD of P for basal EPL.

The basal EPL can bemeasured in pigs fed a P-free diet according
to the following equation: Basal endogenous phosphorus losses
(mg/kg of DMI)¼ (Pf/Fi)� 1,000� 1,000, where Fi is the total feed (g
of DM) intake in the collection period. The daily basal EPL in pigs
fed P-containing diets are calculated by multiplying the calculated
basal EPL per kilogram of DMI by the DMI of each pig.

The STTD of P can be calculated using the following equation
(Almeida and Stein, 2010): STTD (%) ¼ [Pi � (Pf � Basal EPL)/
Pi] � 100.

Many studies have been conducted to measure the STTD of P in
inorganic as well as plant P sources (Petersen and Stein, 2006;
Petersen et al., 2011). Almeida and Stein (2010) used a P-free diet
to determine the amount of basal EPL of pigs successfully for the
first time. Symptoms of diarrhea and muscular spasms prevented
the use of P-free diets before that time. In addition, it is difficult to
find an appropriate protein ingredient to be included in a P-free
diet which has low content of P but good balance of amino acids.
Gelatin is now commonly recommended as a good source of pro-
tein to be included in the P-free diet fed to pigs (Sulabo and Stein,
2013; Kim et al., 2014).

Many studies have used this method since the discovery that
gelatin could be utilized in P-free diet to measure the STTD of P in
pigs (Table 1). Almeida and Stein (2012) reported that values for the
STTD of P in corn and corn co-products fed to growing pigs ranged
from 40.9% to 77.1%, and concluded that the P in DDGS and high
protein distiller's dried grains (HP-DDG) was adequately digested
by pigs, probably as a result of a relatively low concentration of
phytate-bound P in DDGS and HP-DDG. Kim et al. (2012) reported
that values for the STTD of P in whey powder, whey permeate and
low-ashwhey permeate fed toweanling pigs were 91.2%, 93.1%, and
91.8%, respectively, and all of these 3 ingredients had good P di-
gestibility. Rojas and Stein (2012) found that value for the STTD of P
in fermented soybean was greater than that in conventional soy-
bean when fed to growing pigs. Sulabo and Stein (2013) reported
that values for the STTD of P among sources of meat and bone meal
ranged from 54.8% to 84.4%, which were similar to the range re-
ported as RBV of P in meat and bone meal sources. She et al. (2015)
evaluated the STTD of P in 17 kinds of Chinese plant ingredients and
reported that differences exist in the STTD of P among feed



Table 1
Digestibility of phosphorus (P) in feed ingredients fed to growing pigs.

P sources ATTD of P, % STTD of P, % TTTD of P, %

No phytase With phytase No phytase With phytase No phytase With phytase

Plant sources
Corn and corn co-products
Corn1,2,3 19.9e36.4 42.5e57.8 26.4e42.5 50.2e64.4 40.5 e

DDGS1,2,3 68.0e72.2 71.0e78.5 72.0e76.5 75.5e82.8 e e

Corn gluten feed2,4 80.7 83.1 84.6 87.1 e e

Corn germ meal2,4 49.0 64.4 53.2 68.3 e e

Corn gluten meal2,4 70.6 77.6 75.2 87.4 e e

Wheat and wheat co-products
Wheat4 51.5 e 56.9 e e e

Wheat bran4 57.4 e 62.8 e e e

Wheat feed flour4 48.9 e 58.0 e e e

Wheat red dog4 54.3 e 60.2 e e e

Wheat shorts4 53.9 e 61.4 e e e

Rice co-products
Broken rice5 46.1 63.7 53.5 71.3 e e

Brown rice5 31.6 58.5 38.0 63.7 e e

Defatted rice bran5 32.0 41.2 35.4 43.1 e e

Full fat rice bran5 27.1 42.9 28.9 44.6 e e

Rice mill feed5 31.7 48.6 36.6 53.2 e e

Oilseed meals e e

Bakery meal2 54.9 67.5 58.6 71.2 e e

Canola meal6,7,8 41.52e47.32 64.08e68.05 45.3e51.2 63.6e72.1 34.3 61.4
Copra meal9 60.6 80.8 70.6 90.3 e e

Cottonseed meal7 41.8 56.0 45.6 60.0 e e

Palm kernel meal9 48.9 64.1 57.9 73.5 e e

Peanut meal4 38.2 e 48.2 e e e

Soybean meal4,6,7 41.6e56.3 66.2e72.5 46.1e62.0 71.4e78.0 36.0e40.9 70.8
Sunflower meal7 33.0 55.4 37.4 59.8 e e

Inorganic sources
Dicalcium phosphate10 81.5 e 88.4 e e e

Monocalcium phosphate10 88.0 e 94.9 e e e

Monosodium phosphate10 91.9 e 98.2 e e e

Animal sources
Meat and bone meal11 52.1e80.1 e 54.8e84.4 e e e

Whey powder12 84.3 e 91.2 e e e

Whey permeate12 86.1 e 93.1 e e e

ATTD ¼ apparent total tract digestibility; STTD ¼ standardized total tract digestibility; TTTD ¼ true total tract digestibility; DDGS ¼ distillers dried grains with soluble.
1 Almeida and Stein (2010).
2 Rojas et al. (2013).
3 Almeida and Stein (2012).
4 She et al. (2015).
5 Casas and Stein (2015).
6 Akinmusire and Adeola (2009).
7 Rodríguez et al. (2013).
8 Maison et al. (2015).
9 Almaguer et al. (2014).

10 Petersen and Stein (2006).
11 Sulabo and Stein (2013).
12 Kim et al. (2012).
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ingredients and the susceptibility of the phytate in corn from
phytase may be less than that fromwheat and oilseed meals. Casas
and Stein (2015) reported the STTD of P in brown rice, full-fat rice
bran, defatted rice bran and rice mill feed fed to pigs were relatively
low due to the high concentrations of phytate in these ingredients.
However, the addition of microbial phytase could increase the STTD
of P in most of the rice co-products. Recently, it was reported that
no differences in STTD of P exist among different kinds of SBM
produced from different areas in the United States (Oliveira and
Stein, 2016; Sotak-Peper et al., 2016). Results from these studies
showed value for the basal EPL in pigs is constant and reliable.
Furthermore, NRC (2012) reported that values for STTD of P are
believed to be additive in mixed diets.

2.4. True total tract digestibility of phosphorus

Total EPL from pigs can be measured by a regression analysis
technique (Pettey et al., 2006). In 2001, Fan et al. (2001) used SBM
as a test ingredient and demonstrated that total EPL and true P
digestibility in feed ingredients for weaning pigs can be determined
by the regression method. This study concluded that although the
ileal EPL was greater than total tract EPL, there were no statistical
differences between true ileal and total tract P digestibility. In 2003,
consistent with previous findings in weanling pigs, the same lab
reported there were no differences in the true P digestibility in SBM
between ileal and fecal samples in growing pigs, which further
documented that the large intestine did not play a role in digestive
utilization of dietary P (Ajakaiye et al., 2003).

The most important step in obtaining reliable data by this pro-
cedure is to establish a linear relationship between the apparent
digestible intake and total intake of the test P in the diets. The diets
are formulated by addition of graded levels of test ingredient in
order to formulate diets containing graded levels of P. It is assumed
that there is a linear regression between P intake and apparent
digestible P. Thus, the intercept and the slope of the linear regres-
sion equation represent total EPL and true total tract digestibility
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(TTTD) of P, respectively. However, there may be disadvantages of
this procedure. Because it has been suggested that using regression
procedure the endogenous P estimates are highly variable between
individual animals, therefore, are not significantly different from
zero (Dilger and Adeola, 2006). This may be because the total EPL
are highly influenced by the type of the experimental diets as well
as the P levels used in the regression procedure.

In recent years, many studies have been done to investigate the
TTTD of P in different feed ingredients fed to pigs (Table 1). Dilger
and Adeola (2006) reported that true P digestibility was not
different between pre-cecal and total tract collection sites, but was
greater for low-phytate SBM (62.6%) compared with conventional
SBM (44.5%). Endogenous P estimates were not different between
the SBM varieties and averaged 4.83 mg/(kgW0.75$d). Akinmusire
and Adeola (2009) found the TTTD of P in canola was greater
than that in SBM for growing pigs. Zhai and Adeola (2012) reported
the TTTD of P in monocalcium phosphate for 15-kg pigs was 67.5%
and the total EPL were 494 mg/d. Xue and Adeola (2015) reported
that, for triticale DDGS, the supplementation of 500 FTU/kg phytase
in the diet could increase the ATTD of P but not the TTTD of P.
Additionally, it has been demonstrated that the TTTD of P in corn
and SBM for growing pigs are additive in corneSBM diets (Zhai and
Adeola, 2013a). However, more studies are needed to determine
additivity of TTTD of P among different P sources in pigs.

Using the regression procedure, the ATTD and TTTD of P is
calculated using the following equations (Akinmusire and Adeola,
2009): ATTD (%) ¼ 100 � (PI � PO)/PI and PD¼ (TTTD � PI) � Total
EPL, where PI represents the dietary P intake, PO is the fecal P output
(mg/d), PD represents the digested P (mg/d), EPL represents the
estimate of daily total endogenous P losses (mg/d), and TTTD is the
estimate of TTTD with the estimation carried out by regressing PD
against PI.

According to these factorial estimates, the TTTD-based P re-
quirements for different stages of production for pigs have also
been evaluated (Zhai and Adeola, 2013b, 2013c). However, P di-
gestibility varied and depended on the evaluation system
employed by each study. Some studies used a basal diet, whereas
others used semi-purified diets inwhich the test ingredients served
as the sole source of P. Therefore, further studies are still needed to
establish a unified and efficient procedure to determine AP.

2.5. Phosphorus balance

When the dietary P concentration exceeds the requirement for a
specific stage of production, the urinary excretion of P is increased.
Therefore, it is necessary to determine the excretion of P from urine
in this case. Miller et al. (1965) reported that the retention of P was
improved with an increasing dietary P concentration and the
amount of retained P was influenced primarily by urinary P output.
Vipperman et al. (1974) found that urinary P outputs increased with
increasing dietary P input, and the urinary P output was nearly zero
when dietary Ca concentration exceeded the dietary P concentra-
tion. Wu et al. (2008) reported that urinary P outputs improved
with increasing dietary P input, which suggests that there is a
positive correlation between urinary P output and dietary P intake.
However, when the diets are below or at the concentration of P
requirement, little P may actually be excreted through the urine.

2.6. In vitro analysis techniques

With the advantages of being rapid, convenient and economical,
in vitro analysis techniques for determining the bioavailability of
nutrients are being rapidly developed. A computer-controlled
simulated digestion system has been developed to predict the en-
ergetic value of ingredients fed to poultry (Zhao et al., 2014a,
2014b). Currently, this in vitro procedure is used primarily to
determine the available energy content for pigs. To date, limited
literature has been found using in vitro technique to determining
AP. Walk et al. (2012), who has developed an in vitro technique to
estimate AP, reported that absorption of Ca and P may be compli-
cated by conditions within the gastrointestinal tract, such as par-
ticle size, precipitation with anti-nutritional factors, and
differential rates of delivery to the small intestine.

The challenge of in vitro estimation of P digestibility is that ac-
tivities of the porcine digestive enzymes used to imitate intestinal
fluid may not reflect the in vivo intestinal fluid of animals (Zhao
et al., 2014a). In addition, manual conduct of in vitro digestion
techniques such as pH regulation, digestive enzyme injection and
separation of digested and undigested substance (Losada et al.,
2010) may cause errors, making the technique unrepeatable.
Therefore, repeatable techniques and realistic experimental con-
ditions are needed to develop a successful in vitro digestion analysis
technique. It appears that current technology of in vitro estimates of
P digestibility may be less accurate than in vivo estimates. More
work is needed of in vitro estimates of P digestibility.

3. Dietary factors that may affect phosphorus digestibility

3.1. Phosphorus concentration

The ATTD of P in monocalcium phosphate fed to pigs is not
influenced by the dietary concentration of P if the concentration of
P in the diet is at or below 0.64% (Stein et al., 2008). Therefore, the
concentration of P in the diets used to measure the digestibility of P
in feed ingredients is not critical, because the same value for ATTD
of P will be measured regardless of the inclusion concentration of P.
Phosphorus excretion in urine is constant when STTD P intakes
were below the growth requirement (NRC, 2012). But when STTD P
intakes are above requirements, the P excretion in urine increased
linearly (Gutierrez et al., 2015). This finding suggests that the
transport of P across the intestinal wall may not represent a limiting
step for P regulation, and P excretion may thereby instead be
regulated at the renal level. Mineral accretion in the femur in-
creases with increasing STTD P intakes but reaches a plateau at a
greater STTD P intake level than that required for maximum growth
(Gutierrez et al., 2015). Therefore, dietary STTD P is absorbed and
used for growth, but excess P is accumulated in bones until skeletal
requirements are met and then it will be excreted in urine.

A recent study showed that increasing dietary P by increasing
concentrations of the test ingredient within a certain range can
reduce the estimated values of STTD of P, but does not affect the
estimates of TTTD of P determined by the regression method (Liu
et al., 2016).

3.2. Phytate

A linear relationship between non-phytate P and digestible P
has been established (L�etourneau-Montminy et al., 2012). Consid-
ering the linearity of the response, it is possible that P trans-
portation across the intestinal wall is not a limiting step for
absorption of P, at least in experimental conditions introduced in
this review. Non-phytate P of mineral, animal and plant origins
remains highly digestible for pigs regardless of the non-phytate P
concentration, as evidenced by their estimated digestibility co-
efficients. It is likely that phytate P cannot be totally hydrolyzed in
gut due to the limited solubility of phytate P, which depends on pH
condition and the transit time of digesta (L�etourneau-Montminy
et al., 2011). Phytate P utilization depends on some modulating
dietary factors. Estimates of digestibility of phytate P confirmed
that a considerable proportion of dietary phytate P is available for
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absorption without any exogenous phytase supply (Kemme et al.,
2006). In fact, phytate P hydrolysis can be achieved through mi-
crobes such as lactic acid bacteria in the gastrointestinal tract
(Sreeramulu et al., 1996; Schindler et al., 1997).

Many studies indicated that including low-phytate plant in-
gredients in swine diets can improve the bioavailability of P for pigs
and may also increase the utilization of other nutrients (Bohlke
et al., 2005; Htoo et al., 2007; Hill et al., 2009). In light of the
challenges inherent in adding enzymes to complete diets, genetic
reduction of phytate in feedstuffs provides an effective strategy for
improving P utilization for pigs.

3.3. Calcium concentration

The dietary Ca concentration affects the ATTD of P in pigs (Stein
et al., 2011). Increased concentrations of dietary Ca can decrease the
ATTD of P in diets based on corn, potato protein isolate, and mon-
osodium phosphate for pigs (Stein et al., 2011). The dietary Ca
concentration is, therefore, very important when the ATTD of P in
feed ingredients is determined. It is likely that increased dietary Ca
may result in binding of P by Ca in the digestive tract of the animals,
which may form a Ca-P complex that precludes P from being
absorbed. However, these mechanisms have not been experimen-
tally demonstrated, and research in this area is needed.

3.4. Calcium to phosphorus ratio

The greatest values for ATTD of P are obtained if the dietary Ca-
to-total P ratio is around 1.1:1 (Stein et al., 2011; She et al., 2016).
Serum P concentrations, bone ash concentration, and bone bending
moment are decreased if the Ca-to-P ratio is increased from 1.3:1 to
2.0:1, 3.0:1, or 4.0:1 (Reinhart and Mahan, 1986), which indicates
that the AP may also decrease as the dietary Ca to total P ratio
increased. Pig growth performance and P utilization are increased
by decreasing the Ca to total P ratio from 1.5:1 to 1.0:1 in low-P
corn-SBM meal diets supplemented with microbial phytase (Liu
et al., 1998). Lowering the dietary Ca to total P ratio to 1.0:1 in a
low-P diet containing phytase increases the apparent P absorption
in the small intestine (Liu et al., 2000). Moreover, a significant
amount of P is absorbed in the cecum.

Wide Ca to total P ratios have detrimental effects on the efficacy
of microbial phytase. Three possible mechanisms are proposed to
explain this: 1) The extra dietary Ca may form an insoluble phytate
complex which is not accessible for hydrolysis bymicrobial phytase
(Fisher, 1992); 2) High dietary Ca concentrations can increase the
pH of the intestinal contents, which in turn decrease the activity of
microbial phytase (Sandberg et al., 1993); 3) The extra dietary Ca
can directly suppress the activity of microbial phytase by means of
competing for the active sites of the enzyme (Qian et al., 1996).

3.5. Vitamin D

It is well established that there are interactions between P
metabolismandthebioconversionandactionsofvitaminD (Brautbar
et al., 1979). Thus, the administration of 1, 25-dihydroxy-vitamin D3
[1,25(OH)2D3] can improve intestinal P transport in pigs. Further-
more, there is potent phosphatemic action of 1,25-dihydroxy-
vitamin D3 in hypophosphatemic pigs as a result of P mobilization
from bone. In addition, it has been shown that P depletion can
stimulate the conversion of 25-hydroxyvitamin D3 to 1, 25(OH)2D3.
The addition of vitamin D3 (2,000 IU/kg) can increase the ATTD of P
for pigs (Li et al., 1998). However, in a broiler study, Edwards (2002)
did not observe an effect on Ca and P retention with addition of
1,100 to 8,800 IU/kg of vitamin D3 to diets deficient in Ca and P,
although a significant effect of vitamin D3 on bone ashwas observed.
4. Conclusions

In this review, evolution of methodology for determining the AP
content in swine feeds was summarized. These methods include
RBV, ATTD, STTD, TTTD, retention of P and the in vitro methods.
Since the concept of STTD of P was recently proposed, this article,
for the first time, reviewed this method as well as the others. In
addition, dietary factors that may affect AP in pigs were introduced,
such as P and Ca concentrations, phytate, Ca to P ratio and vitamin
D. To improve the accuracy of the measurements, the EPL from the
gastrointestinal tract of pigs should be taken into consideration,
and additivity of digestibility values of P from each ingredient used
in mixed diets is also needed to be evaluated.
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