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Abstract: The PI3K/Akt/mTOR pathway plays an essential role in a wide range  

of biological functions, including metabolism, macromolecular synthesis, cell growth, 

proliferation and survival. Its versatility, however, makes it a conspicuous target of many 

pathogens; and the consequential deregulations of this pathway often lead to complications, 

such as tumorigenesis, type 2 diabetes and cardiovascular diseases. Molecular targeted 

therapy, aimed at modulating the deregulated pathway, holds great promise for controlling 

these diseases, though side effects may be inevitable, given the ubiquity of the pathway in 

cell functions. Here, we review a variety of factors found to modulate the PI3K/Akt/mTOR 

pathway, including gene mutations, certain metabolites, inflammatory factors, chemical 

toxicants, drugs found to rectify the pathway, as well as viruses that hijack the pathway for 

their own synthetic purposes. Furthermore, this evidence of PI3K/Akt/mTOR pathway 

alteration and related pathogenesis has inspired the exploration of computer-aided targeting 

of this pathway to optimize therapeutic strategies. Herein, we discuss several possible 

options, using computer-aided targeting, to reduce the toxicity of molecularly-targeted 

therapy, including mathematical modeling, to reveal system-level control mechanisms and 

to confer a low-dosage combination therapy, the potential of PP2A as a therapeutic target, 

the formulation of parameters to identify patients who would most benefit from specific 

targeted therapies and molecular dynamics simulations and docking studies to discover 

drugs that are isoform specific or mutation selective so as to avoid undesired broad 

inhibitions. We hope this review will stimulate novel ideas for pharmaceutical  
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discovery and deepen our understanding of curability and toxicity by targeting the  

PI3K/Akt/mTOR pathway. 

Keywords: PI3K/Akt/mTOR pathway; computer-aided targeting; mathematical modeling; 

molecular dynamics simulation; molecular targeted therapy; combination therapy; 

metabolic disorder 

 

1. The PI3K/Akt/mTOR Pathway 

The PI3K/Akt/mTOR pathway (Figure 1) is a major cellular signaling pivot in the cellular response 

to extracellular stimuli, including insulin, insulin-like growth factor-1 (IGF-1), epidermal growth 

factor (EGF) and fibroblast growth factor (FGF). For example, upon insulin stimulation, the insulin 

receptor phosphorylates insulin receptor substrate 1 (IRS1) at tyrosine sites, which, in turn, activates 

phosphatidylinositol-3 kinase (PI3K). PI3K then converts phosphatidylinositol-4,5-bisphosphate 

(PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3). PIP3 recruits Akt (also known as PKB; 

namely protein kinase B) to the membrane, where Akt is phosphorylated by the enzyme PDK1 at 

Thr308 and by rictor-bound mTOR complex 2 (mTORC2) at Ser473, for full Akt activation. Conversely, 

the phosphorylated Akt (pAkt) can be dephosphorylated by protein phosphatase 2A (PP2A) and the 

pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) [1]. Although PP2A 

may preferentially dephosphorylate Akt on Thr308, it can also dephosphorylate Akt on Ser473 under 

certain conditions [2]. PHLPP specifically dephosphorylates Akt on Ser473 [2]. The activated Akt 

further activates raptor-bound mTOR complex 1 (mTORC1) by two mechanisms. One is through 

inhibitory phosphorylation of tuberous sclerosis complex 2 (TSC2). Inhibited TSC2 blockades the 

complex of TSC1/TSC2 transforming Rheb-GTP to Rheb-GDP, resulting in the activation of mTORC1 

by Rheb-GTP. The other is through Akt inhibition of proline-rich AKT substrate 40 (PRAS40), which 

inhibits mTORC1 [1,3]. The activated mTORC1, in turn, mediates phosphorylation of 4E-BP1 and 

p70S6K (S6K). Of note, S6K phosphorylates Ser312 and Ser636/639 at the C terminus of IRS1, which 

weakens insulin-stimulated tyrosine phosphorylation of IRS1 at this region and, thus, weakens its 

ability to bind PI3K. This event thus completes a negative feedback from Akt to IRS1 [4]. On the other 

hand, Akt directly phosphorylates IRS1 at Ser629 to strengthen its activity, thus creating a positive 

feedback from Akt to IRS1 [5]. 

The PI3K/Akt/mTOR pathway carries out a large spectrum of cellular functions [3,6]. For instance, 

mTORC1 acts as a major sensor of nutrient levels, energy levels and stress signals. mTORC1 promotes 

protein synthesis and cell growth by phosphorylating its immediate downstream targets, S6K and  

4E-BP1, which regulate mRNA translation initiation and progression [6]. It also phosphorylates 

ATG13 and ULK1, to blockade the initiation of autophagy [6]. When the energy level is low, 

inhibitory signals from 5' AMP-activated protein kinase (AMPK) target mTORC1 to slow down 

translation. Similarly, when the cell is under stress, such as hypoxia and DNA damage, signals from 

REDD1 and p53 act to inhibit mTORC1 [6]. Akt is the essential signaling hub for the growth and 

survival of the cell, due to the broad spectrum of critical cellular functions it commands. Aside from 

dominantly activating mTORC1, Akt conveys pro-survival signals by phosphorylating and inactivating 
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pro-apoptotic proteins, such as BAD and ASK1; it also downregulates the transcription of several  

pro-apoptotic genes, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL),  

Fas ligand, immunoglobulin-binding protein-1 (IGFBP1) and Bim, through inhibitory phosphorylation 

of transcription factors, including the Forkhead box O (FoxO) family [7]. Not only can Akt counteract 

apoptosis by downregulating pro-apoptotic signals, it can also directly phosphorylate and inhibit 

caspase-9, which is essential for caspase-dependent apoptosis [3]. Activated Akt also promotes cell 

survival through coupling with the NF-κB pathway. However, excessive stimulation of this pathway 

branch can lead to the expression of proto-oncogene c-Myc, contributing to oncogenesis and resistance 

to chemotherapy [8,9]. Akt also promotes cell cycle progression by promoting cyclin D1 expression and 

inhibitory phosphorylation of the cyclin-dependent kinase inhibitors, p21Cip1/Waf1 and p27Kip2 [7,10].  

In the regulation of plasma glucose concentration, the process of Akt recruiting glucose transporter 4 

(GLUT4) to the cell membrane is one of the most important events in the response of fat and muscle 

cells to insulin; active GLUT4 in the cell membrane is responsible for high-efficiency glucose uptake, 

and aberration of this mechanism is a critical component of insulin-resistance, the underlying 

pathology of type 2 diabetes (T2D) [6]. Moreover, Akt phosphorylates and inactivates glycogen synthase 

kinases 3 (GSK3α and GSK3β), shifting cells from catabolic to anabolic states [3]. 

Figure 1. A schematic representation of the PI3K/Akt/mTOR pathway. 
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Since the PI3K/Akt/mTOR pathway plays such a prominent role in the signaling network, it must 

be subject to strict internal regulations (e.g., by the feedback loops, as already introduced) and external 

regulations (e.g., by crosstalk with other signaling pathways, such as the Ras/MEK/ERK- and  

AMPK-related pathway [11]). PP2A, a tumor suppressor, is an important regulator of the pathway. 

Besides its role as a direct phosphatase of pAkt, PP2A also regulates the pathway by targeting S6K  

and PDK1 or by the interaction with MEK1 and AMPK, which crosstalk with the PI3K/Akt/mTOR 

pathway [12]. 

2. Consequences of PI3K/Akt/mTOR Perturbation 

Because of the important roles that the PI3K/Akt/mTOR pathway plays in cellular physiology, 

pathologic alterations, which target the components or modulators of this pathway, could give rise to 

serious diseases. Indeed, mutations related to this pathway have been found in cancers with a high 

frequency [13]. Moreover, several viral agents and environmental toxicants also target this pathway 

and, in some cases, hijack its signaling for pathologic purposes [14,15]. Some physiologic products, 

such as free fatty acids, inflammatory factors and hormones, may also target this pathway 

detrimentally and contribute to various derangements, including cancer, T2D and hypertrophic 

cardiomyopathy [16,17]. Those reviewed viral agents, chemical toxicants and physiological products 

that target the PI3K/Akt/mTOR pathway are listed in Table 1. Note that the table does not include the 

apparent physical products, such as insulin and IGF. 

Table 1. Substances that target the PI3K/Akt/mTOR pathway. 

Viral Agents Mechanism of Action Reference 

Mouse polyoma virus middle 

tumor antigen (PyMT) 

 Associates with the plasma membrane and activates PI3K, resulting in 

PI3K/Akt/mTOR pathway activation 
[18] 

Mouse polyoma virus small 

tumor antigen (PyST) 
 Inhibits PP2A, resulting in activation of Akt [19] 

Simian virus 40 small tumor 

antigen (SVST) 
 Inhibits B56γ form of the PP2A holoenzyme, resulting in activation of Akt [20] 

Human papillomaviruses 

(HPVs) E6 protein 

 Degrades TSC2, activating mTORC1 

 Activates PDK1 and mTORC2, activating Akt 

[21]  

[22] 

Human papillomaviruses 

(HPVs) E7 protein 
 Inhibits PP2A, resulting in activation of Akt [23] 

Hepatitis C virus (HCV)  
 Degrades TSC1/TSC2, activating mTORC1, which enhances negative 

feedback, inactivating the PI3K/Akt/mTOR pathway 
[24,25] 

Chemical toxicants Mechanism of Action Reference 

Trivalent arsenic  

 Induces ROS, inactivating Akt in lymphoma and leukemia cell lines  

 Induces ROS, activating PI3K/Akt in prostate cancer cell line 

 Activates JNK and induces mR-190 expression, activating Akt in a 

bronchial epithelial cell line 

[26–29]  

[30]  

[31,32] 

Cadmium  Induces ROS, activating Akt in a bronchial epithelial cell line [33] 

Vanadate  Induces ROS, activating PI3K/Akt in a prostate cancer cell line [34] 

Zinc oxide nanoparticles  Induces ROS, inactivating the PI3K/Akt/mTOR pathway in mice 

peritoneal exudate 
[35] 
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Table 1. Cont. 

Chemical toxicants Mechanism of Action Reference 

Superparamagnetic iron oxide 

nanoparticles (SPIONs) 
 Activates Akt in a colon cancer cell line [36] 

Nicotine   Activates PI3K through nicotinic acetylcholine receptors (nAChR) [37] 
NNK 

 Activates PI3K nicotinic acetylcholine receptors (nAChR) 

 Increases EGFR expression and Ras mutation 

[37]  

[38,39] 

Microcystin-LR 
 Inhibits PP2A activity and decreases PTEN expression, activating 

PI3K/Akt in melanoma and colon cancer cell lines 
[40,41] 

Physiological products Mechanism of Action Reference 

Free fatty acids (FFAs) 

 Activates PKCθ, inhibitory phosphorylating IRS1 

 Upregulates PTEN, inactivating PI3K 

 Induces ceramide, activating PP2A and inhibiting Akt 

 Induces ceramide, activating Rheb/mTORC1/S6K; negative feedback 

attenuates Akt activation 

[42–44]  

[45]  

[46]  

[47] 

Interleukin (IL)-6 

 Activates JNK1/2, inhibitory phosphorylating IRS1  

 Increases SOCS3 level, blocking IRS1 binding to IR 

 Increases PTP1B activity, dephosphorylating IRS1 at tyrosine site 

[48] 

Tumor necrosis factor (TNF)-α  Activates S6K, inhibitory phosphorylating IRS1 [49] 

Angiotensin II and epinephrine  Activate PI3Kγ through G-protein–coupled receptors  [50] 

2.1. Genetic Alteration 

Genetic alteration targeting the PI3K/Akt/mTOR pathway has been strongly implicated in cancer 

development. For example, genetic mutation or deletion causing somatic loss of the phosphatase and 

tensin homolog (PTEN) is the second most frequent oncogenic mutation of the human genome, 

eclipsed only by malignant mutations in p53 [51]. It has been found in 60% to 80% of human prostate 

cancer and about 50% of melanoma, breast and endometrial cancers. PTEN is a direct antagonist of 

PI3K, serving as a control mechanism. Loss of PTEN activates the PI3K/Akt/mTOR pathway and is 

associated with both resistance to chemotherapy and reduced survival in human cancers [13]. 

Mutations of the PIK3CA gene, which encodes the p110α subunit of PI3Kα, have also been found in 

multiple human malignancies. Three frequent PIK3CA mutations, H1047R, E545K and E542K, all 

create an unhindered activation of Akt [13,52]. The mutation of all three isoforms of Akt, AKT1/PKBα, 

AKT2/PKBβ and AKT3/PKBγ are also observed in multiple types of cancers [13,53]. Recently,  

33 MTOR mutations were identified, which confer pathway hyperactivation, even under nutrient-starved 

conditions [54]. PP2A is critical in preventing malignant transformation of cells, because it maintains 

tight control of Akt and other oncoproteins [55]. Mutations or other disruptions of PP2A activity, with 

the resultant loss of Akt control, are oncogenic. Although mutations of PP2A are found at a low 

frequency [56], more common mutations of p53 prompt the expression of CIP2A, which inhibits 

PP2A, thus leading to malignancy [57]. CIP2A overexpression has been found in over 70% of acute 

myeloid leukemia (AML), ovarian, prostate, lung, colon and gastric cancers, as well as squamous cell 

carcinomas of the head and neck (HNSCC) [57,58]. Indeed, genetic alterations causing summary 

activation of the PI3K/Akt/mTOR pathway potentiate both survival and proliferation, even in the 

absence of growth factors. This unbridled cell growth and survival is the hallmark of malignancy. 
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Therefore, some hypothesize that cancers may suffer from an oncogenic “addiction” to the constant 

activation of the PI3K/Akt/mTOR pathway [59]. 

2.2. Viral Usurpation 

Because of the crucial regulatory role of the PI3K/Akt/mTOR pathway in protein translation and 

cell survival, many DNA and RNA viruses target and commandeer this pathway for the purpose of 

successful replication [60]. Viral activation of the PI3K/Akt/mTOR pathway prompts protein 

translation and macromolecular synthesis, which is critical for viral replication and survival [61,62]. 

Moreover, the activated pathway suppresses various cellular stress and protection responses, so that 

viral replication can proceed unimpeded. For example, viral infection often disturbs calcium 

homeostasis. As one of the cell’s self-protection mechanisms, the disturbed calcium homeostasis 

would normally inhibit mTORC1 through TSC2 and consequently halt protein translation [63]. 

Viruses overcome this mechanism by sustained activation of the PI3K/Akt/mTOR pathway, regardless 

of calcium homeostasis. The hijacked pathway maintains robust protein synthesis and fosters viral 

replication [61]. Other viral-induced cell stress, including hypoxia, energy deprivation and amino acid 

deprivation, also normally decreases the activity of the PI3K/Akt/mTOR pathway. Viruses often 

counteract this for their own benefit [61]. 

Viruses activate the PI3K/Akt/mTOR pathway at various sites and with different behaviors, which 
are reviewed by Buchkovich et al. [61] and Diehl et al. [62]. Viral alteration of the pathway leads  

to concerning biological toxicities, in addition to other virus-specific pathogenesis. In this review,  

we mainly focus on the metabolic disruption and oncogenesis induced by viral perturbation of the 

PI3K/Akt/mTOR pathway. 

Amongst a number of types of DNA viruses, polyomaviruses have been found to promote 

oncogenesis. The most studied polyomaviruses are mouse polyoma (Py) virus, simian virus 40 (SV40) 

and the papillomaviruses. All three types of polyomaviruses have been shown to target the 

PI3K/Akt/mTOR pathway, contributing to oncogenesis [61]. Differential early gene splicing of the Py 

virus produces three early proteins: large tumor antigen (PyLT), middle tumor antigen (PyMT) and 

small tumor antigen (PyST). Among them, PyMT is a potent oncoprotein [61]. Studies have shown 

that PyMT can associate with the plasma membrane and activate PI3K, thereby hijacking the 

PI3K/Akt/mTOR pathway [18]. It has also been reported that PyST can activate the pathway by 

directly inhibiting PP2A [19]. The early region of the SV40 gene encodes two oncoproteins: the large 

tumor (SVLT) and small tumor (SVST) antigens. The SVLT binds to p53 and retinoblastoma (Rb) 

family proteins to induce cell transformation, in a process that is dependent on IRS1 signaling [64].  

In contrast, SVST specifically inhibits the B56γ form of the PP2A holoenzyme, resulting in  

over-activation of Akt signaling. SVST also inhibits p53 and causes accumulation of oncoprotein  

c-Myc. These combined SVST effects together may lead to cell transformation [20]. 

Human papillomaviruses (HPVs) have a high risk of causing cervical cancer and are associated with 

head and neck malignancies [22,65]. Two of the HPV early proteins, E6 and E7, are highly associated 

with oncogenesis. The E6 protein can degrade TSC2, an inhibitor of mTORC1 [21]. It can also activate 

Akt by targeting its activators, PDK1 and mTORC2 [22]. The E7 protein targets PP2A, decreasing its 

inhibitory phosphatase activity, thereby maintaining the activation of Akt [23]. Taken alone, the  
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viral-activated PI3K/Akt/mTOR pathway strongly promotes protein synthesis. However, when 

combined with p53 and Rb inactivation, the activated pathway could potentially become  

oncogenic [61]. 

Hepatitis C virus (HCV) is a small, positive-sense, single-stranded RNA virus. It has long been 

observed that infection with HCV increases steatohepatitis, which in turn is associated with T2D [15]. 

Further, because the PI3K/Akt/mTOR pathway is a major controller of cellular translation and 

macromolecular synthesis, it has been suspected that HCV would target and activate this pathway for 

the benefit of viral protein synthesis. This hypothesis was validated when studies delineated HCV 

targeting TSC1/TSC2, the negative regulator of mTOR. By increasing the degradation of TSC1/TSC2, 

HCV promotes mTOR and S6K expression, resulting in the activation of translation and protein  

synthesis [24]. Meanwhile, the activation of mTOR/S6K also enhances the negative feedback signaling 

to IRS1, resulting in insulin resistance in hepatocytes [25]. 

2.3. Chemical Toxicants 

Chemical toxicants, such as heavy metal compounds and natural peptides, can exert toxicological 

effects by targeting the PI3K/Akt/mTOR pathway [14]. Compounds, including arsenic, cadmium, 

mercury, vanadate, nicotine, superparamagnetic iron oxide nanoparticles and zinc oxide nanoparticles, 

can cause either apoptosis or malignant transformation, depending on the compound and experimental 

conditions [30,33–37,66,67]. 

For example, inorganic trivalent arsenic (As3+) is an environmental toxicant and carcinogen.  

As3+ exposure poses risks for human malignancies of the skin, the hematopoietic system, the 

respiratory tract and urinary bladder [66]. Paradoxically, As3+ also possesses a potent ability to induce 

apoptosis and is used as an anticancer drug, especially in the treatment of acute promyelocytic 

leukemia [68]. Since carcinogenesis and apoptosis are both tightly linked to the PI3K/Akt/mTOR 

pathway, it could be expected that As3+ would differentially target the pathway to accomplish these 

opposite effects on cell fate. 

Studies show that arsenic trioxide (As2O3) induces apoptosis with relatively high concentrations 

(usually above 5 μM) and over 24 h of treatment in multiple cell lines, such as human Burkitt’s 

lymphoma cell line (Ramos) and human leukemia cell lines (U937, NB4 and K562) [26–29]. Further, 

mechanistic studies reveal that such treatments induce reactive oxygen species (ROS), which decrease 

Akt activity, resulting in an increase in pro-apoptotic signals, including activation of BAD and 

FoxO3a, reduced mitochondrial transmembrane potential, release of cytochrome c and activation of 

the caspase family, all culminating eventually in cell death [26,27]. These pro-apoptotic features of 

arsenic prompt its use in the clinical setting, especially in the treatment of acute promyelocytic 

leukemia (APL) [26]. However, there is also a concern that arsenic usage may provoke cardiotoxicity, 

altering cardiac conduction, as demonstrated on electrocardiograms as ST-T wave changes and QT 

interval prolongation [69]. Recent studies have found that activation of the PI3K/Akt/mTOR pathway 

may protect the cardiomyocyte from such alteration and promote cell survival [70,71]. 

Instead of suppressing Akt signals and inducing cell death, As3+ was found to activate Akt, through 

JNK signaling crosstalk or microRNA miR-190-related regulation, in a human bronchial epithelial  

cell line, BEAS-2B. The activated Akt leads to an increase in proliferation and migratory ability, 
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suggesting the role of As3+ in cell transformation [31,32]. As3+ has also been shown to activate Akt in 

mouse epidermal Cl41 cells, when treated with 0.1 to 10 μM for 1 h. Moreover, a longer time (over  

72 h) and lower concentration (1.25 μM) exposure to arsenite increases the Cl41 cells’ proliferation 

and the portion of the cells in S-phase, due to cyclin D1 expression caused by the PI3K/Akt/mTOR 

pathway activation [66]. Moreover, arsenite activates Akt through ROS, leading to the increase of both  

hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF) protein levels in 

human prostate cancer cell line DU145, thus contributing to carcinogenesis [30]. This pattern of metal 

toxicants targeting the PI3K/Akt/mTOR pathway to stimulate HIF-1 and VEGF expression has also 

been found in cadmium and vanadate treatment [33,34]. Notably, these metal compounds usually 

target the PI3K or Akt indirectly through ROS, which also causes genome stress. Thus, the survival 

signals from the PI3K/Akt/mTOR pathway in the milieu of DNA damage should be considered an 

important oncogenic mechanism in chemical toxicity. 

Nanoparticles, such as zinc oxide nanoparticles and superparamagnetic iron oxide nanoparticles 

(SPIONs), can alter cell fate through perturbation of the PI3K/Akt/mTOR pathway. Zinc oxide 

nanoparticles induce ROS generation, which further inactivates the PI3K/Akt/mTOR pathway, leading 

to upregulation of autophagy marker LC3, activation of caspase 3 and apoptosis in primary culture of 

cells from mice peritoneal exudate [35]. SPIONs, however, can activate Akt in a human colon cancer 

cell line, HCT116, and increase HCT116 cell proliferation [36]. 

Another well-studied example of toxicants targeting the PI3K/Akt/mTOR pathway for 

carcinogenesis lies in tobacco components activating this pathway to induce lung cancer. Nicotine and 

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are two major tobacco carcinogens shown to 

activate the PI3K/Akt/mTOR pathway [37]. Studies show that nicotine and NNK are potent agonists  

of nicotinic acetylcholine receptors (nAChR), which are expressed in lung epithelial cells and can 

activate PI3K [37]. Moreover, NNK can also activate PI3K by increasing the expression of EGFR  

and by induction of Ras mutation, which is found in about 25% of smoking-related human lung 

adenocarcinomas [38,39]. The activation of the pathway is PI3K-dependent, since the PI3K inhibitor 

LY294002 can abolish the activation of Akt by nicotine and NNK [37]. Indeed, the activation of the 

whole PI3K/Akt/mTOR pathway, from PI3K to S6K and 4E-BP1, has been verified by extensive 

studies [37,72] and results in the inhibition of pro-apoptotic proteins Bad and Bax, the induction of  

pro-survival protein survivin and the activation of NF-κB [72–74]. Notably, the NNK metabolites can 

also bind to DNA and cause gene mutations, including TP53 and KRAS [75]. Thus, similar to the metal 

compounds, tobacco components may induce malignancy by combining DNA damage with overriding 

survival signals exerted by PI3K/Akt/mTOR pathway activation [76]. 

Toxicants that primarily target the modulators of the PI3K/Akt/mTOR pathway, such as PP2A, can 

also exert their toxicity through this pathway, although the functions of this pathway may be opposed 

by other mechanisms. For example, microcystin-LR, a cyanobacterial peptide toxin found in toxic 

algae blooms, directly binds to the catalytic subunit of PP2A and inhibits its phosphatase activity.  

The consequential activation of Akt is associated with cell transformation [40,41]. However, when  

the cells are exposed to higher concentrations of microcystin-LR, the loss of PP2A activity causes 

activation and accumulation of p53 protein and ceramide, which overcomes the pro-survival signal 

from Akt and induces cell death [77–79]. These findings also suggest that the pro-survival functions of 

Akt activation could be counteracted by other mechanisms. 
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It is also noteworthy that the toxicity exerted by environmental toxins or chemical compounds on 

the cellular pathways are usually nonspecific. Other pathways alongside PI3K/Akt/mTOR may also be 

targeted and contribute to the toxicity. For example, the MAPK and NF-κB pathways play important 

roles in the apoptosis or transformation caused by multiple toxicants, such as arsenite, cadmium, 

carbon nanotubes and polybrominated diphenyl ether (PBDE) [33,80–84]. Nicotine and NNK also 

activate protein kinase C (PKC), the ERK MAPK pathway and the janus-activated kinase/signal 

transducer and activator of transcription (JAK/STAT) pathways for lung tumorigenesis [85]. The 

complexity of the numerous signaling pathways involved makes it a formidable task to build 

computational models for the toxicity analysis. Nonetheless, the patterns of the alteration of individual 

signaling pathways, which have been associated with cell fate alteration, could help elucidate the 

cellular signaling mechanisms for therapeutic reference. Indeed, based on the material that we have 

reviewed, in most cases when the compound induces apoptosis, it was associated with inhibition of  

the PI3K/Akt/mTOR signaling pathway and especially suppression of Akt activity. In contrast,  

the activation of the pathway was overwhelmingly associated with survival or malignant 

transformation [14,33,86,87]. Thus, the PI3K/Akt/mTOR pathway is intimately involved in cell fate 

determination and therefore an important target for therapeutic purposes. 

2.4. Physiological Products 

The last 20 years have witnessed the escalation of many diseases, including diabetes, obesity, 

cancer and cardiovascular diseases. Interestingly, these diseases are related to the deregulation of the 

PI3K/Akt/mTOR pathway. In particular, the deregulation of the pathway is a key feature of cancer and 

T2D [88]. In contrast to the oncogenic hyper-activation of the PI3K/Akt/mTOR pathway, it is the 

hypo-activation of this pathway that attenuates cellular insulin response, causing insulin resistance and 

even T2D [89]. While genetic causes of T2D are less frequently seen, physiological causative factors, 

including free fatty acids (FFAs) and inflammatory factors, target the PI3K/Akt/mTOR pathway and 

interfere with the insulin response [16]. Moreover, physiological hormones like IGF-1 and angiotensin 

II also target the PI3K/Akt/mTOR pathway, resulting in either physiological, or pathological, growth 

of the heart [90]. 

High concentrations of circulating FFAs are tightly associated with obesity and T2D.  

With worsening obesity, it becomes more difficult for adipose tissues to contain fat. Consequently,  

the concentration of FFAs increase in blood. Multiple components of the PI3K/Akt/mTOR pathway 

are targeted by FFAs. Studies show that FFAs activate PKCθ, which phosphorylates IRS1 at Ser1101 

and thereby blocks IRS1 tyrosine phosphorylation and further signaling via PI3K [42–44]. FFAs also 

attenuate the insulin activation of Akt through upregulation of PTEN [45]; or through induction  

of ceramide, which, in turn, activates PP2A and thereby decreases Akt activation [46]; or by enhancing 

the mTOR/S6K to IRS1 negative feedback signaling [47]. Each of these culminates in insulin resistance. 

Elevated plasma cytokines, including TNFα and IL-6, were detected in obese patients and have 

been shown to promote insulin resistance. Experimental data show that extended (24 h) pretreatment  

of IL-6 impaired the activation of Akt by insulin [48], whereas TNFα impaired the insulin signaling  

at IRS1, through activating S6K-related negative feedback signaling [49], both contributing to insulin 

resistance. A recent revelation shows that FGF1 can, both acutely or chronically, sensitize diabetic 
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mice to insulin and increase glucose uptake in an insulin-dependent manner [91]. It was shown in this 

study that FGF1 functions through activation of Akt signaling [91]. It remains to be determined 

whether the insulin sensitization seen with FGF1 is due to an enhancement of pAkt-IRS1  

positive feedback. 

Due to its crucial role in cell growth, the PI3K/Akt/mTOR pathway has been found to regulate the 

size of cardiomyocytes in both the developmental stage and in adulthood [92]. Moreover, a PTEN 

mutation-induced deregulation of the PI3K/Akt/mTOR signaling pathway was associated with 

hypertrophic cardiomyopathy [93]. There are two types of cardiac hypertrophy in the adult heart: 

physiological cardiac hypertrophy and pathological cardiac hypertrophy, which is also known as 

hypertrophic cardiomyopathy [94]. Physiological cardiac hypertrophy is considered adaption to 

exercise training and contributes to enhanced cardiac function [94]. In the process of physical exercise, 

the myocardium produces IGF-1, which activates the PI3K/Akt/mTOR signaling pathway in 

cardiomyocytes and promotes physiological growth of the myocardium [95,96]. Further studies found 

that PI3Kα, a specific subtype of the PI3K family, is critical for physiological exercise-induced heart 

growth, but is not associated with pathologic cardiac hypertrophy [97,98]. Overexpression of PI3Kα in 

the heart can even be protective against pressure overload, whereas a PI3Kα dominant-negative model 

shows an absence of a physiological hypertrophic response following exercise and susceptibility to  

the weak, over-expanded, thin-walled chambers found in dilated cardiomyopathy [90]. In contrast to 

physical exercise, cardiac stress such as excessive vascular afterload, induces a pathological cardiac 

hypertrophy, with a thickening and stiffening of the chambers, progressively reducing pump efficiency 

(specifically, the ejection fraction) and leading to “heart failure”, which is the inability of the heart to 

perfuse sufficiently to meet the body’s metabolic needs [94]. Studies show that cardiac stress induces 

the generation of neurohormones, such as angiotensin II and epinephrine, which specifically target 

PI3Kγ, another subtype of the PI3K family, through G-protein-coupled receptors (GPCRs) [50,90]. It 

is so far understood that the prolonged activation of PI3Kγ signaling, coupled with other pathways, 

such as MAPK, leads to hypertrophic cardiomyopathy [90,94,99]. 

3. The PI3K/Akt/mTOR Pathway in Molecular Targeted Therapy: Progress and Worry 

From the evidence reviewed, it may be generally summarized that the alteration of the 

PI3K/Akt/mTOR pathway and the consequential diseases are closely related to the pro-growth and  

pro-survival functions of the pathway. When the pathway is activated without control, the resulting 

hyper-survival and proliferation of the cells contribute to cancers and chemotherapy resistance. 

Conversely, hypo-activation of the same pathway hinders its response to stimulus hormones.  

In particular, if the stimulus hormone is insulin, then T2D may result. The detailed elucidation of the 

pathway by researchers now provides important targets for disease treatment. 

Great progress has been made in the field of molecular targeted cancer therapy during the last  

ten years, with a number of candidate therapeutic targets identified [100]. The over-activated 

PI3K/Akt/mTOR pathway, because of its essential role in promoting cancer growth and survival,  

is deemed one of the most promising signaling pathways to target for therapeutic intervention [13,101]. 

Indeed, the rationale for the inhibition of the PI3K/Akt/mTOR pathway in targeted cancer therapy is 

compelling and is supported by four major elements of clinical evidence: the activation of the pathway 
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is common in multiple cancers; its activation is found throughout carcinogenesis; and its activation is  

a poor prognostic factor and may also confer resistance to chemotherapy [102]. Furthermore, there has 

been conjecture that cancer cells rely on the activation of the PI3K/Akt/mTOR pathway for survival, 

because of the adverse conditions in which they grow, such as acidic or hypoxic conditions. Healthy 

cells, in contrast, do not rely as heavily on the pathway and are thus less vulnerable to cell death when 

the pathway is inhibited [102]. This is important, because it suggests that targeted inhibition of  

this pathway would harm malignant cells and relatively spare healthy cells. Inhibition of certain 

components of the PI3K/Akt/mTOR pathway may slow down or even stop cancer growth or sensitize 

cancer cells to chemotherapy. 

Due to this sound rationale, much effort across academia and industry has been vigorously  

focused on the development of such molecular targeted therapies. Thus far, more than 50 drugs  

inhibiting the PI3K/Akt/mTOR pathway are at different stages of development, with 30 such inhibitors 

reaching clinical trials [103]. Analogues of rapamycin are currently in the lead, having already been 

approved by the United States Food and Drug Administration (FDA) for the treatment of renal 

carcinoma, neuroendocrine tumors and mantle cell lymphoma [104]. The pharmacodynamics of these 

drugs have been extensively studied and reviewed elsewhere [103,105–107]. However, it is important 

to note that the results of some recent early clinical trials have been underwhelming compared to the 

high expectation from preclinical studies, thus raising urgent calls for the improvement of therapeutic 

strategies [103,104]. 

One of the potential problems with inhibiting the PI3K/Akt/mTOR pathway is that the pathway 

remains an important part of healthy cell metabolism, and as elucidated previously, inhibition of this 

pathway in healthy cells can lead to decreased insulin sensitivity and potentially T2D [108]. Therefore, 

one of the great challenges in cancer therapy with the inhibitors of PI3K/Akt/mTOR would be the 

subsequent development of hyperglycemia, hyperlipidemia and other metabolic disorders. 

Indeed, clinical trials found that temsirolimus and everolimus, which are analogues of rapamycin, 

caused hyperglycemia in 26% and 50% of patients, respectively, as well as 11% and 12% Grade 3–4  

toxicity [109]. Similarly, 37% of patients experienced hyperglycemia when treated with BKM120,  

a pan-class I PI3K inhibitor, with 9% Grade 3–4 toxicity [105]. Acute hyperglycemia has also been 

found with Akt inhibitor treatments [110]. These adverse metabolic effects suggest that inhibitors of 

the PI3K/Akt/mTOR pathway contribute to insulin resistance in normal cells. 

In a more sophisticated manner, treatment with rapamycin and its analogues caused an uprising of 

interferon gamma (IFNγ) due to a perturbation of the immune system [111]. On the one hand, the 

cytokines may help kill cancer cells [111]. On the other hand, it is worrisome that these cytokines 

interfere with the insulin response in normal cells [112]. The interferon cytokines, along with their 

risks of hyperglycemia and hyperlipidemia, may also cause apoptosis of pancreatic β cells and 

eventual pancreatic endocrine failure, and the T2D patient would need to start insulin therapy [113]. 

Together, these adverse drug effects effectively limit the dose and duration of these otherwise 

promising drugs. 

It is important to note that to maintain malignancy remission, the PI3K/Akt/mTOR kinase  

inhibitors are often life-long therapies; otherwise, the reactivation of the pathway would cause the  

re-emergence of malignancy [114–117]. Therefore, aside from some common adverse effects caused 

by PI3K/Akt/mTOR inhibitors, such as hyperglycemia, rash, asthenia and mucositis, there are other 
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chronic adverse effects that might develop over a longer term and that might not be detected in initial 

clinical trials. One of the concerns is that PI3K inhibitors may pose a threat to heart health, because 

PI3K signaling is important for physiologic cardiac muscle growth and response to stress. Impaired 

PI3K function could render the myocardium vulnerable, even to the stress of moderate physical 

exercise, thus increasing the risk of heart failure [114]. 

In addition to the toxic effects exerted by the PI3K/Akt/mTOR-targeted inhibitors described above, 

there are regulatory feedback and drug resistance issues that also diminish the therapeutic effect of 

these drugs [10,118,119]. For instance, while rapamycin and some analogues inhibit the activity of 

mTORC1 and decrease the activity of S6K and 4EBP-1/eIF4E for the purpose of halting protein 

translation, the negative feedback (S6K inhibiting IRS1) is also diminished. This could sensitize 

growth factor signaling through the IRS and thus perversely strengthen pro-survival effects in the 

cancer cells by overriding PI3K and Akt [120,121]. Another example [122] is found in newer forms of 

mTOR kinase inhibitors, which block both the activity of mTORC1 and mTORC2, aiming to not only 

reduce the mTORC1 activity, but also to block the phosphorylation of Akt at Ser473 by mTORC2. 

Therefore, it was hoped that these mTOR kinase inhibitors could avoid Akt activation due to mTORC1  

inhibition-related feedback. However, experimental data found that the inactivation of Akt by  

such treatments is only transient. Moreover, the transient inhibition of Akt activity could activate  

a FoxO-related feedback, resulting in upregulation of receptor tyrosine kinase (RTK) expression and 

further sensitizing the malignant cells to multiple growth factors [122]. One exception to this has been 

mTOR inhibition with metformin, which employs a different strategy to inhibit mTORC1. It is well 

established that metformin activates AMPK, which inhibits mTORC1 activity. Moreover, activated 

AMPK also directly phosphorylates IRS1 at Ser789 and, thus, decreases the activation of Akt [123].  

It is certainly interesting that metformin can not only treat the insulin resistance of T2D, but also may 

be effective for some malignancies [124]. 

Compared with traditional therapies that have less directed modes of action (e.g., chemo- and  

radio-therapy), molecular targeted therapy is a great advancement in therapeutics, because aberrant 

molecular signaling is the key to the pathogenesis of these diseases. However, molecules in a cell do 

not function in isolation; it is the entire network of interactions between the molecules that determines 

system-level regulatory mechanisms. Indiscriminately targeting individual molecules in a biomolecular 

network, without an understanding of the regulatory mechanisms in which they participate, could give 

rise to unexpected and highly undesirable results [1]. 

Indeed, as promising as molecular targeted therapy seems, the current state of drug development  

is facing great challenges. The toxic side effects and drug resistance obstacles encountered greatly  

limit the use of single agents as monotherapies to target the PI3K/Akt/mTOR pathway in cancer  

treatment [104]. A more promising approach seems to be to target the PI3K/Akt/mTOR pathway at 

multiple sites, as well as along related pathways, as a means to maximize efficacy, while reducing side 

effects; it may also be possible to identify inhibitors that target aberrant PI3K/Akt/mTOR pathways 

exclusively within cancer cells. 
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4. Computational Modeling for Therapeutic Guidance 

We have reviewed a wide array of agents perturbing the PI3K/Akt/mTOR pathway (viruses, gene 

mutations, chemical toxicants, physiologic products, etc.). The great diversity of these agents 

notwithstanding, the responses of the pathway share common features and consequences, as we have 

demonstrated. This implies that the pathway possesses regulatory mechanisms that are inherent to the 

pathway itself, which can be revealed by studying the dynamics of the pathway, without referring to 

the identity of the initial perturbation. A thorough understanding of these regulatory mechanisms is 

important for the testing of drugs. In combination therapy, an optimally proportionated drug regimen is 

desired so as to obtain the maximum synergistic effect. However, selecting the appropriate biologically 

active dose, both for single agent and combination therapy, remains a conundrum [103]. The regulatory 

mechanisms, if revealed, can give direct guidance for producing a low dosage combination therapy 

with minimal toxicity and drug resistance. 

Because the regulatory mechanisms involve molecular interactions of the entire pathway, 

mathematical modeling and in silico studies are indispensable to obtain a holistic grasp of the  

system-level properties. On the other hand, the high costs associated with in vitro and in vivo research, 

as well as the emergence of quantifiable biomarker data on these pathways, has prompted study of 

biological processes in silico [125,126]. Thereby, the urgent needs of optimization in therapeutic 

strategies, the accumulation of experimental evidence and the advancement of in silico studies have 

given rise to the exploration of computer-aided targeting. 

Introduction to computer-aided targeting: 

(a) Computer-aided targeting in this review refers to the execution of in silico studies that simulate 

the dynamic changes of certain signaling pathways and using the gleaned information to guide 

experimental or clinical modulation of the pathway. Such dynamic changes may range from the system 

level, which refers to the regulatory network of the pathway, to the molecular level, which refers to  

the structure and conformation of a specific molecule. Guidance gleaned from these computational 

studies is potentially useful in many facets of therapy, including the formulation of optimized drug 

combinations to maximize synergistic efficacy with reduced toxicity and designing pharmaceuticals to 

preferentially target one specific type of molecule to prevent off-target toxicity.  

(b) Adequate ex silico data, such as abundant protein-protein interaction evidence or nuclear 

magnetic resonance (NMR) and X-ray crystallography-illustrated protein structures are necessary  

for realistic computerized simulation. The methods employed in computer-aided targeting include  

a collection of software-based modeling applications, each crafted to simulate different levels of 

pathway and molecular interaction.  

(c) For example, in order to formulate an optimized composition of kinase inhibitors in combined 

therapy, a thorough understanding of the dynamic flow of the signaling pathway should first be 

acquired from real-world experimental evidence. Then, based on this descriptive experimental data, 

nodal points (nodes) along the pathway can be defined, and a complicated network may be simplified 

to a backbone framework for system-level in silico simulation. Mathematical modeling, harnessing 

prominent biological equations, such as the Michaelis–Menten equation (modeling enzyme kinetics), 

the Goldbeter–Koshland equation (modeling biological states impacted by both promoting and 

inhibiting enzymes) and the law of mass action (modeling the behavior of solutions in dynamic 
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equilibrium) can then be used to depict the mechanistic flow of the framework. Graphic output from 

mathematical models are generated, and the values of different nodes may then be manipulated to 

mimic different biological states. A review of this graphic output often reveals boundaries formed by 

combinations of nodal states, highlighting interesting and useful cases of signaling dynamics. Finally, 

comparing the nodal configurations of pathological states to those of normal states may identify 

numerous points of transition between the two; analysis of these can identify the most efficient 

transition from pathological to normal, and this represents an optimized therapeutic strategy.  

(d) In silico simulations at the molecular level can also provide guidance on drug design.  

For example, based on NMR or X-ray crystallographic data, molecular dynamics (MD) simulation 

applies classical and quantum mechanics to calculate the forces between bonded and non-bonded 

atoms and, from this, builds functionally useful simulations of whole molecules, especially the 

receptors of interest as they function and move in three-dimensional space. Powerful software 

packages, such as AMBER, CHARMM and NAMD, allow sophisticated MD simulations to be 

achieved. MD simulation can reveal subtle dynamic differences between a targeted molecule and other 

closely related ones. Furthermore, software packages like FTMAP can be applied to computationally 

manipulate ligand probes on multiple simulated protein conformations, in order to identify cryptic and 

allosteric binding sites which might otherwise be easily overlooked by structure-based drug design. 

Moreover, docking programs, which employ a method known as the relaxed complex scheme (RCS), 

can be applied to virtually screen the binding sites of drug candidates in a simulated flexible receptor; 

free-energy calculations can predict the drug-receptor binding efficiency; and techniques, such as 

alchemical techniques, can greatly simplify the computation. These docking and free-energy analyses 

are thus particularly advantageous to discover drugs with high specificity to the targeted protein. 

A mathematical model in the form of coupled ordinary differential equations was previously 

defined, in order to study a broad pathway in the context of insulin signaling [127]. The mechanistic 

model described the insulin stimulated signaling dynamics, including IRS1 phosphorylation and the 

following activation of PI3K and Akt, as well as GLUT4 translocation and the pAkt-IRS1 positive 

feedback loop. Moreover, differential equations were formed with rate constants and parameters 

informed by previous experimental data [127]. The model was used to simulate the detailed dynamics 

of insulin signaling. However, it does not serve the purpose of unveiling the simple and general 

mechanisms that underlie pathway regulation under normal and pathologic conditions. 

To reveal such regulatory mechanisms, the backbone structure of the PI3K/Akt/mTOR pathway 

must first be obtained to filter out unimportant information. Currently, there exist sufficient data to 

evaluate the backbone structure, on the basis of which a simplified mathematical model can be built to 

realistically simulate both the normal function and the pathologic alterations of the pathway. Such  

a model may be useful to test strategies to rectify a deranged pathway. Our previous studies have 

constructed such a backbone network and its computational model to facilitate the systematic study of 

the PI3K/Akt/mTOR pathway [89,128]. The simplification was crafted according to the following 

considerations: First, since Akt is the master regulator of the pathway, the detailed phosphorylation 

and dephosphorylation cycle (PdPC) of Akt was central to, and therefore largely retained in, the 

backbone structure. Second, molecules along a linear cascade were represented by only three 

molecules: two ending ones and a middle one. These simplifications led to a backbone network 
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structure as shown in Figure 2, which includes the PdPC of Akt, the positive feedback loop and the 

negative feedback loop. In the PdPC, EP groups the protein kinases, PDK1 and mTORC2; EdP groups 

the phosphatases, PP2A and PHLPP1/2. With this simplified model, the regulatory mechanism of the 

pathway can be represented by the response curve A(I), where I represents the concentration of the 

growth factor (e.g., insulin), and A = [pAkt]/[Akt]total is the percentage of phospho-Akt. 

Figure 2. The backbone structure of the PI3K/AKT/mTOR pathway. The pathway can be 

divided into three components: the input (colored in red), the output (colored in blue) and 

the feedback (colored in green). EP includes PDK1 and mTORC2; EdP includes PP2A  

and PHLPP1/2. 

 

The regulatory mechanisms may reflect key features of physiologic/pathologic phenotypes. That is, 

the shape of the response curve may contain information about the pathway functioning: a normal 

response may correspond to one kind of shape, and a pathologic response may correspond to another. 

Of course, such a mathematical model cannot be expected to reveal all of the complexities of diseases 

or normal functions, but the insights gained are valuable and may provide crucial insights into further 

investigations. This is especially true when one only considers the latency phase of diseases, during 

which non-essential body reactions do not happen. 

4.1. Mathematical Analysis of the PI3K/Akt/mTOR Pathway 

With the simplified model, regulatory mechanisms, as visualized in the resultant response curves,  

can be discovered in silico through numerical simulation. One first assigns a set of parameter values to 

the model and then runs the model to obtain a response curve A(I). By sampling of the parameter space 

for sufficiently long, one can obtain a broad canvas of the biologically relevant responses with certain 

confidence. However, because the search depends on sampling and the search size scales exponentially 

with the number of parameters, it cannot be guaranteed that all phenotypes will be found. More 
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importantly, simulation studies without analysis do not readily reveal system-level regulatory 

mechanisms or illuminate connections between various phenotypes. 

To overcome this difficulty, a novel approach was developed to analyze the pathway [89,128], which 

significantly reduced the computational complexity. Because a response curve is ultimately determined 

by the parameters of the mathematical model, the space of parameters can be divided into many regions, 

each corresponding to a phenotype. The boundaries between the regions (which separate the phenotypes) 

can be identified by the singularity theory, which is specialized for the detection of qualitative changes. 

As an analytical approach, singularity analysis does not depend on extensive simulations. 

Mathematical analysis revealed that the parameter space of the pathway can be well characterized. 

Although there are many parameters in the model, it was found that several parameters always group 

together to form a composite parameter, assuming that the system is in the steady state. In total, there 

are only four such composite parameters: β, α, KP and KdP. The parameter β positively correlates with 

EP/EdP. Assuming EdP is a constant, then β positively correlates with EP, which, in turn, positively 

correlates with the strength of the edge IRS1 → EP (e.g., an increase in PI3K activity can increase EP 

and, hence, β). The parameter α = φ − ψ represents the difference between φ (which is proportional to 

the strength of positive feedback pAkt-IRS1) and ψ (which is proportional to the strength of negative 

feedback pAkt-mTORC1-S6K-IRS1). The parameters: ܭ௉ = ௠௉ܭ /[Akt]௧௢௧௔௟ (1)

and: ܭௗ௉ = ௠ௗ௉/[Akt]௧௢௧௔௟ (2)ܭ

are the Michaelis constants of phosphorylation and dephosphorylation kinetics. By further assuming 

the symmetry of PdPC (i.e., KP = KdP = K), the number of parameters reduce to three: β, α and K. 

In order for the system to have fine dynamical properties (sensitivity, robustness, adaptivity),  

K should not be too large. According to numerical simulations, it was found that K ≤ 0.05 provided 

sufficient resolution [89]. This condition may well be realistic, because Akt is an abundant protein.  

An intriguing future direction would be to determine the values of KP and KdP by biochemical 

experiments and to test their values. In the following, we assume that K is indeed small. 

By fixing β, the parameter space reduces to the K ~ α plane. Figure 3 corresponds to the case β = 1. 

By applying singularity analysis, Wang identified two singularity boundaries that divide the plane into 

three regions [89]. For any two points within the same region, their corresponding response curves are 

qualitatively the same (although they are, of course, different). For any two points in different regions, 

their response curves are qualitatively different. The three regions, from the top down, are the regions 

of the irreversible switch, the toggle switch and the monotone type, respectively. Following the 

assumption that K is small, the change of the shape of the response curve is actually driven by the 

change of α. As α increases, the response curve gradually changes from the monotone type to the 

toggle switch and, finally, to the irreversible switch (Figure 4, which is obtained with K = 0.01). 

The above narratives are based on the case β = 1. What would happen if β changes? Mathematical 

analysis revealed that β causes a shift of the response curve along the I-axis [1,129]. The shift is 

approximately parallel, especially when K is small. As β decreases, the response curve makes an 

almost perfect shift to the right, which holds true for both the case α > Θ0(K) and α < Θ0(K) (Figure 5). 
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Note that when K is small, one has Θ0(K) ≈ 0. For the limit case K → 0, one has Θ0(K) → 0, and the 

parallelism of the shift becomes exact. 

Finally, it is worth mentioning that the revealed regulatory mechanisms are general. The 

PI3K/Akt/TOR pathway, ubiquitously present in almost every cell of every multicellular organism,  

is evolutionarily well-conserved. Note that we have removed the letter “m” in the word “mTOR” to 

signify the fact that virtually the same pathway exists in non-mammal multicellular organisms. The 

results of mathematical analysis, being based on the backbone structure and being independent of the 

parameters, has value in its generality. 

Figure 3. The phase diagram K versus α, categorizing different shapes of the pathway’s 

response curve. The parameter K is the Michaelis constant divided by the total Akt 

concentration. The parameter α corresponds to the net strength of positive feedback over 

negative feedback. The two functions Θ0(K) and Θ1(K) trace out two curves that divide the 

plane into three regions. 
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Figure 4. The deformation of the response curve as the parameter α changes, when  

K1 = K2 = 0.01 and β = 1, are fixed. (A) The monotone type with low sensitivity; (B) the 

monotone type with high sensitivity; (C) the vertical tangent type when α = Θ0(0.01);  

(D) the toggle switch; (E) the threshold of the irreversible switch when α = Θ1(0.01);  

(F) the irreversible switch. 

 

Figure 5. The shift of the response curve A(I) along the I-axis by altering β only. The shift 

is almost parallel, because the shape of the response curve is very insensitive to the value 

of β. (A) The response curve is a toggle switch (α > Θ0(K)); (B) The response curve 

belongs to the monotone type (α < Θ0(K)). 

 

4.2. Physiologic and Pathologic Phenotypes 

It is intuitive that the toggle switch (bistability), being in the middle region of Figure 3, corresponds 

to the normal functioning of the pathway. The middle region is flanked by the upper and lower regions, 

which may correspond to two kinds of pathology that are mechanistically opposite. 

The upper region contains irreversible switches, where irreversibility implies that once Akt is 

activated, the activation persists, even after the complete withdrawal of the growth factor. Therefore,  

it may correspond to a cancer phenotype. Indeed, as introduced above, sustained activation of Akt 

propagates pro-survival and pro-growth signals, regardless of the growth factors, and is often 

associated with cancer incidence. The irreversible activation of Akt can be achieved by the increase of 

α (Figure 4). Because α = φ − ψ and φ is relatively constant, the increase of α is largely due to the 

decrease of ψ. Because ψ positively correlates with mTORC1 activity, mTORC1 inhibition would 

increase α and, thus, increase cancer risk. This provides valuable insight into the unpredictable results of 

mTORC1 inhibition in clinical trials for cancer treatment: while mTORC1 inhibition weakens cancer 

growth by several mechanisms (inhibiting macromolecular synthesis, inducing autophagy and 
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diminishing the mTOR-dependent survival mechanism for chemotherapy [130]), it also perversely acts 

to promote cancer cell survival through constitutive activation of Akt. 

The lower region contains response curves as gradually increasing functions, which usually do  

not dispose glucose rapidly enough after a meal, causing persistent hyperglycemia [1]. Therefore, 

responses in this region may correspond to insulin resistance and T2D phenotypes. This is also clear 

from the perspective of feedback loops. Under the assumption K → 0, the lower region can be 

characterized by α < 0 (the negative feedback dominates over the positive feedback), which makes Akt 

activation difficult, as well as the subsequent glucose uptake. The enhancement of negative feedback is 

often due to mTORC1 overactivity, which can be caused by gene mutations and nutritionally saturated 

states (high concentrations of amino acids, FFAs, TNFα, etc.). 

Although normal responses should be within the middle region, this does not mean responses in the 

middle region are always normal. It is likely that normal responses only occupy a small area within the 

middle region (e.g., the green area in Figure 3). More importantly, the phase diagram is for K and α; 

thus, it cannot reflect the influence of the parameter β. On one hand, the decrease of β would shift  

the response curve to the right (Figure 5). This would raise the threshold of insulin response, and the 

resulting insulin resistance would increase the risk of T2D. Τhe decrease of β can be caused by factors 

such as FFAs and IL-6, which reduce the PI3K activity. On the other hand, Figure 5A tells us that 

when α > Θ0(K), the excess increase of β would cause the irreversible activation of Akt. Because  

the value of β positively correlates with EP/EdP, molecular events that increase EP or decrease EdP 

would increase β and, thus, increase cancer risk. The EP increasing events include the loss of PTEN, 

gain-of-function PIK3CA mutation, over-activation of PI3K triggered by nicotine or viral agent  

PyMT. The EdP decreasing events include PP2A inhibition by viral agents PyST or SVST and the 

overexpression of CIP2A. Finally, note that when α < Θ0(K), the increase of β would not lead to 

irreversible activation of Akt (Figure 5B). 

Because the pathway deregulations are highly relevant to cancer and T2D, the phase diagram  

(i.e., Figure 3) appears to be a credible description of what occurs in vivo, with the middle region 

corresponding to the normal phenotype. To further test this hypothesis, Wang considered the 

PI3K/Akt/mTOR pathway from a different perspective [129]. Instead of further studying the  

molecular level pathway dynamics, he shifted the focus to the organismal level by studying plasma  

glucose-insulin homeostasis, which is influenced both by the organismal level feedback mechanisms 

and by individual cells’ action (the pathway). By hypothesizing how the pathway should be designed 

in order to confer optimal glucose-insulin homeostasis, he proved that the toggle switch is the best 

mode of insulin action. 

Although cancer and diabetes are opposite one another on the phase diagram, this does not mean 

that the two diseases are incompatible; it is more difficult for a cancer patient to contract T2D than  

a normal subject and vice versa. In fact, the opposing positions only imply that the two phenotypes are 

mechanistically opposite at the cellular level. For a multicellular organism like us, many cell types  

co-exist in the body, and there is no problem that the cancer phenotype exists in one cell type and  

the T2D phenotype exists in another. Moreover, the two diseases may be favorable to each other.  

For example, insulin resistance of muscle cells leads to hyperglycemia in a T2D patient. This high 

glucose concentration in the blood would be beneficial to the growth of cancer, which is known to be a 
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glucose addict. Compared with normal subjects, T2D patients should have higher risks of cancer 

development. Further investigations on this possibility will be interesting. 

Finally, although the upper and lower regions are assumed to be pathologic, they may correspond to 

normal regulatory mechanisms for certain species or cell types, under certain extreme conditions or 

during certain stages of development. Indeed, there are innumerable multicellular species, and different 

species live in disparate environments and have disparate physiologies. It is thus unlikely that a single 

toggle switch is responsible for the whole spectrum of metabolic conditions. That is, the monotone 

type and irreversible switch may be adopted by some species whose physiology is quite different from 

ours. Even for the same organism, the ever-changing metabolic conditions may also drive the 

deformation of the response curve, and it is possible that a qualitative transition occurs temporarily in 

order to cope with an extremely harsh condition. Furthermore, even for the same organism at a single 

time, it is possible that more than one kind of control mechanism coexists, due to a wide variety of cell 

types in the body. 

4.3. Combination Therapy Guided by Computation 

It was postulated that cancer, diabetes and health exist as stable states of the same dynamic  

system [131,132]. From this perspective, the essence of disease treatment is to induce the transition 

from the pathologic state to the healthy state. In terms of Figure 3, this corresponds to a transition of 

state points from a pathologic region to the green region, as exemplified by the dashed line in the 

figure. The abovementioned mathematical model can be employed to develop strategies to accomplish 

an efficient transition from one state to another [128]. Such strategies may include multiple-drug 

regimens targeting several specific points in the pathway, producing maximal synergistic effects, with 

minimized toxicity and drug resistance. 

One insight obtained from mathematical analysis is the decoupling of β (whose influence is 

indicated by Figure 5) from K and α (whose influence is indicated by Figure 3). This decoupling 

specifically implies the necessity of combination therapy. The transition indicated by the dashed line in 

Figure 3, although rectifying aberrations in the K ~ α plane, would fail to rectify aberrations caused by 

an abnormal β. Conversely, the K ~ α plane aberrations would not be rectified by isolated adjustment 

of β. By fixing the value of K, the decoupling is essentially between α and β. It is now clear that α 

primarily determines the shape of the responding curve (Figure 4), whereas β primarily determines the 

position of the curve (Figure 5). In many cases, both α and β need to be targeted to adjust the response 

curve to normal. For example, FFAs both downregulate PI3K activity (reduce β) and upregulate 

mTORC1 (reduce α). Therefore, it is necessary to target both PI3K and mTORC1 to treat  

obesity-induced insulin resistance. Another example is cancer treatment. Many cancer phenotypes are 

characterized by both PI3K and mTORC1 hyperactivity. The mathematical analysis has revealed that 

the two molecules play different roles in carcinogenesis; and their targeting also has differential 

consequences. Therefore, targeting both is required, because they are irreplaceable of each other. The 

composition of such a drug regimen depends on future investigations, including the study of the 

detailed pharmacodynamics. 

Another insight obtained from mathematical analysis is that [Akt]total, the total concentration of Akt, 

needs to be sufficiently large, so as to obtain a finely-tuned biologic response to so many inputs. This 
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requirement is a consequence of the smallness requirement of K. Because K = Km/[Akt]total and the 

Michaelis constant Km is relatively constant, [Akt]total has to be sufficiently large to make K sufficiently 

small. This is an important message. Because Akt is a well-known oncoprotein, it seems natural to  

reduce [Akt]total (by suppressing the mRNA expression of Akt) for cancer treatment. There are indeed 

many experimental and clinical practices under way in that direction [133]. The mathematical analysis, 

however, stresses that a large total Akt concentration is in fact a good thing; it is necessary for 

sensitive responses that are required by most biological functions. The inhibition of total Akt would 

enlarge K, which would, in turn, reduce sensitivity, degrade the quality of the pathway response and 

increase the risk of both cancer and T2D. To inhibit cancer growth, it is necessary to reduce pAkt, but 

one should not target the total Akt for that purpose. From a systematic perspective, it is predictable that 

direct inhibition of Akt expression may cause more severe toxicity than inhibition of its regulators, 

such as PI3K and mTOR [89,128]. 

Our discussion thus far may give the impression that α and β are mTORC1 and PI3K activities, 

respectively. In fact, α and β are composite parameters, which also involve molecules other than 

mTORC1 and PI3K. These molecules may also be targeted for combinatorial therapy. 

4.4. The Yet to Be Explored “EdP” Wing 

The enzyme group, EdP, has not been fully explored in the mathematical model. However, it can be 

predicted that the modulation of EdP would render a parallel shift of the response curve, because the 

parameter β negatively correlates with EdP. That is, the increase (decrease) of EdP would shift the 

response curve to the right (left). Although it is up to future data enrichment, the EdP wing (as shown in 

Figure 1), which inactivates Akt by dephosphorylation, is subject to far less feedback control than  

the EP wing. If well harnessed, there may be strong therapeutic value in the EdP wing. The EdP  

wing contains PP2A and PHLPP; PP2A is better studied, because of its expected role as a tumor 

suppressor [12,20,55,134]. 

To date, most of the efforts aimed at correcting the over-activation of Akt-related signaling has been 

focused on the kinases that promote Akt activation, such as PI3K, mTORC2 and IRS1. Comparatively, 

less attention has been invested in the phosphatases, which deactivate Akt. Admittedly, the sheer 

number of phosphatases makes study and intervention a formidable challenge. For example, PP2A,  

a major Akt phosphatase, is in reality a set of over 90 different PP2A holoenzymes, each likely to have 

a number of different substrates [135]. Therefore, one must be careful as to which specific type of 

PP2A holoenzyme to target and which substrates are affected. In spite of this complexity, inhibition of 

PP2A activity, either by exogenous factors, like toxicants and viral agents, or by cellular regulation 

through SET, CIP2A and α4 protein, is frequently associated with tumorigenesis [134,136–138]. PP2A 

has thus been recognized as a tumor suppressor, and the restoration of normal PP2A activity may be 

therapeutically useful [12,139]. PP2A could place essential control on the proliferation and survival of 

malignant cells, not only by inhibiting Akt, but also by inhibiting the oncoprotein, c-Myc. These two 

beneficial PP2A effects are suppressed in malignant cells, where CIP2A tends to accumulate and 

directly inhibit the anti-tumor effects of PP2A [140]. Therefore, the restoration of PP2A function in 

malignant cells could be an effective approach for cancer therapy. 
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One prominent option for PP2A enhancement in malignant cells would be to quench the expression 

of CIP2A. The robust expression of CIP2A is a causative factor of many types of human cancer and is 

associated with resistance to chemotherapy [57,134]. In a mouse model evaluating the absence of 

CIP2A, the CIP2A mutant mice showed no defects in growth or development, suggesting CIP2A 

targeting could be associated with less morbidity than direct action on the PAM pathway [140]. 

Progress has been made by using small interference RNA (siRNA) to knock down CIP2A expression 

in breast cancer cells and NSCLC (non-small cell lung cancer) cells, both decreasing the tumorigenic 

potentials of the cancer cells and sensitizing them to chemotherapy [136,141]. However, challenges 

still remain to identify which specific types of PP2A and their substrates are affected by targeting 

CIP2A. Further, the discovery of other CIP2A inhibitors, as well as enrichment of in vivo data will go 

a long way in guiding this therapeutic strategy [140]. 

4.5. Patient Selection Guided by Computation 

A deliberation of patient selection can help some to avoid serious adverse effects [7]. For example,  

a new benchmark to analyze the potentially beneficial and toxic effects can sift out patients who are 

not suitable for certain therapy. Thus far, gene mutation analysis is available to help predict the  

would-be sensitivity of a patient to certain targeted therapy [142]. Furthermore, diabetes patients and 

pre-diabetic subjects may be at greater risk for metabolic toxicity in PI3K/Akt/mTOR targeted therapy, 

although the molecular basis for such discrimination is unclear [108]. 

The phase diagram (Figure 3) can provide a global picture of the responses of body cells of a patient or 

a normal subject. Certain types of cell can be extracted from a patient, such as muscles, fat, cells in the 

blood and cells obtained from biopsy. One can then examine many of these cells by determining their 

response curves and then locate them on the phase diagram. In this way, a map of the subject’s cellular 

response can be obtained; and the pattern of the map can be analyzed. From this map, one can evaluate the 

health status of the subject in terms of the PI3K/Akt/mTOR pathway. For example, a pre-diabetic subject 

may appear to be healthy, but the map would reveal that his/her muscle cells are insulin resistant. One can 

also predict the global consequences of certain treatments for a patient. If a cancer patient is fortuitously 

found (by the map) to be pre-diabetic, then certain cancer treatments (e.g., inhibiting PI3K) could be 

dangerous, because the treatments could induce severe metabolic toxicity, such as hyperglycemia. The 

global analysis of the map would suggest a more detailed scheme that could render a more targeted 

treatment, while at the same time minimizing global side effects as much as possible. 

5. Molecular Dynamics Simulation Inspires a New Generation of Therapeutic Agents 

While systems-level modeling of the PI3K/Akt/mTOR pathway provides insights into the strategy 

of combining inhibitors for effective therapy with reduced toxicity, molecular-level modeling may help 

discover inhibitors with higher specificity and efficacy. Indeed, the computer-aided study of targeting 

sites of the kinases is a powerful tool for drug discovery. 

It is widely established that based on nuclear magnetic resonance (NMR) and X-ray crystallographic 

structures, well-defined binding pockets can be revealed by molecular modeling [143]. Yet, unlike 

traditional crystallographic studies that demonstrate protein flexibility based on extensive labor and 

capital expense, molecular dynamics (MD) simulations use principles of classical/quantum mechanics 
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to calculate atomic forces, which govern the molecular movement, in order to simulate protein 

flexibility and dynamics [144]. MD simulation is thus useful for studying the conformational space 

accessible to proteins and protein-ligand complexes, uncover drug-targetable allosteric sites and reveal 

cryptic binding sites that are usually overlooked by traditional crystallographic studies [145].  

MD simulation can also be employed to examine the strength of docked protein-ligand conformations, 

reveal transient binding sites and explore altered drug binding profiles of protein variants [146]. 

Further development of MD simulations offer various techniques, such as thermodynamic integration, 

single-step perturbation and free energy perturbation, all serving as powerful tools in drug discovery and 

optimization [146]. In the following, we take PI3K as an example to show the use of computer-aided 

analysis in isoform-specific and mutation-specific inhibitor discovery. 

In total, there are eight PI3K enzymes, which are grouped into three classes, among which, class I is 

the most important to cancer. Class I PI3K consists of four members, PI3Kα, PI3Kβ, PI3Kγ and 

PI3Kδ. They are each comprised of a 110-kDa catalytic subunit, p110α, p110β, p110γ and p110δ and a 

regulatory subunit. The activation mechanisms of the four isoforms of PI3K are different, yet they 

crosstalk with one another [104]. The first generation of PI3K inhibitors developed were pan-class I 

PI3K inhibitors, which inhibited all four members of class I PI3K activity [10]. Later studies illustrated 

different structures of the four catalytic subunits. Thereby, computational visualization and analysis of 

the different structures offered insights into isoform-specific PI3K inhibition [143]. Nonetheless, one 

study argues that the use of pan-PI3K inhibitors is necessary, because any class I PI3K activation  

can sustain cell survival and proliferation, due to the redundancy of the PI3K isoforms [147]. 

However, the pan-PI3K inhibitors exert relatively severe toxicity, both on-target and off-target, 

compared to isoform-selective inhibitors. Thus, the dose limitations of pan-PI3K inhibitors prohibit 

them from achieving desired therapeutic effects [104]. It is prudent to target the malfunctioning 

isoforms of PI3K, without perturbation of the other normal isoforms. Indeed, evidences from 

experimental and clinical studies show that different isoforms of PI3K are activated in different 

circumstances and have differential functions. For example, PI3Kα is the isoform with high rates of 

mutation, whereas PI3Kβ is the isoform that is overactivated at PTEN mutation [148,149]; PI3Kγ is 

important for stress-induced pathological, but not physiological, cardiac hypertrophy [17]; PI3Kδ is 

highly expressed in lymphocytes and highly involved in B- and T-cell responses [150]. In addition, 

isoform-specific PI3K inhibitors have the potential to completely inhibit the activity of the target with 

tolerable toxicity [104]. 

MD simulation and its subsequent studies provided valuable tools for the development of  

isoform-specific PI3K inhibitors, complementing the molecular modeling method [151]. It has been 

reported that the combinatory effort of comparative molecular field analysis (CoMFA), comparative 

molecular similarity induces analysis (CoMSIA), docking analysis and MD simulation can elucidate 

the structure-activity correlation of the inhibitors of p110α, as well as the binding modes of inhibitors 

at the ATP binding pocket [152]. Furthermore, the free energy calculations are used to select and 

confirm the isoform-specific inhibitors to p110α, p110β or p110δ, in silico [153,154]. So far, ten PI3K 

inhibitors of high isoform specificity are under clinical trials [104]. For example, the p110α-specific 

inhibitors, NVP-BYL719 and MLN1117 (previously known as INK1117), show selective inhibitory 

potency to p110α, 50- and 100-fold higher than other class I PI3K isoforms, respectively [155,156]; 

p110β-specific inhibitor SAR260301 has shown 88- and 26-fold selectivity, respectively, over p110α 
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and p110δ [148]; GS-1101, a p110δ-specific inhibitor, shows 40- to 300-fold selectivity against other 

isoforms [157]. Further studies of the isoform-specific inhibitors prove that GS-1101 effectively 

inhibits the activity of PI3Kδ with tolerable doses and can produce a drastic response in B-cell 

malignancies [158], whereas NVP-BYL719 and MLN1117, in combination with EGFR and mTOR 

inhibitors, respectively, have also shown promising antitumor efficacy in recent studies [159,160]. 

Of the four class I PI3Ks, only PI3Kα has been frequently mutated in human cancers [149]. Three 

hotspots for p110α mutations, H1047R, E545K and E542K, all increase PI3K activity [104]. 

Therefore, a study of the conformation changes based on the mutations could lead to the design of 

suitable drugs specifically targeting mutated PI3K. Encouragingly, an in silico docking and MD 

simulation study of 33 PI3K inhibitors binding to conformations of the wild-type and mutant PI3Kα 

has demonstrated the conformation differences between an H1047 mutation and wild-type p110α for 

mutant-PI3Kα-specific drug design [161]. Other studies using structure-based drug design led to the 

development of mutated-PI3Kα targeted inhibitors, such as CH5132799 and DW09849 [162,163]. The 

drug efficacy of such new-generation inhibitors is in the process of characterization. For example, 

CH5132799 shows potency to sensitize PIK3CA-mutated xenograft tumor to chemotherapy [164]. 

Further studies of the toxicity profile are also expected. 

There are also studies using MD simulation to explore inhibitors for other components in the 

PI3K/Akt/mTOR pathway, such as Akt and mTOR [165–168]. However, in contrast to PI3K, MD 

studies of the other components in the pathway are sparse and less extensive. MD simulation is  

a rapidly developing field and is likely to play an increasingly important role in drug  

discovery [144,145]. Therefore, it is important to perform MD simulation on other components of the 

pathway, including mTOR, IRS and the interaction between IRS and PI3K. 

6. Conclusions 

The PI3K/Akt/mTOR pathway has essential pro-survival and pro-growth functions in the cell, 

amongst a variety of other cellular functions. The perturbation of this important pathway is associated 

with many diseases. We reviewed a number of alterations of this pathway and the pathological 

consequences, including genetic mutations, viruses, chemical toxicants, metabolites and inflammatory 

factors. Over-activation of this pathway is essential for the survival and proliferation of the malignant 

cells and is therefore a feature of many cancers. Toxicology studies find that the PI3K/Akt/mTOR 

pathway is commonly targeted by toxins and viruses to produce disease, but also suggest that  

the pathway is pharmaceutically modifiable. A new generation of therapy, aiming at rectifying  

the pathological alterations of this pathway, is under vigorous development. It has already been 

demonstrated that PI3K/Akt/mTOR targeted therapy inhibits components of the pathway and shows 

therapeutic efficacy, albeit with a variety of toxic side effects. Thus, a thorough understanding of this 

pathway, with a systemic perspective and computational modeling, is important. Here, we reviewed 

the current status of computational-aided targeting of this pathway, including mathematical modeling 

at the system level, as well as MD simulations at the molecular level. For future applications, further 

analysis of the dynamics of normal and pathologically-altered pathway signaling, coupled with 

pharmacodynamics characterizations, presents new opportunities to compose therapy optimized for 

rectification of the aberrant pathway. Computational analysis of patient cell sampling may help predict 
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metabolic toxicity by molecular targeted inhibition. Finally, in silico simulation of different isoforms 

and mutated conformations of the pathway components may help design more highly selective drugs, 

achieving better therapeutic effects with less toxicity. 
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