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Thermal motion in complex fluids is a complicated stochastic
process but ubiquitously exhibits initial ballistic, intermediate
subdiffusive, and long-time diffusive motion, unless interrupted.
Despite its relevance to numerous dynamical processes of interest
in modern science, a unified, quantitative understanding of thermal
motion in complex fluids remains a challenging problem. Here, we
present a transport equation and its solutions, which yield a unified
quantitative explanation of the mean-square displacement (MSD),
the non-Gaussian parameter (NGP), and the displacement distribu-
tion of complex fluids. In our approach, the environment-coupled
diffusion kernel and its time correlation function (TCF) are the es-
sential quantities that determine transport dynamics and character-
ize mobility fluctuation of complex fluids; their time profiles are
directly extractable from a model-free analysis of the MSD and
NGP or, with greater computational expense, from the two-point
and four-point velocity autocorrelation functions. We construct a
general, explicit model of the diffusion kernel, comprising one
unbound-mode and multiple bound-mode components, which pro-
vides an excellent approximate description of transport dynamics of
various complex fluidic systems such as supercooled water, colloidal
beads diffusing on lipid tubes, and dense hard disk fluid. We also
introduce the concepts of intrinsic disorder and extrinsic disorder
that have distinct effects on transport dynamics and different de-
pendencies on temperature and density. This work presents an un-
explored direction for quantitative understanding of transport and
transport-coupled processes in complex disordered media.
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Thermal motion in complex fluids is a complex stochastic
process, which underlies a diverse range of dynamical pro-

cesses of interest in modern science. Since Einstein’s seminal
work on Brownian motion (1), thermal motion in condensed
media has been the subject of a great deal of research. However,
it is still challenging to achieve a quantitative understanding of
the transport dynamics of disordered fluidic systems, including
cell nuclei and cytosols (2), membranes and biological tissue (3),
polymeric fluid (4), supercooled water (5, 6), ionic liquids (7, 8),
and dense hard-disk fluids (9). Interestingly, thermal motion of
these complex fluids commonly exhibits a mean-square dis-
placement (MSD) with initial ballistic, intermediate subdiffusive,
and then terminal diffusive behavior (10–12); the associated
displacement distribution is non-Gaussian except in the short-
and long-time limits, and its deviation from Gaussian increases at
short times but decreases at long times, as long as thermal mo-
tion is uninterrupted. These phenomena cannot be quantitatively
explained by the original theory of Brownian motion (13).
To explain dynamics of anomalous thermal motion, the theory

of Brownian motion has undergone a number of generalizations
(14–27). Among these generalizations, Montroll and Weiss’s (20)
continuous-time random walk (CTRW) model enables quantitative
description of anomalous transport caused by a tracer particle being
trapped by other objects in disordered solid media (28); the CTRW
with a power-law waiting-time distribution (WTD), ψðtÞ∝ t−ð1+αÞ

ð0< α< 1Þ, successfully explains charge transport dynamics in
amorphous semiconductors (29), which show a subdiffusive
power-law MSD. These subdiffusive transport dynamics can be
described by the fractional diffusion equation (30) or the frac-
tional Fokker–Planck equation (31–33) in the continuum limit.
Mandelbrot and Van Ness’s (21) fractional Brownian motion
(FBM) is another famous model of anomalous subdiffusive trans-
port with a power-law MSD; however, FBM is a Gaussian sub-
diffusive process, while the CTRWwith a power-lawWTD is a non-
Gaussian process. O’Shaughnessy and Procaccia (23) and Havlin
and Ben-Avraham (24) investigate anomalous transport originating
from self-similarity of transport media, considering random walks
or diffusion in a fractal. Recently, Novikov et al. (34, 35) introduced
a model of anomalous thermal motion dependent on mesoscopic
structures of media and analyzed the long-time behavior of the
diffusion coefficient by using a renormalization group solution.
While these models successfully describe subdiffusive trans-

port occurring in disordered media, a number of disordered
fluidic systems exhibit Fickian yet non-Gaussian diffusion (36–
43); that is, the MSD is linearly proportional to time but the
displacement distribution deviates from Gaussian. This issue was
recently addressed by stochastic diffusivity (SD) models, in which
the diffusion coefficient is treated as a stochastic variable (44–
51). While SD models successfully demonstrate Fickian yet non-
Gaussian diffusion, to the best of our knowledge, these models,
too, are inconsistent with the transient subdiffusive MSD and the
nonmonotonic time dependence of the non-Gaussian parameter
(NGP), widely observed features of complex fluids.
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The NGP has a long history in transport theory. Rahman,
Singwi, and Sjölander first noted that the NGP is an observable
in neutron scattering experiments (52), and Rahman recognized it as
the first-order coefficient in the Hermite-polynomial expansion of the
displacement distribution around Gaussian (53). Nieuwenhuizen
and Ernst (54) showed that the NGP, or the fourth cumulant of
displacement, is related to the time-correlation function (TCF) of
the diffusion coefficient fluctuation and the Burnett correlation
function (BCF), a functional of velocity autocorrelation functions
(VAFs), for a system of independent charged particles hopping on
a one-dimensional lattice with static disorder. Later, the NGP and
BCF were investigated for interacting gas and fluid systems (55, 56)
and, more recently, also for glassy systems (57, 58) for which the
authors suggested the NGP as a measure of the diffusion coefficient
fluctuation and dynamic heterogeneity. However, for complex fluid
systems commonly exhibiting initial ballistic and intermediate sub-
diffusive thermal motion before terminal diffusion, the TCF of the
diffusion coefficient is neither well defined nor a good measure of
mobility fluctuation before terminal diffusion emerges. For complex
fluid systems exhibiting non-Fickian diffusion, there is no precise
definition of mobility fluctuation or exact relationship of mobility
fluctuation with the NGP and VAFs. Of course, it remains a
challenge to achieve a unified, quantitative understanding of the
anomalous MSD, nonmonotonic NGP, and non-Gaussian dis-
placement distribution of various complex fluid systems.

Transport Equation of Complex Fluids
Here, to address these issues, we present a transport equation
that provides a quantitative description of thermal motion for
various complex fluids. This equation can be derived by consid-
ering the continuum limit of a random walk model with a general
sojourn time distribution, ψΓðtÞ, coupled to arbitrary hidden en-
vironmental variables Γ (Fig. 1); Γ designates the entire set of
dynamical variables that affect transport dynamics in disordered
fluids. For this model, the joint probability, pðm,Γ, tÞ, that a
random walker is located at the mth site and the environmental
state is at Γ at time t can be written as (49, 59)

pðm,Γ, tÞ=
X∞
N=0

pðmjNÞPNðΓ, tÞ. [1]

In Eq. 1, pðmjNÞ denotes the conditional probability that the
random walker is located at themth site, given that it has undergone
N jumps, which is well known: pðmjNÞ= ðN!=m+!m−!Þ2−N with
m± = ðN ±mÞ=2 ðN≥jmjÞ, and pðmjNÞ= 0 ðN<jmjÞ (60). On the
other hand, PNðΓ, tÞ denotes the joint probability that the total
number of jumps made by the random walker is N and the envi-

ronmental state is at Γ at time t. PNðΓ, tÞ is the crucial factor
determining the time dependence of pðm,Γ, tÞ. Using a general-
ized version of Sung and Silbey’s (61) master equation, which
provides a formally exact description of the time evolution of
PNðΓ, tÞ, we derive the following transport equation from Eq. 1
in the continuum limit (SI Appendix, Text S1):

_̂pðr,Γ, sÞ= D̂ΓðsÞ∇2p̂ðr,Γ, sÞ+LðΓÞp̂ðr,Γ, sÞ. [2]

Here, _̂pðr,Γ, sÞ and p̂ðr,Γ, sÞ denote the Laplace transform of
∂pðr,Γ, tÞ=∂t and pðr,Γ, tÞ, respectively; pðr,Γ, tÞ denotes the joint
probability density that a particle is located at position r and the
hidden environment is at state Γ at time t. This joint probability density
satisfies the following normalization condition:

R
dr

R
dΓpðr,Γ, tÞ= 1.

Throughout this work, f̂ ðsÞ denotes the Laplace transform of
f ðtÞ, i.e.,

R∞
0 dte−stf ðtÞ. In Eq. 2, D̂ΓðsÞ designates the diffusion

kernel that is determined by the environmental state-dependent
sojourn time distribution, ψΓðtÞ of our random walk model; i.e.,
D̂ΓðsÞ= lim«→0ð«2=2dÞsψ̂ΓðsÞ=½1− ψ̂ΓðsÞ� =lim«→0«

2κ̂ΓðsÞ=2d with
« and d denoting the lattice constant and the spatial dimension,
respectively. κ̂ΓðsÞð≡ sψ̂ΓðsÞ=½1− ψ̂ΓðsÞ�Þ denotes the jump rate
kernel of the random walker, which is dependent on lattice constant
«; for the continuum limit description, we assume lim«→0«

2κ̂ΓðsÞ
exists. In Eq. 2, LðΓÞ designates a mathematical operator describing
the dynamics of the hidden environmental variables Γ.
For the sake of generality, we do not assume a particular model of

environmental state dynamics, nor do we assume a particular form of
mathematical operator LðΓÞ at this point. A correct mathematical
form of LðΓÞ is dependent on the environment surrounding the
system in question; when environmental state dynamics are a non-
Markov process, LðΓÞ may be dependent on Laplace variable s. As
demonstrated in this work, quantitative information about transport
dynamics coupled to hidden environmental variables can be
extracted from simultaneous analysis of the MSD and NGP time
profiles. This information can then be used to construct a more
explicit model of transport dynamics of complex fluidic systems.
Eq. 2 encompasses the CTRW model and the diffusing diffusivity

models (45–51) (see Discussion for more details). A further gen-
eralization of Eq. 2 for complex fluidic systems under a spatially
heterogeneous external potential is presented in SI Appendix,
Text S2.

Analytic Expressions of the Moments
From Eq. 2, we obtain the exact analytical expressions of the first two
nonvanishing moments, hjrðtÞ− rð0Þj2ið≡Δ2ðtÞÞ and hjrðtÞ− rð0Þj4i
ð≡Δ4ðtÞÞ, of the displacement distribution:

Δ̂2ðsÞ= 2d
s2

D
D̂ΓðsÞ

E
, [3a]

Δ̂4ðsÞ=
�
1+

2
d

�
2sΔ̂2ðsÞ2

h
1+ sĈDðsÞ

i
. [3b]

In obtaining Eqs. 3a and 3b, we assume that the hidden environ-
ment is initially in a stationary state, such as the equilibrium state
or the nonequilibrium steady state (see SI Appendix, Text S3 for
details). The bracket notation, h⋯i, designates the average over
the stationary initial distribution of the environmental state. We can
extend Eqs. 3a and 3b to the case where the initial state of the hidden
environment is a nonstationary state, as is the case for glass, for which
the analytic expressions of Δ̂2ðsÞ and Δ̂4ðsÞ are more complicated
than Eqs. 3a and 3b (SI Appendix, Text S4). However, transport
dynamics of various complex fluids can be quantitatively explained
by Eqs. 3a and 3b, as demonstrated in this work. Hereafter, we focus
on quantitative analysis of transport dynamics of complex fluidic
systems with use of Eqs. 3a and 3b. We leave a quantitative expla-
nation of transport dynamics in glass to future research.

Environmental
states

Positionm1m −2m − 1m + 2m +

aΓ

bΓ

cΓ

dΓ

eΓ

fΓ

Fig. 1. Schematic representation of our random walk model with environ-
mental state-dependent dynamics. In our model, the sojourn time distribution
ψΓðtÞ of a random walker is dependent on environmental state variables, Γ.
The probabilistic dynamics of this random walker model can be described by
Eq. 2 in the continuum limit.
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The mean diffusion kernel, hDΓðtÞi, in Eq. 3a is nothing but
the two-point VAF; i.e., hDΓðtÞi= hvðtÞ · vð0Þi=d with vðtÞ being
the velocity vector. This can be seen by comparing Eq. 3a and
the Laplace transform of the well-known relation, Δ2ðtÞ=
2
R t
0dτ2

R τ2
0 dτ1hvðτ2−τ1Þ · vð0Þi(62), exact as long as hvðτ2Þ ·vðτ1Þi=

hvðτ2−τ1Þ ·vð0Þi. Knowing this and utilizing the Tauberian theo-
rem, we obtain lims→∞shD̂ΓðsÞi= limt→0hvðtÞ ·vð0Þi=d=hjvj2i=d =
kBT=M, with kBT and M denoting thermal energy and the mass of
our tracer particle, respectively. This means that hD̂ΓðsÞi is pro-
portional to the mean-square velocity in the large-s limit; i.e.,
hD̂ΓðsÞi≅ s−1hjvj2i=d ðs→∞Þ. On the other hand, in the small-s
limit, the value of hD̂ΓðsÞi approaches

R∞
0 dthvðtÞ ·vð0Þi=d, which is

simply the diffusion constant, �D, according to the Green–Kubo
relation (63). Substituting the small (large)-s limit asymptotic
behavior of hD̂ΓðsÞi into Eq. 3a, we recover the well-known as-
ymptotic behavior of the MSD: dðkBT=MÞt2 at short times and
2d�Dt at long times.
While the second moment, Δ2ðtÞ, is dependent only on hDΓðtÞi,

the fourth moment, Δ4ðtÞ, is dependent on the environment-coupled
fluctuation of the diffusion kernel, DΓðtÞ. In Eq. 3b, ĈDðsÞ is the
Laplace transform of the diffusion kernel correlation (DKC) or TCF
of the diffusion kernel fluctuation (see SI Appendix, Eq. S3-12 for
the precise definition). At long times, where the MSD is linear in
time, the diffusion kernel becomes the diffusion coefficient; i.e.,
D̂ΓðsÞ≅ D̂Γð0Þð≡DΓÞ so that CDðtÞ can be identified as the TCF
of the diffusion coefficient fluctuation; i.e., CDðtÞ≅ hδDðtÞδDð0Þi=
hDi2 = η2DϕDðtÞ, where η2q and ϕqðtÞðq∈ fv2,DgÞ designate the
relative variance, hδq2i=hqi2, and the normalized TCF of q,
hδqðtÞδqð0Þi=hδq2i, respectively. At short times, on the other
hand, CDðtÞ can be identified as the TCF of squared speed
v2ðtÞð≡jvðtÞj2Þ; i.e., CDðtÞ≅ dη2v2ϕv2ðtÞ½=dhδv2ðtÞδv2ð0Þi=hv2i2� (SI
Appendix, Text S5). Given that the initial speed distribution obeys the
Maxwell–Boltzmann distribution, we obtain hv4i= ð1+ 2=dÞhv2i2,
and the initial value of CDðtÞ can then only be given by
limt→0CDðtÞ= dððhv4i− hv2i2ÞÞ=hv2i2 = 2. We find this is true for
supercooled water and dense hard disk fluids (Fig. 2D and SI
Appendix, Fig. S1D).
In our theory, CDðtÞ is the essential dynamic quantity that

characterizes environment-coupled mobility fluctuation. It serves
as an ideal measure of mobility fluctuation for complex fluids
exhibiting non-Fickian thermal motion, for which the TCF of the
diffusion coefficient, the conventional measure of mobility fluc-
tuation, is not well defined. As is shown below, there exists an

exact relationship between CDðtÞ and the four-point and two-
point VAFs, valid at all times and at any spatial dimension.
Using Eqs. 3a and 3b and the definition of the NGP,

α2ðtÞ½≡Δ4ðtÞ=½ð1+ 2=dÞΔ2ðtÞ2�− 1�, we can quantitatively explain
the MSD and NGP of various complex fluids. From the MSD and
NGP data, we can extract the time profiles of hDΓðtÞi and CDðtÞ ei-
ther by assuming analytic functional forms for the MSD and NGP or
without making any such assumption (Methods). In Fig. 2, we
demonstrate our quantitative analysis of the molecular dynamics
(MD) simulation results of the MSD and NGP for 4-point trans-
ferable intermolecular potential/2005 (TIP4P/2005) water (64), as-
suming specific analytic forms of the MSD and NGP but without
assuming a particular model of the hidden environment or its in-
fluence on the diffusion kernel. As shown in this work, this in-
formation is useful in constructing an explicit model of transport
dynamics of complex fluid systems; from this explicit model, we can
predict or quantitatively understand the time dependence of the
displacement distribution. Meanwhile, a model-free analysis of the
MSD and NGP based on Eqs. 3a and 3b yields accurate and robust
quantitative information about the time profiles of hDΓðtÞi and
CDðtÞ, but, on its own, is not physically interpretable (Fig. 3).

Diffusion Kernel Correlation and Velocity Autocorrelation
Functions
The diffusion kernel correlation, CDðtÞ, is closely related to the
two- and four-point VAFs through the BCF. It is known that the
NGP, α2ðtÞ, or the fourth cumulant, X4ðtÞ½=ð1+2=dÞΔ2ðtÞ2α2ðtÞ=
Δ4ðtÞ− ð1+2=dÞΔ2ðtÞ2�, of displacement is related to the BCF, βðtÞ,
by (54–56)

X4ðtÞ= 4!d
Z t

0
dt1ðt− t1Þβðt1Þ, [4]

where βðtÞ is defined by

βðt1Þ=
Z t1

0
dt2

Z t2

0
dt3½hvαð0Þvαðt1Þvαðt2Þvαðt3Þi

− hvαð0Þvαðt1Þihvαðt2Þvαðt3Þi− hvαð0Þvαðt2Þihvαðt1Þvαðt3Þi
− hvαð0Þvαðt3Þihvαðt1Þvαðt2Þi�.

[5]

In Eq. 5, vα indicates a Cartesian component of velocity vector, v,
and hvαð0Þvαðt1Þvαðt2Þvαðt3Þi and hvαð0ÞvαðtÞi½=ðkBT=MÞϕvαðtÞ�
denote the four- and two-point VAFs, respectively. According

A B C

ED

Fig. 2. Model-based quantitative analysis of the
mean-square displacement (MSD) and non-Gaussian
parameter (NGP) for the TIP4P/2005 water system.
(A and B) Time profiles of the MSD and NGP at
various temperatures. Open circles, simulation re-
sults; solid lines, the best fits of Eqs. 9 and 18 to the
simulation results. (C) Mean diffusion kernel
obtained from Eq. 10 with optimized parameter
values. (D) Solid lines, diffusion kernel correlation,
CDðtÞ, extracted from the MSD and NGP data
(Methods); dotted line, the mean-scaled TCF of
squared speed of supercooled water at 193 K (SI
Appendix, Fig. S11). In A, B, and D, the navy-blue
triangles and the red squares represent the caging
times, τc, and the NGP peak times, τng , respectively.
In D, the yellow triangles represent the alpha re-
laxation times, τα (SI Appendix, Fig. S12). (E) Green
circles, total disorder, limt→∞hr2ðtÞiα2ðtÞ=σ2O, with σO
denoting an oxygen atom’s Lennard-Jones di-
ameter, 3.1589 Å; yellow and cyan lines, intrinsic
and extrinsic disorder (see text below Eq. 8); red
circles, 4dĈDð0Þ=τD, where d, ĈDð0Þ, and τDð=σ2O=�DÞ, respectively, denote the spatial dimension, the whole-time integration of CDðtÞ, and the diffusion
timescale. Tm and TW denote, respectively, the melting temperature (64) and the Widom line temperature (91, 92) (SI Appendix, Fig. S13).
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to Wick’s theorem, βðtÞ vanishes when vαðtÞ is a Gaussian pro-
cess. Taking the Laplace transform of Eq. 4, we obtain X̂4ðsÞ=
Δ̂4ðsÞ− ð1+ 2=dÞΔ̂2

2ðsÞ= 4!d β̂ðsÞ=s2, where Δ̂
2
2ðsÞ denotes the

Laplace transform of Δ2ðtÞ2. Substituting Eqs. 3a and 3b into
the latter equation, we obtain an exact relation of the DKC to
the BCF and the normalized VAF (see SI Appendix, Text S6
for the derivation):

ĈDðsÞ
�D̂ΓðsÞ

�2
=

Z ∞

0
dte−st

"
3

2+ d
βðtÞ+

�
kBT
M

Z t

0
dt′ϕvα

�
t′
��2

  +
k2BT

2

M2

Z t

0
dt1

Z t1

0
dt2

�
ϕvαðtÞ−ϕvαðt− t1Þ

	
ϕvαðt2Þ

#
.

[6]

Using Eq. 6 along with Eq. 5 and hD̂ΓðsÞi= ðkBT=MÞϕ̂vαðsÞ, we can
calculate the time profile of CDðtÞ from the four- and two-point
VAFs, as demonstrated in Fig. 4B for supercooled water at 193 K.

Ergodicity and Long-Time Limit of Diffusion Kernel
Correlation and Non-Gaussian Parameter
For fluidic systems showing terminal Fickian diffusion, CDðtÞ has
the same long-time limit value as the NGP; i.e., CDð∞Þ= α2ð∞Þ,
which can be shown by using Eqs. 3a and 3b and the definition of
the NGP (SI Appendix, Text S7). This result indicates that the
long-time limit NGP value, α2ð∞Þ, vanishes for ergodic fluid
systems for which the TCF, CDð∞Þ, of the diffusion coefficient
vanishes in the long-time limit. However, for nonergodic systems
with finite CDð∞Þ, α2ð∞Þ may not vanish, either. Therefore,
α2ð∞Þ can serve as an ergodicity measure for fluidic systems
exhibiting long-time Fickian diffusion (SI Appendix, Fig. S2),
which was noted by Odagaki (65) for the glass formation
process. There exist transport systems with anomalous diffu-
sion, Δ2ðtÞ∝ tv, and weak-ergodicity breaking. For such sys-
tems, α2ð∞Þ deviates from CDð∞Þ; even if CDð∞Þ= 0, α2ð∞Þ is

finite and given by α2ð∞Þ= vΓðvÞ2=Γð2vÞ− 1 with ΓðzÞ denoting
the Gamma function defined by ΓðzÞ= R∞

0 dt  tz−1e−t (SI Ap-
pendix, Text S7). This result was previously reported by
Odagaki and Hiwatari (66) on the basis of the so-called
coherent-medium approximation, which corresponds to a vanish-
ingly small DKC; i.e., CDðtÞ= 0. Finally, for nonergodic systems
exhibiting anomalous diffusion, Δ2ðtÞ∝ tv, at long times, we find
that the relationship between CDð∞Þ and α2ð∞Þ deviates from the
result for the weak-ergodicity breaking system; instead, α2ð∞Þ is
given by α2ð∞Þ= vΓðvÞ2½1+CDð∞Þ�=Γð2vÞ− 1 (SI Appendix, Text
S7). These results suggest that the finite value of α2ð∞Þ can serve
an alternative measure of nonergodicity, which is constant in time
unlike the ergodicity-breaking (EB) parameter proposed by He,
Burov, Metzler, and Barkai (67).

Intrinsic and Extrinsic Disorder
For ergodic fluid systems, the long-time limit value of the
product between the MSD and NGP serves as a measure of dis-
order strength. This disorder strength measure is decomposable
into intrinsic and extrinsic disorder. To show this, consider the
long-time asymptotic behavior of the MSD and NGP:

Δ2ðtÞ≅ 2d�Dt+Δc   ðt→∞Þ [7a]

α2ðtÞ≅
2ĈDð0Þ+Δc



d�D

t
 ðt→∞Þ. [7b]

Eq. 7a can be obtained by substituting the Maclaurin
series of hD̂ΓðsÞi, hD̂ΓðsÞi=ð«2=2dÞhκ̂ΓðsÞi=ð«2=2dÞ ×   ½hκ̂ΓðsÞi+
hκ̂′ΓðsÞis+⋯�, into Eq. 3a and by taking the inverse Laplace
transform of the resulting equation. We present the derivation
of Eqs. 7a and 7b in SI Appendix, Text S7. In Eq. 7a, Δc is
given by Δc=2

R∞
0 dthDΓðtÞit = 2

R∞
0 dthvðtÞ·vð0Þit and vanishes

only when the VAF decays infinitely fast or only when velocity
is white noise. In our random walk model, Δc emerges whenever the
waiting-time distribution is a nonexponential function (SI Appendix,
Text S8). On the other hand, in Eq. 7b, ĈDð0Þ½=

R∞
0 dtCDðtÞ�

emerges whenever the diffusion kernel or the waiting-time distribu-
tion is coupled to environmental variables.
From Eqs. 7a and 7b, we obtain the long-time limit value of

the product of the MSD and NGP as

lim
t→∞

hr2ðtÞiα2ðtÞ= 2
�
Δc + 2d�DĈDð0Þ

	
. [8]

We define the dimensionless disorder strength of complex fluids
as limt→∞hr2ðtÞiα2ðtÞ=σ2, with σ being the effective diameter of
a tracer particle. Eq. 8 tells us that disorder strength has two
different components, 2Δc=σ2 and 4d�DĈDð0Þ=σ2, which orig-
inate from a finite relaxation time of the mean diffusion
kernel and from environment-coupled fluctuation of the dif-
fusion kernel, respectively. We designate the latter term ex-
trinsic disorder, which is quite sensitive to temperature and
density of the environment, as demonstrated in Fig. 2E and
SI Appendix, Fig. S1E. On the other hand, we designate
2Δc=σ2 intrinsic disorder, because this term persists even
when environment-coupled fluctuation in transport dynamics
is negligible.
Intrinsic disorder is far less sensitive to the temperature and

density of media than extrinsic disorder and can be easily esti-
mated from Eq. 7a, the asymptotic long-time behavior of the
MSD. Extrinsic disorder can be estimated by a direct numerical
calculation of 4d�DĈDð0Þ=σ2 or, more simply, by subtracting in-
trinsic disorder from total disorder strength (Fig. 2E); i.e.,
4d�DĈDð0Þ=σ2 =½limt→∞hr2ðtÞiα2ðtÞ− 2Δc�=σ2.
Disorder strength, defined in Eq. 8, is directly related to the

whole-time integration of the BCF; that is, limt→∞hr2ðtÞiα2ðtÞ=2=
Δc + 2d�DĈDð0Þ = 6d

2+ d β̂ð0Þ=�D. This follows from the small-s limit

A B

DC

Fig. 3. Model-free quantitative analysis of the mean-square displacement
(MSD) and non-Gaussian parameter (NGP) for the TIP4P/2005 water system at
193 K. (A and B) Time profiles of the MSD and NGP: circles, simulation results; blue
lines, best fits of Eqs. 9 and 18. (C) Mean diffusion kernel: circles, two-point VAF
obtained from simulation; red line, second-order time derivative of MSD data; blue
line, Eq. 10 with optimized parameters given in Table 1. (D) Time profile of dif-
fusion kernel correlation extracted by analyzing the MSD and NGP data using
(red line) model-free theory, (blue line) model-based theory, and (yellow
dashed-dotted line) contribution of the unbound mode. (D, Inset) Time profile
of CDðtÞ in linear timescale. The difference between CDðtÞ and the unbound-
mode contribution results from the presence of the bound modes, accounted
for by the second term on the R.H.S. of Eq. 12 (SI Appendix, Fig. S14).
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of X̂4ðsÞ= Δ̂4ðsÞ− ð1+ 2=dÞΔ̂2
2ðsÞ= 4!d β̂ðsÞ=s2, obtained from Eq.

4, and from Eqs. 3a and 3b (SI Appendix, Text S6).

Model-Based Quantitative Analysis of the MSD and NGP
Intrinsic disorder causes the MSD to deviate from 2d�Dt, the
prediction of the simple diffusion equation. We find that the
following formula provides an excellent approximate description
of the entire time range of the MSD for various disordered fluids
(SI Appendix, Text S9):

Δ2ðtÞ= 2d
kBT
Mγ20

c0ðγ0t− 1+ e−γ0tÞ

+ 2d
kBT
M

Xn
i=1

ci
ω2
0,i

�
1− e−γi t

�
coshωit+

γi
ωi

sinhωit
��

.
[9]

This equation represents the MSD of a bead in a Gaussian
polymer, but also quantitatively explains the MSD of liquid
water and dense hard disk fluids (Fig. 2A and SI Appendix,
Fig. S1A).
The applicability of Eq. 9 to various disordered fluid systems

implies a universality in the MSD time profile of disordered
fluids, which is decomposable into one unbound-mode dynamic
and multiple bound-mode dynamics, comparable to viscoelastic
motion of a bead in a polymer network. At short times, a tracer
molecule is trapped by the surrounding molecules. This bound
state consists of multiple bound modes, each with their own
characteristic frequencies. Meanwhile, at long times, a tracer
molecule escapes the cage of the surrounding molecules and
moves around in the media, repeatedly being caged and escaping
the cage. The first term on the right-hand side (R.H.S.) of Eq. 9
accounts for the unbound mode, and the second term accounts for
the bound modes. In Eq. 9, ci and γi designate the weight co-
efficient and relaxation rate of the ith mode ð0≤ i≤ nÞ. The
weight coefficients are normalized by

Pn
i=0ci = 1. ω0,i is the natural

frequency of the ith bound mode and is related to ωi as

ωi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2i −ω2

0,i

q
.

At all times, temperatures, and densities investigated, Eq. 9
with only two bound modes ðn= 2Þ already provides a good
quantitative explanation of the simulation results for the
anomalous MSD of supercooled water and hard disk fluids
(Fig. 2A and SI Appendix, Fig. S1A) and the experimental re-
sults for colloidal beads moving along lipid tubes (SI Appendix,
Fig. S3) (36). According to Eq. 3a, the analytic expression of

the mean diffusion kernel yielding the MSD given in Eq. 9 can
be obtained by

*DΓðtÞ
+
=
kBT
M

c0e−γ0t +
kBT
M

Xn
i=1

cie−γi t
�
coshðωitÞ− γi

ωi
sinhðωitÞ

�
.

[10]

Fig. 2C shows the mean diffusion kernel, or the VAF, calculated
from Eq. 10 with parameter values optimized against MSD data
from MD simulation shown in Fig. 2A for supercooled water.
The NGP is dependent not only on the mean transport dy-

namics, hD̂ΓðsÞi, but also on fluctuation of transport dynamics,
CDðtÞ. For simple diffusion, we have hD̂ΓðsÞi= �D and CDðtÞ= 0,
and Eqs. 3a and 3b yield Δ2ðtÞ= 2d�Dt and Δ4ðtÞ= ð1+ 2=dÞΔ2ðtÞ2
so that the NGP vanishes. However, whenever hDΓðtÞi is not
constant and/or CDðtÞ≠ 0, the NGP does not vanish. We find
that, for disordered fluid systems investigated in this work, the
time profiles of the NGP cannot be quantitatively understood
when we neglect fluctuation in the diffusion kernel or when we
assume CDðtÞ= 0 (SI Appendix, Fig. S4).
The NGP of disordered fluids is a nonmonotonic function of

time with a single peak. According to our model, the NGP
quadratically increases with time, α2ðtÞ∝ t2 at short times (SI
Appendix, Text S10 and Eq. S10-9), but decreases with time,
α2ðtÞ∝ t−1, at long times following Eq. 7b. As shown in Fig. 2A, it
is only after the NGP peak time that Fickian diffusion emerges.
These properties of the NGP are not specific to supercooled
water but common across various disordered fluids (9, 12).
It was recently shown that diffusion coefficient fluctuation

strongly correlates with string-like cooperative motion in dense
fluids (57, 58), which is reportedly related to the NGP peak
height (58). We find that the NGP peak height, α2ðτngÞ, serves as
a measure of the relative variance of the diffusion coefficient for
supercooled water. From the displacement distribution at the
NGP peak time, we can extract the distribution of the diffusion
coefficient using the method proposed in ref. 37. We find the
relative variance, η2D, of the extracted diffusion coefficient
distribution has the same value as the NGP peak height (SI
Appendix, Fig. S5D). This is not a coincidence. We find the
NGP peak height has the same value as the relative variance of
the diffusion coefficient at the Fickian diffusion onset time or
the NGP peak time, τng (SI Appendix, Text S11). Both the NGP
peak height and the NGP peak time increase with inverse
temperature and density (Fig. 2B and SI Appendix, Fig. S1B).

A B C

D E

F
G

Fig. 4. Microscopic measurement of the bound-
and unbound-mode components of diffusion kernel
correlation for the TIP4P/2005 water system at 193 K.
(A) Burnett correlation function (BCF): red cir-
cles, β1ðtÞ obtained from Eq. 5 and the four- and
two-point VAFs obtained from simulation; blue cir-
cles, β2ðtÞ obtained from βðtÞ= ∂2t Χ4ðtÞ=4!d and Χ4ðtÞ=
ð1+ 2=dÞΔ2ðtÞ2α2ðtÞ. (Inset) The fourth cumulant,
Χ4ðtÞ, of displacement. (B) Short-time diffusion ker-
nel correlation, CDðtÞ, obtained from (red circles) Eq.
6 and β1ðtÞ and (blue circles) Eq. 6 and β2ðtÞ. (C)
Long-time diffusion kernel correlation estimated
by (squares) the mean-scaled TCF of diffusion co-
efficient fluctuation (Methods), (red dashed line)
result of Eq. 14, and (Inset) time dependence of
MSD scaled by 6t. The simulation results of the dif-
fusion coefficient fluctuation are calculated using
various bin times, ranging from 7 ns to 15 ns. In B
and C, the black and yellow lines represent, re-
spectively, the result of model-free theory and the
contribution of the unbound mode to CDðtÞ shown
in Fig. 3D. (D–G) Displacement distributions and representative time traces of three water molecules (D and E) at five different short times and (F and G) at
three different long times. In E and G, the initial positions of all water molecules have been relocated to the center of the circle. In E, the dashed line
represents a sphere centered at the initial position with radius Δ2ðτcÞ1=2 (≈0.6 Å).
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Explicit Model for Diffusion Kernel
In the previous section, we demonstrated that the time profile of
CDðtÞ can be extracted from the MSD and the NGP based on Eqs.
3a and 3b using Eq. 9 for the MSD. To achieve a physical un-
derstanding of the time profile of CDðtÞ, we construct an explicit
model of the environment-coupled diffusion kernel. Let us first
consider the Laplace transform of Eq. 10, hD̂ΓðsÞi= c0 f̂ 0ðsÞ+Pn

i=1cif̂ iðsÞ, where f̂ 0ðsÞ and f̂ iðsÞ denote the diffusion kernels
associated with the unbound-mode dynamics and the ith bound-
mode dynamics, given by f̂ 0ðsÞ= ðkBT=MÞðs+ γ0Þ−1 and f̂ iðsÞ=
ðkBT=MÞs½ðs+ γiÞ2 −ω2

i �
−1
, respectively. We can extend this equa-

tion by assuming the weight coefficients fc0, c1,⋯, cng are de-
pendent on environmental state variables Γ, obtaining the following
model of the diffusion kernel:

D̂ΓðsÞ= c0ðΓÞf̂ 0ðsÞ+
Xn
i=1

ciðΓÞf̂ iðsÞ. [11]

From this model, we obtain the analytic expression for ĈDðsÞ (SI
Appendix, Text S12),

ĈDðsÞ=
�D̂ΓðsÞ

�−2" γ20�δD2
�
ϕ̂DðsÞ

ðs+ γ0Þ2
+

Xn
i=0

Xn
j=0

′ĈijðsÞf̂ iðsÞf̂ jðsÞ
#
,

[12]

where the prime notation signifies that the sum excludes the
term with i= j= 0, and CijðtÞ denotes the time correlation be-
tween weight coefficients; i.e., CijðtÞ= hδciðtÞδcjð0Þi. Noting that

lims→0 f̂ 0ðsÞ= kBT=Mγ0 and lims→0 f̂ i>0ðsÞ= 0, we obtain D̂ΓðsÞ≅
c0ðΓÞðkBT=Mγ0Þð≡DΓÞ from Eq. 11 in the small-s regime, s � γi.
Therefore, we can relate the weight coefficient TCF,
hδc0ðtÞδc0ð0Þi, of the unbound mode to the TCF of the diffusion
coefficient fluctuation by hδc0ðtÞδc0ð0Þi = hδDðtÞδDð0ÞiðMγ0=
kBTÞ2 at times longer than any element of fγ−1i g. We find that
the largest element of fγ−1i g is γ−10 , whose value has order of
1 ps for the unbound mode for supercooled water (Table 1). At
times longer than the NGP peak time, τng, which is greater than
the largest velocity relaxation time, γ−10 (Fig. 2 B and C), the
bound-mode terms are negligible compared with unbound-
mode term, so that the first term on the R.H.S. of Eq. 12
contributes the most to the relaxation of diffusion kernel fluc-
tuation, leaving us with CDðtÞ≅ϕDðtÞη2D ðt> τngÞ. This result
indicates that the DKC becomes the TCF of the diffusion coeffi-
cient at long times. Using this result and recalling that η2D ≅ α2ðτngÞ
(SI Appendix, Fig. S5D), we can then extract ϕDðtÞ from the time
profile of CDðtÞ=α2ðτngÞ at times longer than the NGP peak time.
The long-time tail of CDðtÞ or ϕDðtÞ extracted from the MSD and
NGP can be explained by an explicit model of the diffusion
coefficient fluctuation described later in this work.
We note here that the whole-time integration of the diffusion

kernel, CDðtÞ, the determining factor of extrinsic disorder, is
mostly contributed from the unbound-mode component (SI
Appendix, Fig. S6). The bound-mode contribution to CDðtÞ has a
comparable magnitude to the unbound-mode contribution, but
has a negligibly smaller relaxation timescale than the unbound-
mode contribution; consequently, the unbound-mode component
makes the dominant contribution to ĈDð0Þ=

R∞
0 dtCDðtÞ. The major

contributor to CDðtÞ is the unbound mode at long times but the
bound modes at short times. For example, for supercooled water at
193 K, the bound-mode components of CDðtÞ are dominant at times
shorter than 30 ps, and the unbound-mode component is dominant
at times longer than 5 ns (Fig. 3D).

Model-Free Quantitative Analysis of the MSD and NGP
By analyzing the numerical data of the time-dependent MSD
and NGP using Eqs. 3a and 3b, we can extract the time profiles
of the mean diffusion kernel and the DKC without assuming a
physical model, such as Eq. 9. In Fig. 3, we demonstrate this model-
free analysis of the MSD and NGP data for supercooled water at
193 K (Methods).
According to our simulation, shown in Fig. 3A, the MSD of

supercooled water exhibits oscillatory behavior with a slight bump
and dip between 0.1 ps and 1 ps. This mysterious nonmonotonic
oscillation in the MSD time profile of supercooled water was
previously reported in the literature (5, 68, 69). We find the
nonmonotonic MSD time dependence is unrelated to the finite-
size effect and emerges not only under a constant temperature
condition but also under the constant energy condition (SI Ap-
pendix, Fig. S7). The origin of the slight oscillation in the MSD
time profile may be attributable to the intermolecular hydrogen-
bond stretching vibration in supercooled water, which was pre-
viously identified in the quenched normal mode spectrum of the
TIP4P/2005 water model at low temperatures (70) (SI Appendix,
Fig. S8) and may also be the origin of the small oscillatory be-
havior in the NGP time profile between 0.1 ps and 1 ps (Fig. 3B).
We find that these oscillations in the MSD and NGP time profiles
are absent in liquid water above the melting temperature (Fig. 2A)
and hard disk fluids (SI Appendix, Fig. S1A) at any density and
cannot be accurately represented by Eqs. 9 and 18, used for the
model-based analysis of the MSD and NGP in the previous section.
The mean diffusion kernel and the diffusion kernel correlation

extracted from the model-free analysis of the MSD and NGP
transiently display oscillatory behaviors at times around 0.1 ps,
which are more complicated than the behavior of their coun-
terparts extracted using Eqs. 9 and 18 of the MSD and NGP (Fig.
3 C and D). However, at times shorter than 0.01 ps or longer
than 0.4 ps, the model-free analysis yields essentially the same
results as the model-based analysis. As shown in Fig. 3D, Inset,

Table 1. Optimized values of adjustable parameters for
supercooled water at 193 K

MSD (Eq. 9)

fc0, c1g= f0.403, 6.28g ×10−4

fγ0, γ1, γ2g= f1.16, 6.14, 11.9g ps−1

fω0,1,ω0,2g= f0.35, 11.9g ps−1

ϕDðtÞ (SI Appendix, Eqs. 12 and S13-3c)

fβb1, βb2, βb3g= f1.51, 21.2, 61.9g ×10−2

fλ1, λ2, λ3g= f0.0761, 1.30, 5.84g ×10−1ns−1

The mean-square displacement (MSD) is analyzed by Eq. 9 with one unbound
and two boundmodes; that is, n= 2. ci and γi designate theweight coefficient and
relaxation rate of the ithmode. The zerothmode is the unboundmode, while the
first and second ones are bound modes. The second mode is dominant com-
pared with the first one; i.e., c2 =1− c0 − c1 ≅ 1.00. The mean diffusion coeffi-
cient is given by hDi= c0kBT=Mγ0 ≅ 3.1nm2=μs. ω0,i denotes the natural
frequency of the ith bound mode. At thermal equilibrium, the variance of a
3D harmonic oscillator’s position is given by 3kBT=Mω2 with ω being the nat-
ural frequency of the oscillator. The SD of the tracer particle’s position in the
bound modes can be estimated as ð3Pi= 1,2cikBT=Mω2

0,iÞ
1=2

, whose value is
0.6 Å, close to the value of Δ2ðτcÞ1=2 at caging time τc . The natural frequency,
ω0,2, of the dominant bound mode is close to the peak frequency of intermo-
lecular hydrogen bond bending motion (SI Appendix, Fig. S8). The long-time
profile of the diffusion kernel correlation, CDðtÞ, is directly related to the TCF of
the diffusion coefficient fluctuation, CDðtÞ≅ ϕDðtÞη2D. Here, ϕDðtÞ and η2D are
defined by ϕDðtÞ= hδDðtÞδDð0Þi=hδD2i and η2D = hδD2i=hDi2, respectively. For
supercooled water, we model the activation energy, E, of the diffusion coeffi-
cient, D=A expð−βEÞ, as a random variable composed of three Ornstein–
Uhlenbeck (OU) processes, fΓig; that is, βE= βhEi+P3

i=1βbiΓi (SI Appendix,
Eq. S13-1). λi designates the relaxation rate of the ith OUmode in the activation
energy fluctuation, defined by hΓiðtÞΓjð0Þi= δije−λj t (SI Appendix, Eqs. S13-1 and
S13-2). The adjustable parameters are optimized by comparing η2D and ϕDðtÞ
with the NGP peak value, α2ðτngÞ, and the time profile of CDðtÞ at long times (SI
Appendix, Fig. S6 and Text S13). The relaxation time,

R∞
0 dtϕDðtÞ, of the diffu-

sion coefficient fluctuation is estimated to be 2.1 ns, comparable to the struc-
tural relaxation timescale, τα, 2.9 ns for supercooled water at 193 K.
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both the model-free and model-based methods yield essentially
the same result for the long-time DKC or the TCF of the dif-
fusion coefficient fluctuation, quantitatively explainable by the
unbound-mode component, or the first term on the R.H.S. of
Eq. 12, only. Consequently, both methods yield the same value
for the whole-time integration of the DKC, or extrinsic disorder,
4d�DĈDð0Þ=σ2ð=½limt→∞hr2ðtÞiα2ðtÞ− 2Δc�=σ2Þ, and hence for
intrinsic disorder as well, because total disorder can only be the
sum of intrinsic and extrinsic disorder.

Microscopic Measurement of the Bound- and Unbound-
Mode Components of Diffusion Kernel Correlation
To test the correctness of our results in the previous sections, we
perform an alternative, microscopic measurement of the mean
diffusion kernel and DKC using MD simulation and compare the
results with those obtained in the previous sections. We then show
that the bound-mode and unbound-mode transport dynamics,
separately embodied in our transport model, clearly manifest,
respectively, on the short-time and long-time dependence of the
displacement distribution and the spatial volume spanned by the
MD simulation trajectories for supercooled water at 193 K.
The mean diffusion kernel and DKC calculated from the MD

simulation results of the two- and four-point TCF are found to
be in excellent agreement with those extracted from the MSD
and NGP. This is demonstrated for an example of supercooled
water at 193 K in Figs. 3 and 4.
The short-time DKC, dominantly contributed from the bound-

mode component, can be directly calculated using Eq. 6 and the
direct MD simulation results of the VAFs; the BCF appearing in
Eq. 6 can be calculated from its definition, Eq. 5. Note that the
BCF can also be calculated from the MSD and NGP data,
with use of the following relation: βðtÞ= ∂2t X4ðtÞ=4!d and X4ðtÞ=
ð1+ 2=dÞ Δ2ðtÞ2α2ðtÞ. These two methods produce similar, noisy
BCF time profiles as shown in Fig. 4A for supercooled water at
193 K. When substituted into Eq. 6, these two BCF time profiles
yield essentially the same results for the DKC, which is also in
perfect agreement with the DKC extracted from our analysis of
the MSD and NGP in the previous section (Fig. 4D).
We find that, at long times, the DKC is linearly proportional

to the BCF (SI Appendix, Text S6):

CDðtÞ≅ 3
2+ d

βðtÞ
.
�D2. [13]

Recalling that the DKC becomes the TCF of the diffusion
coefficient fluctuation, CDðtÞ≅ϕDðtÞη2D = hδDðtÞδDð0Þi=�D2 at
long times, we obtain the long-time approximation of Eq. 13 as
hδDðtÞδDð0Þi≅ 3βðtÞ=ðd+ 2Þ. This result tells us that, for a one-
dimensional system, the BCF is the same as the diffusion coefficient
fluctuation, which was previously recognized by Nieuwenhuizen and
Ernst (54) and others (71, 72) for a one-dimensional system of in-
dependent charged particles hopping on a lattice with static disorder.
Our result here indicates that the long-time BCF has the same time
profile as the long-time DKCmultiplied by ðd+ 2Þ=3, which is shown
in Fig. 3D, Inset. It is not easy to calculate the long-time profile of the
BCF directly from its definition, Eq. 5, because of the large compu-
tational expense involved in accurately estimating the multipoint
VAFs from MD simulation and the 2D integral appearing in Eq. 5.
An independent estimation of the long-time DKC can be

made by using MD simulations to measure the diffusion co-
efficient fluctuation along each time trace and calculating the
TCF of the diffusion coefficient (Methods). This is because the
DKC becomes the diffusion coefficient at long times, as men-
tioned earlier. In Fig. 4C, for supercooled water at 193 K, we
show that η2DϕDðtÞ calculated from direct MD simulation is ac-
tually in good agreement with the long-time profile of CDðtÞ
extracted from the MSD and NGP data. The long-time DKC is
dominantly contributed from the unbound-mode component, or
the first term on the R.H.S. of Eq. 12, as shown in Fig. 4C.

An alternative estimation of the long-time DKC can be made
from the time profile of the NGP. The long-time DKC is directly
related to the NGP and its time derivatives as follows:

CDðtÞ≅ 1
2
∂2

∂t2
�
t2α2ðtÞ

	
= α2ðtÞ+ 2t _α2ðtÞ+ 2−1t2€αðtÞ. [14]

This equation can be obtained by substituting the long-time
expression of the fourth cumulant, X4ðtÞ≅ ð1+ 2=dÞð2d�DtÞ2α2ðtÞ,
into the well-known equation, βðtÞ= ∂2t X4ðtÞ=4!d, and then
substituting the result into Eq. 13. Eq. 14 tells us that the NGP
carries the complete information about the long-time relaxation
of mobility fluctuation of complex fluids. As shown in Fig. 4C for
supercooled water at 193 K, the long-time DKC estimated by Eq.
14 quantitatively agrees with the long-time DKC obtained from
three other methods, namely, extraction from the MSD and
NGP data, using Eq. 6 and MD simulation results of the VAF,
and MD simulation of the diffusion coefficient fluctuation and
calculation of its TCF.
Bound-mode (unbound-mode) transport dynamics are reflec-

ted on the time dependence of the displacement distribution at
short (long) times. For supercooled water at 193 K, the dis-
placement distribution broadens rapidly before 1 ps but after this
does not greatly change for several picoseconds (Fig. 4D). This
bound-mode feature of transport dynamics also manifests itself on
the time-dependent volume spanned by the MD simulation tra-
jectories of a water molecule. As shown in Fig. 4E, the spatial
volume spanned by the simulation trajectories rapidly increases
with time before 1 ps, but afterward, this trajectory volume tends
to saturate to a certain critical value over several picoseconds
while the trajectory length continues increasing with time. In
contrast, at long-time scales, the displacement distribution and the
trajectory volume exhibit unbound-mode dynamics, as demon-
strated in Fig. 4 F and G.

Quantitative Explanation of Fickian Yet Non-Gaussian
Displacement Distribution
Disordered fluids exhibit non-Gaussian diffusion; that is, the
displacement distribution is non-Gaussian even at long times
where the MSD linearly increases with time (9, 12, 36–38). The
displacement distribution of disordered fluids starts as Gaussian
with variance given by rðΔtÞ− rð0Þ≅ vð0ÞΔt at short times but
deviates at any finite time. At the NGP peak time, where the
deviation from Gaussian is greatest, the displacement distribu-
tion often appears similar to a Laplace distribution with an ex-
ponential tail (50). It is at this time that the non-Gaussian
displacement distribution begins its relaxation to Gaussian and
the MSD becomes linear in time. This phenomenon is widely
observed across various disordered fluid systems (7, 9, 12), but
has yet to be quantitatively explained.
To understand the time-dependent relaxation of the non-

Gaussian displacement distribution in the Fickian diffusion re-
gime, we need an explicit model of the diffusion coefficient
fluctuation for the fluid system in question. In the literature, the
diffusion coefficient is often modeled as D=A expð−βEÞ, where
A, β, and E are the entropic factor, inverse thermal energy, and
activation energy, respectively (73). This model can be general-
ized by assuming that the entropic factor and activation energy
are stochastic variables dependent on hidden environmental
variables. In this work, we make this generalization and consider
two exactly solvable models.
The first model assumes that the diffusion coefficient is given by

DΓ = AΓ expð−βEΓÞ, where the fluctuation of EΓ around its mean
value, hEΓi, is given by EΓðtÞ− hEi=P

kbkΓkðtÞ, where fbkg and
AΓ are constants and fΓkg are stationary GaussianMarkov processes,
also known as Ornstein–Uhlenbeck (OU) processes, satisfying
hΓkðtÞΓlð0Þi= δkl expð−λktÞ (SI Appendix, Text S13) (74). For this
model, exact analytic expressions of hDi, η2D, and ϕDðtÞη2D can be
obtained (Table 1 legend and SI Appendix, Eq. S13-3), where the
adjustable parameters are optimized against the diffusion coefficient
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value, the NGP peak value, and the long-time DKC data (SI Ap-
pendix, Text S13). The optimized parameter values are presented in
Table 1. Using the first model with optimized parameter values, we
can now predict the time-dependent relaxation of the non-Gaussian
displacement distribution in the Fickian diffusion regime (SI Ap-
pendix, Text S13). The prediction of this model is in excellent
agreement with the MD simulation results for the displacement
distribution of supercooled water, as shown in Fig. 5A.
In the second model, we model the diffusion coefficient

as DΓðtÞ= AΓðtÞexpð−βEΓðtÞÞ≅ hDiPkakΓ
2
kðtÞ, where fakg and

fΓkðtÞg are constants and OU processes, respectively. This is a
generalization of the model in ref. 47 and yields an analytic ex-
pression of the displacement distribution (Table 2 legend and SI
Appendix, Eq. S14-3). We find this expression provides an excellent
quantitative explanation of the experimentally measured displace-
ment distribution of colloidal beads diffusing on lipid tubes reported
in ref. 36 (Fig. 5B). The optimized parameters of the second model
are presented in Table 2. Eq. 12 with optimized parameter values
allows us to calculate the time profiles of the DKC for the colloidal
bead system (Table 2 legend and SI Appendix, Fig. S3).
The displacement distribution approaches a Gaussian distri-

bution only after individual displacement trajectories become
statistically equivalent. If individual displacement trajectories are
statistically equivalent, the EB parameter proposed by He,
Burov, Metzler, and Barkai (67) is linear in t=tmax, where t and
tmax denote the time lag, or the interval over which the time-
averaged MSD is calculated, and the maximum trajectory
length, respectively (75). Otherwise, the EB parameter deviates
from its linear dependence on t=tmax. At temperatures lower
than 230 K, the EB parameter of supercooled water shows an
anomalous power-law dependence on t=tmax at short times but
resumes normal linear dependence on t=tmax at times longer than
the characteristic time τEB (SI Appendix, Fig. S9). Deviation of
the displacement distribution from Gaussian becomes negligible
only at times much longer than τEB, as demonstrated in SI Ap-
pendix, Fig. S9B for supercooled water. On the other hand, CDðtÞ
is negligibly small at the characteristic time τEB (SI Appendix, Fig.
S9B). This is due to the fact that the long-time relaxation of the
NGP is contributed not only from extrinsic disorder leading to
the trajectory-to-trajectory variation in the transport dynam-
ics, but also from intrinsic disorder, whose effects persist even
for homogeneous systems with statistically equivalent dis-
placement trajectories (Eq. 7b). This analysis shows that the
long-time tail of CDðtÞ better characterizes the relaxation of
diffusivity fluctuation than the NGP (76).

Discussion
Main Findings.We derived a transport equation, Eq. 2, describing
stochastic thermal motion of various complex fluids, which yields

exact analytic results, Eqs. 3a and 3b, that enable a unified,
quantitative explanation of not only the MSD but also the NGP
time profiles of various complex fluids (Fig. 2 and SI Appendix,
Fig. S1). The central dynamic quantity governing transport dy-
namics of complex fluids is the environment-dependent diffusion
kernel. The mean diffusion kernel (MDK) and DKC can be
unambiguously extracted from the MSD and NGP time profiles
(Fig. 3 and SI Appendix, Fig. S1). We also established an exact
relationship of the MDK and DKC with the two-point and four-
point VAFs (Eqs. 4–6), allowing for alternative, microscopic
measurements of the MDK and DKC using MD simulation (Fig. 4
A–C). DKC is an ideal measure of mobility fluctuation of complex
fluids exhibiting non-Fickian diffusion and is simply related to the
NGP by Eq. 14, at long times (Fig. 4C).
We constructed a physical model of the environment-coupled

diffusion kernel (Eqs. 10–12), composed of one unbound mode
and multiple bound modes. This model provides a quantitative
explanation of the MSD, NGP, and displacement distribution for
various complex fluidic systems (Figs. 2 and 5 and SI Appendix,
Fig. S1). Our model-based analysis of the frequency spectrum of
the VAF suggests that the slight oscillation in supercooled wa-
ter’s MSD originates from intramolecular hydrogen bond
stretching motion. We introduced the notion of intrinsic disorder
and extrinsic disorder for complex fluid systems in Eq. 8, which
originate from a finite relaxation time of the mean diffusion
kernel and the environment-coupled fluctuation of the diffusion
kernel, respectively. We demonstrated a separate estimation of
intrinsic and extrinsic disorder for supercooled water (Fig. 2E) and
dense hard disk fluids (SI Appendix, Fig. S1E). Extrinsic disorder is
more sensitive to temperature and density of complex fluids than
intrinsic disorder; extrinsic disorder increases with inverse temper-
ature and density, unless the complex fluids enter a solid-like phase.

A B

Fig. 5. Quantitative explanation of displacement distributions for super-
cooled water and colloidal beads on lipid tubes. (A) Displacement distribu-
tions of a water molecule along a Cartesian coordinate at three different
times, ταð≅ 2.9nsÞ, 5ταð≅14.4nsÞ, and τEBð≅ 36.4nsÞ. Circles, simulation results
for TIP4P/2005 water at 193 K; lines, theoretical predictions of our first
model. (B) Scaled displacement distribution of colloidal beads with diameter
σ along a lipid tube at various times. Circles, experimental results reported in
ref. 36; lines, theoretical results of our second model (SI Appendix, Texts
S12 and S14).

Table 2. Optimized values of adjustable parameters for
colloidal bead diffusion on lipid tubes

Colloidal beads on lipid tubes Value

Displacement distribution (SI Appendix, Eq. S14-3)
a1,   a2 4.02 × 10−1, 1− a1
λ1,   λ2 (Hz) 3.43, 1.04 × 10−2

The experimental data are reported in ref. 36. We analyzed the dis-
placement distribution data using our second model, DΓðtÞ≅ hDiPkakΓ

2
kðtÞ

with hΓkðtÞΓjð0Þi= δjk expð−λktÞ (SI Appendix, Eq. S14-1), for which the
displacement distribution in the Fourier domain is obtained as ~pðk, tÞ
ð≡ R∞

−∞ dxeikxpðx, tÞÞ=∏2
j=1½4qje−ðqj − 1Þλj t=fðqj + 1Þ2 − ðqj − 1Þ2e−2qjλj tg�1=2 with

qj = ð1+ 4ajk2hDiλ−1j Þ1=2, where ai is a parameter characterizing the relative
contribution of Γk to diffusion coefficient fluctuation (SI Appendix, Eqs. S14-
2a, S14-2b, and S14-3). The displacement distribution quantitatively explains
the experimental data (Fig. 4B). This system exhibits Fickian diffusion in the
experimental timescale. The diffusion constant is estimated to be
hDi=σ2 ≅ 41.5Hz with σ being the diameter of a colloidal bead. Using
the optimized parameter values, we can calculate the NGP and the TCF
of diffusion coefficient fluctuation, ϕDðtÞ using Eqs. 12 and SI Appendix, Eq.
S14-2b (SI Appendix, Fig. S3). The relaxation time,

R∞
0 dtϕDðtÞ½=

P
i=1,2a

2
i λ

−1
i =

2ða21 + a22Þ�, of the diffusion coefficient fluctuation is estimated to be 33.2 s.
This value is comparable to the relaxation time, 3.48 ∼ 34.8 s, of the lipid-tube
membrane fluctuation under the zero shear stress condition (93); i.e.,
ω−1ðqÞ= ½hzi3q2ðκq4 + μq2Þ=3η�−1, at the smallest wavenumber, q=3× 105  m−1

(36), where the values of the average tube diameter, hzi, the bending stiffness,
κ, and the surface tension, μ, are reported as 100 nm, 10−19 J, and 10−4∼ 10−5 J·m−2,
respectively. η denotes the viscosity of the bulk water, whose value is given
by 0.94 cP at 22 ∼ 23 °C. This agreement between the values of

R∞
0 dtϕDðtÞ

and ω−1ðqÞ implies that non-Gaussian diffusion results from the diffusion
coefficient fluctuation caused by thermal fluctuation of the lipid tube into
which colloidal beads are embedded, as discussed in ref. 36.
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Comparison with Previous Models. Our model-based analysis of
DKC is reminiscent of the memory kernel analyses by Berne,
Boon, and Rice (77) and Douglas and Hubbard (78). Our random
walk model is a generalization of the CTRWmodel, to account for
environment-coupled fluctuation of transport dynamics. We refer
to Shlesinger’s review (79) on the origins and applications of the
CTRW model. Our model reduces to the CTRW when CDðtÞ= 0;
both models yield the same MSD but different NGPs (SI Ap-
pendix, Figs. S2E and S4). For the CTRWmodel, the NGP is given
by α2ðtÞ≅−2=3 ðt→ 0Þ (SI Appendix, Eq. S10-4); ðΔc=d�DÞt−1
ðt→∞Þ. The MSD of a random walker is dependent on the initial
condition; non-Fickian diffusion of complex fluids cannot be
modeled by a random walker model with a stationary initial
condition (SI Appendix, Fig. S10 and Text S15).
Our transport equation, Eq. 2, encompasses the SD model,

which accounts for extrinsic disorder but neglects intrinsic disor-
der. Eq. 2 reduces to the transport equation of the SD model
when the diffusion kernel is replaced by the diffusion coefficient.
The MSD and NGP of the SD model are given by Δ2ðtÞ= 2d�Dt
and α2ðtÞ≅ η2D ðt→ 0Þ; 2η2Dϕ̂Dð0Þt−1 ðt→∞Þ (SI Appendix, Text
S11), which cannot describe complex fluids with a non-
Fickian MSD and initially vanishing NGP.

Potential Applications and Limitation.Our transport equation can be
extended for complex fluids under an external potential field or for
nonergodic fluids such as glass (SI Appendix, Texts S2 and S4). It
can be further generalized for dynamics of transport-coupled re-
actions in complex fluids (80–82), which we leave for future re-
search. Our MSD model in Eq. 9 is only approximate in the sense
that it cannot capture weak oscillation in the MSD of supercooled
water and the asymptotic long-time power-law relaxation of the
two-point VAF of dense fluids (83–86). Improving our model to
capture these phenomena is another future research topic.
In our transport equation, the diffusion kernel is independent of

the absolute position of the tracer particle. However, by applying
the projection operator technique (19, 87) to the Liouville equa-
tion, one can obtain a similar transport equation (SI Appendix,
Text S16) but with the diffusion kernel dependent on the absolute
position of the tracer particle, potentially important for a system
with position-dependent transport dynamics. In most fluid sys-
tems, however, thermal motion is independent of the absolute
position of the tracer particle.
For a more extensive discussion, see SI Appendix, Text S17,

which we present at the request of an anonymous reviewer.

Outlook
The essential feature of our approach to transport dynamics of
complex fluids is hidden environmental variables that represent
the entire set of dynamic variables affecting transport dynamics
of our tracer particles. By accounting for their effects without
using an a priori explicit model, this approach enables the ex-
traction of robust, quantitative information about the transport
dynamics of complex fluid systems. This information can then be
used to construct a more explicit model of the environment-
coupled diffusion kernel, D̂ΓðsÞ, which has proved to be useful in
quantitative interpretation and prediction of the MSD, NGP,
and displacement distribution of various complex fluid systems.
In achieving quantitative understanding of complex systems, this
type of approach is advantageous over the conventional ap-
proach that relies on fully explicit models of the system, the
environment, and their interactions. This is because, for a system
interacting with a complex environment, it is difficult to con-
struct a model that is both accurate and explicit from the outset,

due to lack of information. Our approach is applicable and ex-
tendable to quantitative investigation of various other complex
systems in natural science (88, 89).

Methods
Extraction of Diffusion Kernel Correlation from MSD and NGP. Here, we pre-
sent the procedure for extracting the DKC, CDðtÞ, from the MSD and NGP
obtained by computer simulation, where CDðtÞ is defined by SI Appendix, Eq.
S3-12 in the Laplace domain. From SI Appendix, Eq. S3-12, we can represent

ĈDðsÞ in terms of the first two nonvanishing moments as follows:

ĈDðsÞ= Δ̂4ðsÞ�
1+ 2

d

�
2s2Δ̂2ðsÞ2

−
1
s
. [15]

On the other hand, the NGP, α2ðtÞ, is defined by

α2ðtÞ= Δ4ðtÞ�
1+ 2

d

�
Δ2ðtÞ2

− 1, [16]

which can be rearranged with respect to the fourth moment, Δ4ðtÞ, as

Δ4ðtÞ=
�
1+

2
d

�
Δ2ðtÞ2½1+ α2ðtÞ�. [17]

The simulation results for the MSD and NGP are well represented by Eq. 9
with two bound modes (n = 2) and a linear combination of three or four
Gaussian-shaped functions given by

α2ðtÞ≅
X3 or 4

i=1

ai exp
h
−ðlog10t −biÞ2

.
ci
i
, [18]

respectively. We perform the best fits of Eqs. 9 and 18 to the simulation
results for the MSD and NGP. By substituting the optimized results into Eq.
17, we obtain the analytic expression of Δ4ðtÞ as a function of time. Taking
the Laplace transforms of the best fitted Δ2ðtÞ and Δ4ðtÞ, and substituting
the results into Eq. 15, we obtain the Laplace transform of CDðtÞ for a given
set of MSD and NGP data. Here, we can directly use the model-free results
for the MSD and NGP obtained from the simulation, instead of using the
model-based fits. To obtain the value of CDðtÞ at a given time, t, we perform
the numerical Laplace inversion of Eq. 15 using the Stehfest algorithm (90).

Generation of Time Traces of Fluctuating Diffusion Coefficient. Along the ith
particle trajectory, N+ 1 displacements, riðte + tjÞ− riðtjÞ, with the same
elapsed time, te, but different starting times, ftj jk≤ j≤N+ kg, are selected.
Here, ftjg are successive time sequences with a constant spacing, 2 ps. The
elapsed time, te, must be long enough to capture Fickian diffusion. As shown in
Fig. 4C, Inset, the MSD of a TIP4P/2005 water molecule at 193 K becomes fully
linear in time beyond roughly 10 ns. From the selected displacements, the time-

local MSD, ΔðiÞ
2 ðte; tkÞ= N−1PN+k

j=k ½riðtj + teÞ− riðtjÞ�2, conditioned on time tk for

the ith particle trajectory is calculated. ΔðiÞ
2 ðte; tkÞ=6te is then assigned as a

diffusion coefficient, DðiÞðtkÞ, at time tk (54, 71, 72). The resulting mean-scaled

TCF, ÆδDðtÞδDð0Þæ=ÆDæ2, obtained with N = 20 and several elapsed times around
10 ns are well superimposed on each other (Fig. 4C). Here, the elapsed time, te,
must be smaller than t as noted in ref. 71. It is also verified that the mean-scaled
TCF obtained with N = 10 or 30 is essentially the same as the result with N = 20.
When te = 10 ns, the values of mean, ÆDæ, and relative variance, η2D, for the
diffusion coefficient are estimated to be 3.2 × 10−6 m2·s−1 and 1.2, respectively,
consistent with �D= limt→∞Δ2ðtÞ=6t = 3.1 × 10−6 m2·s−1 and α2ðτngÞ= 1.3.
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