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Abstract

Objective: The aim of this review is addressing the mechanisms of asbestos carcinogenesis, 

including chronic inflammation and autophagy-mediated cell survival, and propose potential 

innovative therapeutic targets to prevent mesothelioma development or improve drug efficacy by 

reducing inflammation and autophagy.

Background: Diffuse malignant pleural mesothelioma is an aggressive cancer predominantly 

related to chronic inflammation caused by asbestos exposure. Millions of individuals have been 

exposed to asbestos or to other carcinogenic mineral fibers occupationally or environmentally, 

resulting in an increased risk of developing mesothelioma. Overall patient survival rates are 

notably low (about 8–14 months from the time of diagnosis) and mesothelioma is resistant 

to existing therapies. Additionally, individuals carrying inactivating germline mutations in the 
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BRCA-associated protein 1 (BAP1) gene and other genes are predisposed to developing cancers, 

prevalently mesothelioma. Their risk of developing mesothelioma further increases upon exposure 

to asbestos. Recent studies have revealed the mechanisms and the role of inflammation in asbestos 

carcinogenesis. Biomarkers for asbestos exposure and malignant mesothelioma have also been 

identified. These findings are leading to the development of novel therapeutic approaches to 

prevent or delay the growth of mesothelioma.

Methods: Review of full length manuscripts published in English from January 1980 to February 

2021 gathered from PubMed.gov from the National Center of Biotechnology Information and the 

National Library of Medicine were used to inform this review.

Conclusion: Key regulators of chronic inflammation mediate asbestos-driven mesothelial cell 

transformation and survival through autophagic pathways. Recent studies have elucidated some 

of the key mechanisms involved in asbestos-induced chronic inflammation, which are largely 

driven by extracellular high mobility group box 1 (HMGB1). Upon asbestos exposure, mesothelial 

cells release HMGB1 from the nucleus to the cytoplasm and extracellular space, where HMGB1 

initiates an inflammatory response. HMGB1 translocation and release also activates autophagy 

and other pro-survival mechanisms, which promotes mesothelioma development. HMGB1 is 

currently being investigated as a biomarker to detect asbestos exposure and to detect mesothelioma 

development in its early stage when therapy is more effective. In parallel, several approaches 

inhibiting HMGB1 activities have been studied and have shown promising results. Moreover, 

additional cytokines, such as IL-1β and TNF-α are being targeted to interfere with the 

inflammatory process that drives mesothelioma growth. Developing early detection methods and 

novel therapeutic strategies is crucial to prolong overall survival of patients with mesothelioma. 

Novel therapies targeting regulators of asbestos-induced inflammation to reduce mesothelioma 

growth may lead to clinical advancements to benefit patients with mesothelioma.
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Introduction

Malignant pleural mesothelioma, a rare and aggressive malignancy due to mesothelial cell 

transformation, is the most common cancer caused by prolonged asbestos exposure (1,2). 

At the time of diagnosis, diffuse pleural mesothelioma, which must be distinguished from 

the exceedingly rare, localized forms, is very often at advanced stages and median survival 

rates are approximately 8–14 months (3). Mesothelioma is resistant to current therapies; 

however, potential biomarkers for early diagnosis and combinatory therapies are being tested 

in clinical trials.

Studies of asbestos carcinogenesis revealed that asbestos induces cell death, mostly by 

necrosis in human mesothelial cells (HM), and that necrotic cells release high mobility 

group box 1 (HMGB1) into the cytoplasm and the extracellular space (4) (Figure 1). 

HMGB1 is a prototypical damaged-associated molecular pattern (DAMP) that initiates the 

inflammatory process. It recruits macrophages, which release pro-inflammatory cytokines 

interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) acting on neighboring 
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HM (4). Upon asbestos exposure, active secretion and cytoplasmic accumulation of 

HMGB1 also activates autophagy, allowing HM to evade asbestos-induced cell death (5). 

Autophagy is an essential and physiological pathway that allows cells to modulate cell 

survival and protect against stress and nutrient deprivation. Autophagy upregulation in 

transformed cells is associated with resistance to chemotherapies. Therefore, inhibiting 

autophagy has been proposed as a possible therapeutic approach to promote drug sensitivity 

and reduce tumor growth (5,6). The objective of this literature review is examining the 

possible innovative therapeutic targets to reduce inflammation and chemoresistance to 

prevent or delay mesothelioma development while addressing the mechanisms of asbestos 

carcinogenesis, including chronic inflammation and autophagy-mediated cell survival. We 

present the following article in accordance with the Narrative Review Reporting Checklist 

(available at https://dx.doi.org/10.21037/pcm-21-12).

Methods

Literature gathered to inform this review was obtained from PubMed.gov from the National 

Center of Biotechnology Information and the National Library of Medicine. Searches 

included full length manuscripts published in the English language in high impact journals 

between the dates of January 1980 and February 2021.

Discussion

Asbestos cytotoxicity and mesothelioma detection

Asbestos describes two families of six different fibers including chrysotile, amosite, 

crocidolite, anthophyllite, tremolite, and actinolite. These fibers have different carcinogenic 

properties. Amphiboles, including tremolite, anthophyllite, amosite, and crocidolite, are 

more pathogenic and remain in tissues for many years. Serpentine is mostly made up of 

chrysotile fibers. Its widespread use accounts for about 95% of global asbestos and is the 

most common fiber mined worldwide. Chrysotile was mined in the United States until 2002 

(7). Although chrysotile is less carcinogenic than crocidolite asbestos due to its reduced bio-

persistence as well as the dimension and aspect ratio (fiber length to diameter), which are 

essential factors to determine carcinogenicity, experimental evidence show that prolonged 

and continuous chrysotile exposure also causes transformation of HM through continuous 

HMGB1 release and TNF-α secretion (8).

Asbestos has been identified as a carcinogen since the 1960s, but the asbestos-driven 

carcinogenic process was not fully understood until recent years (3). Early studies suggested 

asbestos fibers mechanically interfere with chromosomal segregation during mitosis and 

cause DNA damage in HM, which eventually becomes mesothelioma (9). Additionally, HM 

susceptibility to asbestos cytotoxicity was initially proposed to be associated predominantly 

with apoptosis (10). However, these hypotheses have since been ruled out, and current 

studies suggest that asbestos-induced carcinogenesis is mainly due to the inflammatory 

response caused by asbestos deposits, and that the chemical structure of some types of 

asbestos fibers may play an important role in the malignant transformation of HM (3,11,12).
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Compared to other cell types, HM are more vulnerable to asbestos cytotoxicity (13,14). 

Once inhaled, asbestos fibers remain in situ in the pleura and, over time, induce HM 

transformation that is largely ascribed to the chronic inflammatory response driven by 

the release of HMGB1. In efforts to remove inhaled asbestos fibers, macrophages and 

mesothelial cells attempt to envelop and phagocytize these fibers, which causes a wide 

range of cytotoxic effects including intracellular oxidation, DNA damage, cell cycle delay, 

cell death, and release of superoxide and cytokines (15,16). Moreover, the release of 

reactive oxygen and nitrogen species (ROS and RNS) (17,18) and the pro-inflammatory 

microenvironment induced by asbestos causes even more DNA damage, which over the 

course of several decades may lead to malignant transformation of HM and mesothelioma 

onset (19).

Crocidolite and amosite fibers have high biopersistence and contain high amounts of iron 

that form iron-rich chemical structures (ferruginous bodies), and some other asbestos 

fibers harbor iron as a surface impurity (11). Elevated levels of iron favor excessive 

ROS production and DNA damage catalyzed by oxidation: common hallmarks of cancer 

(20). Studies suggest that asbestos-driven carcinogenesis is associated with ferroptosis, 

an iron-dependent cell death pathway induced by overproduction of ROS (21). Recent 

data show that asbestos fibers induce distinctive necrotic cell death, and the cells initially 

undergo lysosome-dependent cell death (LDCD) and then undergo ferroptosis (22). The 

necrotic macrophages induce iron-dependent oxidative damage and DNA double-strand 

breaks in mesothelial cells, which contribute to asbestos carcinogenesis (22). Furthermore, 

the tumor suppressor activity of BAP1 has been recently linked to promoting ferroptosis by 

modulating the repression of cystine/glutamate antiporter SLC7A11 expression (3,23,24). 

It was reported that cells carrying BAP1 mutations are defective in regulating SLC7A11 
and ferroptosis, which uncovers a novel mechanism linking ferroptosis to tumor suppression 

(3,23,24).

Some recent studies indicate the Epithelial to Mesenchymal Transition (EMT) as an 

important event in asbestos-induced HM transformation (8,25). EMT is an essential 

pathogenic process in tumor progression allowing epithelial cells to acquire characteristics 

of mesenchymal cells (26). Data suggests that HM exposed to asbestos undergo EMT, 

and this transition is mediated by the increased secretion of transforming growth factor 

β (TGF-β) (25), HMGB1, and TNF-α (8,25), which are all driven by asbestos exposure. 

Moreover, asbestos induces ROS production that activates TGF-β secretion (27) and the 

activation of activator-protein-1 (AP-1) (28,29), an important regulator of inflammation, 

cell proliferation, and transformation, ultimately influencing asbestos cytotoxicity (30,31). 

It was demonstrated that upregulation of the AP-1 component Fra-1 in response to asbestos 

modulates malignant transformation of mesothelial cells (31,32). It was also found that 

because of the “field effect” of asbestos exposure and/or germline mutations, multiple foci 

of transformed cells may develop simultaneously: accordingly, mesothelioma is often a 

polyclonal malignancy (33).
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Inflammatory factors in mesothelioma

Chronic inflammation is caused by unresolved acute inflammation and promotes the 

development of several diseases (34–36). Numerous findings indicate that chronic 

inflammation is also a hallmark of cancer (37) and is involved in the development (4,12,38) 

and progression (39) of mesothelioma.

Throughout this chronic inflammatory process, the pro-inflammatory cytokine TNF-α is 

secreted and activates pro-tumoral transcription factors (such as NF-κB), which promotes 

HM survival and contributes to the pathogenesis of asbestos (12). Knocking out TNF-α 
receptors was sufficient to protect against asbestos-induced fibroproliferative lesions (40), 

which underscores the importance of TNF-α signaling in asbestos-induced inflammation. 

Early studies in asbestos-driven carcinogenesis suggest that HMGB1 is released from 

the nucleus to the cytoplasm and to the extracellular space where HMGB1 induces an 

inflammatory response (4,12). Once HMGB1 is released into the extracellular space, it binds 

directly with IL-1β and increases the production of TNF-α and macrophage inflammatory 

protein 2 (MIP-2 or CXCL2), which have pro-inflammatory activity (41). Together these 

factors contribute to the chronic inflammatory process resulting in survival of HM that can 

undergo transformation and give rise to mesothelioma.

At the site of accumulated asbestos deposits the chronic inflammatory response is 

also driven by the activation and formation of the NOD-like receptor family member 

containing a pyrin domain (NLRP3) inflammasome. The active NLRP3 inflammasome 

primed by asbestos promotes a pro-inflammatory microenvironment in the pleura by 

recruiting macrophages and releasing IL-1β, TNF-α, and HMGB1 (Figure 1). TNF-α 
binds to its receptor and activates NF-κB, which promotes the survival of HM and 

also induces the transcription of inflammatory cytokine genes (42). Activation of the 

NLRP3 inflammasome in macrophages and HM after asbestos exposure initiates the 

downstream inflammatory response by secretion of pro-inflammatory cytokines (43). In 

addition to NLRP3 inflammasome activation by asbestos sensing, the presence of ROS 

modulates inflammasome formation. Asbestos exposure causes oxidation of the antioxidant 

thioredoxin-1 (Trx1) and thioredoxin interacting protein (TXNIP) release: both contribute to 

the activation of the NLRP3 inflammasome (42,44). Moreover, the inflammasome is also 

activated and regulated by DAMP including HMGB1 (19,45–49). The activated NLRP3 

inflammasome controls and promotes the secretion of IL-1β and IL-18 by caspase-1 

cleaving pro-IL-1β and pro-IL-18 to their mature forms (50,51). IL-1β secretion is essential 

to inflammation-induced mesothelioma because IL-1β regulates other cytokines contributing 

to mesothelioma development (52,53). Since IL-1β levels regulate the secretion of other 

pro-inflammatory cytokines, IL-1 receptor antagonists have been proposed as a therapeutic 

strategy to reduce inflammation in mesothelioma (38,54,55).

It was shown that following asbestos exposure, IL-1β secretion was reduced in NLRP3-

deficient mice compared to wild type mice. However, there was no significant difference 

regarding the incidence of mesothelioma between the two groups (56), which suggested 

that asbestos-induced inflammation is initially inflammasome-dependent, but NLRP3 may 

not be essential during the later stage of chronic inflammation that causes mesothelioma 

development following asbestos exposure. Instead, the chronic inflammation at the site of 
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asbestos deposits is supported by the active release of HMGB1, initially by dying HM, 

and over time by accumulating macrophages that actively secrete HMGB1 extracellularly. 

Accordingly, asbestos-exposed individuals have elevated HMGB1 serum levels and its levels 

further increased during mesothelioma development, suggesting that HMGB1 can be a 

potential biomarker for asbestos exposure and early detection of mesothelioma (4,39,57,58).

Genetic susceptibility and mesothelioma

During the past decade, numerous studies have confirmed and expanded upon our discovery 

that mesothelioma is frequent in families carrying germline mutations of BAP1 and other 

tumor suppressor genes (59,60). BAP1 heterozygous inactivating mutations reduce the 

ability of the cells to repair the DNA and reduce the ability of cells to undergo cell 

death in response to genetic damage i.e., haploinsufficiency. These dual effects on DNA 

repair and cell death favor further accumulation of genetic damage that can ensue in 

malignant transformation and mesothelioma development, a process that can be enhanced 

by asbestos exposure (61–63). Additionally, reduced levels of BAP1 induce aerobic 

glycolysis, which favors tumor growth (64). About 30% of carriers of germline BAP1 
mutations have developed diffuse malignant mesothelioma (62). The critical role of BAP1 
in mesothelioma is supported by the frequent somatic biallelic inactivation of this gene 

in sporadic mesothelioma, which account for more than 60% of mesotheliomas (65,66), 

a malignancy in which recurrent genetic mutations are rare (67–69). Moreover, mouse 

models carrying heterozygous inactivating germline BAP1 mutations are more susceptible 

to asbestos-induced mesothelioma, i.e., Gene X Environment interaction (38,63), and 

BAP1 germline mutations interact with other tumor suppressor gene mutations to favor 

mesothelioma development, i.e., Gene X Gene interaction (70).

Mesothelioma also develops in carriers of germline mutations of other tumor suppressor 

genes known to cause other tumor predisposition syndromes, such as BLM, BRCA1 
and BRCA2, TP53, and ATM. Mesotheliomas developing in carriers of germline 

BAP1 mutations, or of other tumor suppressor genes, have a significantly improved 

prognosis compared to sporadic (not genetically linked) and, most often, asbestos-induced 

mesotheliomas (71–74). We have recently reviewed the role of genetics in causing 

mesothelioma (3), the BAP1 cancer syndrome (75), and the role and mechanisms of Gene 

X Environment interaction in human cancer including mesothelioma (62) in detail, and 

therefore we will not further discuss these issues here.

Autophagy as a mechanism for pre-cancer cell survival in response to chronic 
inflammation in mesothelioma

A recent study by Xue et al. (5) identified a key mechanism by which HMGB1 favors 

mesothelioma development. It was found that asbestos induces HMGB1 translocation 

from the nucleus to the cytoplasm, which leads to the activation of autophagy in HM 

(5). It was also shown previously that asbestos exposure causes DNA damage, such as 

double-strand breaks (76,77), which are associated with the loss of nuclear HMGB1 (78). 

Therefore, following asbestos exposure, increased cytoplasmic HMGB1 induces autophagy, 

which allows the cells to escape cell death despite DNA damage (79). In contrast, when 

HM were silenced for HMGB1, autophagy activation was reduced and HMGB1-silenced 
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HM exhibited increased cell death by apoptosis and necrosis upon asbestos exposure (5). 

Similarly, murine mesothelial cells from Hmgb1 conditional knockout mice exposed to 

asbestos demonstrated lower autophagy activation and increased apoptosis and necrosis 

compared to primary mesothelial cells harvested from Hmgb1 wild-type mice (5). Moreover, 

asbestos-induced autophagy was completely inhibited by treating HM with BoxA (5), 

an HMGB1 antagonist (5,39,80,81). These findings demonstrated that HMGB1-driven 

autophagy contributes to mesothelial cell transformation upon asbestos exposure, which 

further suggest that targeting HMGB1 or inhibiting autophagy might help prevent or delay 

mesothelioma.

Possible therapeutic approaches to reduce chronic inflammation and cancer cell survival 
in mesothelioma

Sporadic mesothelioma is resistant to current therapies, and depending on histology, 

overall patient survival is about 8–14 months from diagnosis. In contrast, median survival 

for mesothelioma patients carrying germline mutations is 5–7 years (3,82–84). The 

standard first-line therapy for sporadic mesothelioma consists of cisplatin and pemetrexed 

combination chemotherapy which may increase median survival by about 3 months, whereas 

the role and type of surgery continues to be investigated (3,85–89). The addition of 

bevacizumab to cisplatin-pemetrexed further extends median survival to about 18 months, 

while immunotherapy may help a fraction of patients with pleural mesothelioma (90–92). 

Novel therapies are being investigated. For example, several reagents including HMGB1 

inhibitors, IL-1 receptor antagonists, anti-inflammatory drugs, and autophagy inhibitors have 

been identified and demonstrated their effects in reducing mesothelioma in vitro (Figure 

1) and in vivo animal models. Current understandings of these developing therapies are 

discussed below.

Since the HMGB1 release appears necessary for mesothelioma progression, targeting 

HMGB1 has been explored as a potential therapy for mesothelioma (19,39,93,94). As 

discussed, HMGB1 is released into the extracellular space by HM exposed to asbestos 

fibers and the consequent HMGB1-RAGE interaction activates NF-κB. Ethyl pyruvate (EP), 

a derivative of pyruvic acid, has shown effective to reduce inflammation (95,96). The 

main effect of EP is the down-regulation of the HMGB1-RAGE axis, with the consequent 

reduced expression of inflammatory cytokines and of NF-κB. Pellegrini et al. showed that 

EP may act as an HMGB1-RAGE axis inhibitor in mesothelioma and that EP inhibited the 

translocation of HMGB1 from the nucleus to the cytoplasm, the release into the extracellular 

space, and led to reduced RAGE expression as well, resulting in the inhibition of NF-κB 

activity (93). In mouse mesothelioma xenografts, EP therapy resulted in both smaller tumor 

volume and reduced HMGB1 serum levels compared to untreated mice (93). Furthermore, 

pre-treatment with EP prior to the exposure to asbestos in both HM and in mice resulted 

in a reduced number of transformed foci in vitro and decreased HMGB1 serum levels in 
vivo (93). EP has been included in some food products and used as therapeutics in various 

diseases other than cancer; thus, its use is considered to be safe for human health (97,98). 

These findings of HMGB1 inhibition by EP in cancer, and especially in mesothelioma, point 

to EP as a potential novel therapy that could be tested in clinical trials. Additionally, a 

recent study showed that heparan sulfate octadecasaccharide (18-mer-HP) can neutralize the 
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pro-inflammatory activity of the HMGB1-RAGE axis and protect against acetaminophen/

paracetamol-induced acute liver failure in a mouse model (99), which makes 18-mer-HP a 

potential candidate to target HMGB1 release induced by asbestos exposure that is worth 

investigating in future studies.

Acetylsalicylic acid (ASA), or aspirin, is well known for its anti-inflammatory effects 

and, after 5 years of continuous therapy, aspirin reduced the incidence of colorectal 

cancer (CRC) by 30% and reduced the risk of metastases in early stage CRC (100). 

Treatment with ASA and its deacetylated metabolite salicylic acid (SA) demonstrated 

specific modulation of HMGB1 in vitro and in vivo, and effectively lowered HMGB1 serum 

levels and reduced tumor growth in mouse mesothelioma xenografts compared to untreated 

mice (101). In malignant mesothelioma cells secreting HMGB1, ASA and SA suppressed 

anchorage-independent cell growth in tissue culture (101). HMGB1 is a chemoattractant, 

therefore when HMGB1 is secreted into the extracellular space it induces the migration and 

recruitment of granulocytes, macrophages, and other cell types (102,103). ASA inhibited 

the chemoattractant activity of HMGB1 and, consequently, reduced cell migration (101). 

Thus, it appears possible that individuals exposed to asbestos, and those carrying germline 

BAP1 mutations, would benefit from aspirin treatment given reducing HMGB1 secretion 

should delay the onset or progression of mesothelioma (101). When cells secrete HMGB1 

into the extracellular space, HMGB1 binds to the surface of macrophages (104). BoxA, 

the DNA-binding domain for HMGB1, competes with HMGB1 for these binding sites. By 

inhibiting HMGB1 from binding to the surface of the macrophages, less HMGB1-induced 

proinflammatory cytokines are released from the macrophages (104). In studies of HMGB1 

inhibition as treatment for sepsis, BoxA attenuated HMGB1-driven release of IL-1β and 

TNF-α from macrophages by more than 75% (104). In asbestos-exposed HM treated 

with BoxA, macrophages secreted less TNF-α than untreated controls (4). Similarly to 

aspirin, BoxA also reduced mesothelioma growth in vitro and in vivo (39,101,105). In a 

comparative study of aspirin and BoxA as HMGB1 antagonists, both treatments inhibited 

the chemoattractant activity of HMGB1 and therefore reduced cell migration in vitro (101). 

In mouse mesothelioma xenografts, both treatments reduced tumor growth, however, BoxA-

treated mice survived longer than ASA-treated mice (101).

Monoclonal antibodies (mAb) for HMGB1 and for its RAGE receptor inhibited HMGB1 

activity in vitro and in vivo (39). In mesothelioma cell lines, both anti-HMGB1 and anti-

RAGE antibodies induced cytotoxicity and reduced viability (39). Targeting HMGB1 and 

RAGE significantly reduced cell viability, underscoring the key role of the HMGB1-RAGE 

axis in cell growth and thus its potential value as a therapeutic target (39). Similar to aspirin 

and BoxA, anti-HMGB1 and anti-RAGE antibodies reduced anchorage-independent cell 

growth in vitro (39). Additionally, HM exposed to asbestos and treated with either BoxA or 

anti-HMGB1 mAbs exhibited a two-week delay in foci formation, an in vitro measure of 

cell transformation, and an overall reduced number of foci compared to controls exposed to 

asbestos and not treated with any anti-HMGB1 therapy (39). Also, in mouse mesothelioma 

xenografts, treatment with anti-HMGB1 antibody reduced tumor growth (39).

The NLRP3 inflammasome is responsible for the secretion of several pro-inflammatory 

factors, which contribute to HM transformation upon asbestos exposure. Since IL-1β, 
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which is released by the NLRP3 inflammasome, initiates the secretion of many other 

cytokines, several research groups have studied IL-1 receptor antagonists to inhibit 

cytokine transcription and activity (106,107). Pre-treatment with Anakinra, an IL-1 receptor 

antagonist, followed by asbestos-exposure reduced the levels of NLRP3, IL-1β, IL-6, IL-8, 

HMGB1, vascular endothelial growth factor (VEGF), and granulocyte-colony stimulating 

factor (G-CSF) (43). Moreover, Anakinra treatment increased Nf2+/− and Cdkna2+/− mice 

survival exposed to asbestos (38,68), suggesting that Anakinra may mitigate mesothelioma 

progression by reducing inflammation.

Conclusions

Chronic inflammation caused by asbestos drives mesothelial cell transformation. Developing 

early detection methods and novel therapeutic approaches is essential to promote overall 

survival of patients with mesothelioma. Recent studies have elucidated some of the key 

mechanisms involved in asbestos-induced chronic inflammation, which are largely driven by 

extracellular HMGB1 (Figure 1). HMGB1 is initially released by HM undergoing asbestos-

induced necrosis, and later it is released by macrophages which are recruited at the site of 

asbestos deposits in tissues by the presence of extracellular HMGB1. These macrophages 

actively secrete HMGB1, thus propagating the inflammatory process and the secretion of 

IL-1β and other pro-inflammatory cytokines, such as TNF-α, which leads to the subsequent 

activation of NF-κB, a pro-survival pathway. HMGB1 activates autophagy and additional 

mechanisms that promote cell survival. These pro-survival mechanisms allow some of 

the mesothelial cells exposed to asbestos to escape cell death despite asbestos-induced 

DNA damage. This information is leading to the design of novel therapeutic approaches. 

HMGB1 is being investigated as a biomarker to detect asbestos exposure and to detect 

mesothelioma development in its early stage. In parallel, several approaches are being 

investigated to target and inhibit HMGB1 activities, a strategy that both in vitro and in mice 

has shown promising results to reduce mesothelial cell transformation and mesothelioma 

growth. Moreover, additional cytokines, such as IL-1β and TNF-α are being targeted to 

interfere with the inflammatory process that drives mesothelioma growth. It is hoped that 

these mechanistically driven novel therapies will result in clinical improvements for patients 

with mesothelioma in the near future.
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Figure 1. 
Key signaling pathways in asbestos-induced chronic inflammation and mesothelioma 

pathogenesis as well as related therapeutic approaches. Asbestos fibers cause necrotic 

mesothelial cell death and the consequent release of HMGB1 into the extracellular space. 

Extracellular HMGB1 initiates inflammatory response. It induces the accumulation of 

immune cells, as well as activates the NLRP3 inflammasome and NF-κB pathway, which 

causes secretion of many pro-inflammatory cytokines, including TNF-α and IL-1β. These 

factors bind to their respective receptors on neighboring mesothelial cells and promote the 

survival and transformation of mesothelial cells. Moreover, HMGB1 also induces autophagy 

in mesothelial cells following asbestos exposure that further promotes the cell survival and 

malignant transformation. The accumulation of survived mesothelial cells carrying DNA 

defects induced by asbestos and asbestos-generated ROS and RNS eventually leads to 

mesothelioma development. Many potential targets have been identified to interfere with 

the above carcinogenic process. For example, HMGB1 antagonist BoxA, anti-HMGB1 and 

anti-RAGE monoclonal antibodies can efficiently inhibit HMGB1 activities; Ethyl pyruvate 

reduces HMGB1 translocation and release by down-regulating the HMGB1-RAGE axis; 

IL-1 receptor antagonist Anakinra prevents the activity of IL-1β; and anti-inflammatory drug 

aspirin was also found to have anti-HMGB1 function. Created with Biorender.com.
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