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In the last decade, extensive and borderless viral disease outbreaks have been caused
by Ebola, Zika, and SARS-CoV-2. A new global pandemic will undeniably occur shortly. In
the case of COVID-19, many individuals have been tested to confirm viral infection, and
genetic variants of the virus have emerged. Several variants have caused severe public
health concerns, as they might have enhanced the potential for human-to-human transmis-
sion. In molecular diagnostic laboratories, RT-PCR has been the gold standard for detecting
emerging and re-emerging viruses, including SARS-CoV-2; however, RT-PCR testing is
generally time-consuming and requires individuals with mature experimental skills in
molecular biology. To address these obstacles, automatic virus detection systems using
clinical specimens and rapid virus detection with isothermal nucleic acid amplification
technologies have been developed and were available even in clinical hospitals during the
COVID-19 pandemic [1–3].

Furthermore, recent advances in next-generation sequencing (NGS) techniques and
global sequence-sharing networks have rapidly described the emergence of concern vari-
ants and global pathways of these variant transmissions [4,5]. In this Special Issue, we
focused on novel and effective technologies for detecting viruses or biomarkers that in-
dicate viral infection using nucleic acid amplification, antigen detection, NGS, and other
germination techniques that could be applied to detect emerging viruses. We have featured
four original articles and two review articles in this Special Issue.

Since the pandemic started in 2019, a sensitive and specific SARS-CoV-2 detection
biosensor has been required, especially for patients with severe acute respiratory syndrome.
Several detection methods have been applied to identify viral particles in biological samples
during pandemics. Bojórquez-Velázquez et al. demonstrated the importance of applying
new technologies for virus detection in food and environmental samples, particularly
for SARS-CoV-2 [6]. Using mass spectrometry, they detected the virus more quickly and
found new variants because they could directly determine the amino acid sequences of the
viral proteins in the specimens. Proteomics and mass spectrometry are expected to play
important roles in the epidemiological control of COVID-19 and other diseases.

Mugnier et al. developed an easy-to-use web-based application (EPISEQ SARS-CoV-2)
to analyze SARS-CoV-2 NGS data generated on common sequencing platforms using a
variety of commercially available reagents, helping laboratories with limited bioinformatic
capacity [7]. A comparison of several sequencing approaches using EPISEQ SARS-CoV-2
revealed 100% concordance in the clade and lineage classifications. This study also revealed
reagent-related sequencing issues that could impact SARS-CoV-2 mutation reporting. This
application made it easy to access and translate the raw NGS data.

Many patients who recovered from COVID-19 continue to experience various symp-
toms long past the time of their initial recovery, referred to as Post-Acute Sequelae of
SARS-CoV-2 infection (PASC) or “long COVID”. Happel et al. demonstrated the Na-
tional Institutes of Health initiative for novel exosome-based technologies for detecting
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SARS-CoV-2. The present study could detect SARS-CoV-2 RNA and protein combinations,
exosomal RNA and proteins, and host antibodies by developing SARS-CoV-2 multipara-
metric assays [8]. Additionally, it can provide clinically relevant information, such as the
presence of broadly neutralizing antibodies or prognostic biomarkers for severe COVID-19
or PASC.

Due to its high sensitivity and specificity, Zheng et al. developed a quantum dot tech-
nology that is a very promising way to achieve this [9]. It is a nanometer-scale fluorescent
biosensor system consisting of CdSe-ZnS quantum dots (QDs) coupled with the highly
sensitive B-cell epitopes of SARS-CoV-2, which can remarkably identify the corresponding
antibody with a detection limit of 100 pM. Intriguingly, the authors found that the fluores-
cence quenching of QDs was stimulated more obviously when coupled with peptides than
with the corresponding proteins, indicating that the biosensor provides a novel real-time,
quantitative, and high-throughput method for clinical diagnosis and home-use tests.

Infectious virus and pseudotyped virus entry assays detect functionally active an-
tibodies but are limited by biosafety and standardization issues. Abdul et al. reported
that not all antibodies against SARS-CoV-2 inhibited viral entry and infection [10]. Neu-
tralizing antibodies are more likely to reflect natural immunity; however, specific tests
have investigated protein–protein interactions rather than fusion events. Based on this,
they developed a SARS-CoV-2 Spike protein-and cellular receptor angiotensin-converting
enzyme 2 (ACE2)-dependent fusion assay based on split luciferase. This new method
consists of rapid execution (24 h) in multiwell plates, compared to the plaque reduction
neutralization test and pseudotyped viruses, and can be performed in a standard biosafety
environment. It provides robust reproducibility and standardization and is adapted for
automation and large-scale studies.

Understanding the integration sites between the B-cell lymphoma lines BLSC-KU1
and BLSC-KU17 and applying the viral DNA capture high-throughput sequencing system
are fundamental to avoid bovine leukemia. Yamanaka et al. showed for the first time the
development of a novel proviral DNA-capture sequencing method that investigated bovine
leukemia virus (BLV) proviral integration in two B-cell lymphoma lines, BLSC-KU1 and
BLSC-KU17, derived from BLV-infected cattle with enzootic bovine leukosis [11]. This is an
innovative method for screening BLV-infected cattle at an earlier stage than those that have
already developed lymphomas.

In this Special Issue, we provide information on novel diagnostic methods targeting
different phases of infection (acute and convalescent) and different approaches (the virus
itself and host immunological responses). In response to the next pandemic, cost-effective,
labor-saving, and high-throughput molecular diagnostic technologies must be continuously
developed for detecting viruses and their genetic mutations. Furthermore, the surveillance
of zoonotic viruses is necessary to prepare for the subsequent spillover of known or
unknown pathogenic viruses from nature to human communities.
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